CHEM 192 • Exam # 5 • Fall 2012 • 100 points

Name: Kay - v. 1

Multiple Choice (6 points each): Please write the letter of the best choice in the blank provided.

1. <u>D</u>

A solution is prepared by dissolving 0.0584 mol of Na_2SO_4 in enough water to make 225 mL of solution. Calculate the solution molarity.

- A) 0.0584 M
- B) 1.87 M
- C) 0.603 M
- D) 0.260M
- E) 0.484 M

2. E

A 3.1-mol sample of KClO₃ was decomposed according to the equation below. How many moles of O₂ are formed assuming 100% yield?

$$2\text{KClO}_3(s) \rightarrow 2\text{KCl}(s) + 3\text{O}_2(g)$$
3. $| \text{Ino} |$

- A) 2.1 mol
- B) 2.6 mol
- C) 3.1 mol
- D) 1.6 mol
- E) 4.7 mol

3. <u>B</u>

A solution is prepared by dissolving 20.0 g of potassium nitrate in 125.0 g of water. Calculate the mass percent of potassium nitrate in the solution.

- A) 16.0 %
- B) 13.8 %
- C) 20.0 %
- D) 86.2 %
- E) 84.0 %

	_
4	()
⊸,	

When a solvent has dissolved all the solute it can at a particular temperature, it is said to be

- A) diluted
- B) unsaturated
- C) supersaturated
- D) saturated
- E) none of these

What is the concentration of bromide ions in a solution that is 0.40 M calcium bromide?

- A) 0.40 M
- B) 0.80 *M*
- C) 0.20 M
- D) 1.2 *M*
- E) 0.60 *M*

9.12 rol NO+ 6 mol H20 6.022x1023 molec 4 rol NO. 1 mol H20

6.

Refer to the following equation below. How many molecules of water are produced if 9.12 mol of NO₂ is given off?

$$4NH_3(g) + 7O_2(g) \rightarrow 4NO_2(g) + 6H_2O(g)$$

A)
$$1.10 \times 10^{25}$$

B)
$$5.49 \times 10^{24}$$

- C) 164.2
- D) 8.24×10^{24}
- E) none of these

7. A

What volume of 2.00 M sulfuric acid is required to prepare 250. mL of 0.125 M H₂SO₄?

- A) 15.6 mL
- B) 64.0 mL
- C) 0.0640 mL
- D) 62.5 mL
- E) 25.0 mL

- 8. (5) Spell Professor Bates's favorite word in chemistry: Stoichiometry
- 9. (12) What mass of solute is contained in 64.9 mL of a 0.750 M solutron of iron (111) chloride?

10. (16 points) Complete the following table for the following reaction. Assume 100% yield. Be sure to indicate + / – in the "moles REACTING" line.

	$P_{4(s)}$ +	$-6 \operatorname{Cl}_{2(g)} -$	→ 4 PCl _{3(g)}
Moles at the START	7	24	0
Moles REACTING	-4	-24	+ 16
Moles at the END	3 mol	× not	16 mol

A) B) C)	What is the limiting reagent? WO3 What is the theoretical yield (in grams) of free tungsten metal? 58 What mass of excess reagent remains? 1069 Hy	353	
	$WO_{3(s)} + 3 H_{2(g)} \rightarrow W_{(s)} + 3 H_2O_{(l)}$	Molar masses (g/mol): WO ₃ = 231.84 W = 183.84	$H_2 = 2.016$ $H_2O = 18.02$
R	738g/W03 Ind I mot W 231.84g Ind W03	183.84g W	TY= 585,
	1259 Ho Inol Ho I mol W 11 2.016 g Ho 3 nol Ho 11		
٠	738g WO3 1 mol WO3 3 mol Ho 231.84g WO3 1 mol WO3	2.016 g Hz	
	= 19.3g Fe	a & 5	
	125g steat		

11. (كن) Consider the reaction of tungsten (VI) oxide with hydrogen gas below. If 738 g of WO₃ is allowed to react

with 125 g of H₂ gas: