

Mole / Dozen Analogy

- Like the mole, a dozen of something is a convenient way to talk about the number of items we tend to buy in those quantities:
1 dozen donuts $=12$ donuts
3 dozen eggs $=36$ eggs
- The mole and the dozen make it easier to talk about large quantities.

The Mole

- A mole of anything is $\mathbf{6 . 0 2 2 1 4 \times 1 0 ^ { 2 3 }}$ of that thing.
- In Chemistry, we work with very small particles, so we must work with a very large ${ }_{\text {quantity of them. }}$
- The mole is a convenient number to count a large quantity of particles.
- We can talk about a mole of anything, but we usually use it to talk about atoms, molecules, ions, and formula units - Matter at the particle level.
6.02214×10^{23} is also called Avogadro's number.

The mole and counting particles

- We can use Avogadro's number to convert between particles and moles:

1 mole $=6.02214 \times 10^{23}$ particles

- The conversion factors are:

6.022×10^{23} particles
 1 mol
 or $\frac{1 \mathrm{~mol}}{6.022 \times 10^{23} \text { particles }}$

Slide B-8

Dimensional Analysis:

- Dimensional analysis problems use a series of ratios (conversion factors) to convert one unit to another.
- Dimensional analysis is a means of solving chemical problems in which the units are used to set up the problem.

Steps in dimensional analysis

1) Identify the conversion to be performed:

GIVEN UNITS \rightarrow DESIRED UNITS
2) Setup a Dimensional Analysis table.
3) Insert conversion factors to eliminate unwanted units and introduce the desired units.
4) Compute.

Example: Convert 68.4 centimeters to feet.

Note: The dimensional analysis table is identical to multiplying by fractions or ratios.

Atomic / Molar Masses

- Avogadro's number relates the atomic mass unit and the gram:
$6.022 \times 10^{23} \mathrm{amu}=1.000 \mathrm{~g} \quad$ (measured)
- Therefore: $1 \mathrm{amu}=1 \mathrm{~g} / \mathrm{mol}$ (exact)
- An atom of Carbon-12 has an atomic mass of exactly (by definition) 12 amu or a molar mass of $12 \mathrm{~g} / \mathrm{mol}$.
- 6.02214×10^{23} Carbon-12 atoms will have a mass of 12.0000 g.
- The molar mass of an element is its average atomic mass from the periodic table expressed in units of $\mathrm{g} / \mathrm{mol}$.

Atomic / Molar Masses

- We express the masses of individual atoms and molecules in atomic mass units (amu).
- One amu is defined as $1 / 12$ the mass of an atom of the isotope carbon-12.
- An atom of Carbon- 12 contains 6 protons and 6 neutrons in its nucleus (and 6 electrons in its electron cloud).
$1 \mathrm{amu} \approx$ mass of $1 \mathrm{p}^{+} \approx$ mass $1 \mathrm{n}^{0} \approx$ mass of $1800 \mathrm{e}^{-}$
- However, we rarely work with small numbers of atoms or molecules. We usually work on the scale of

moles!

More Mole Conversions

1) What is the mass of 3.11 mol of nickel atoms?
2) What is the mass of 3.5×10^{22} atoms of gold?
3) How many formula units is 335 mg of magnesium chloride $\left(\mathrm{MgCl}_{2}\right)$?
4) How many atoms are in 1.000 gram of xenon?
5) What is the mass of a single sodium- 23 atom in grams? The isotopic mass of $\mathrm{Na}-23$ is 22.99 amu.
