

The Mole

- A mole of anything is 6.02214 x 10²³ of that thing.
- In Chemistry, we work with very small particles, so we must work with a very large quantity of them.
- The mole is a convenient number to count a large quantity of particles.
- We can talk about a mole of anything, but we usually use it to talk about atoms, molecules, ions, and formula units – Matter at the particle level.

6.02214 x 1023 is also called Avogadro's number.

Slide B-6

Mole / Dozen Analogy

 Like the mole, a dozen of something is a convenient way to talk about the number of items we tend to buy in those quantities:

> 1 dozen donuts = 12 donuts 3 dozen eggs = 36 eggs

 The mole and the dozen make it easier to talk about large quantities.

Slide B-

The mole and counting particles

 We can use Avogadro's number to convert between particles and moles:

1 mole = 6.02214×10^{23} particles

• The conversion factors are:

 $\frac{6.022 \times 10^{23} \text{ particles}}{1 \text{ mol}} \quad \text{or} \quad \frac{1 \text{ mol}}{6.022 \times 10^{23} \text{ particles}}$

Slide B-8

Mole - Particle Conversions

- 1) Convert 6.78 x 10²⁴ atoms of argon to moles of argon.
- 2) Convert 0.881 moles of water to molecules of $\mathrm{H}_2\mathrm{O}$.

Slide B-9

Dimensional Analysis:

- Dimensional analysis problems use a series of ratios (conversion factors) to convert one unit to another.
- Dimensional analysis is a means of solving chemical problems in which the units are used to set up the problem.

Slide B-10

Steps in dimensional analysis

1) Identify the conversion to be performed:

GIVEN UNITS → DESIRED UNITS

- 2) Setup a Dimensional Analysis table.
- Insert conversion factors to eliminate unwanted units and introduce the desired units.
- 4) Compute.

Example: Convert 68.4 centimeters to feet.

Note: The dimensional analysis table is identical to multiplying by fractions or ratios.

Slide B-1

Atomic / Molar Masses

- We express the masses of individual atoms and molecules in atomic mass units (amu).
- One **amu** is defined as ¹/₁₂ the mass of an atom of the isotope carbon-12.
 - An atom of Carbon-12 contains 6 protons and 6 neutrons in its nucleus (and 6 electrons in its electron cloud).

1 amu ≈ mass of 1 p* ≈ mass 1 nº ≈ mass of 1800 e*

 However, we rarely work with small numbers of atoms or molecules. We usually work on the scale of

moles!

Slide B-12

Atomic / Molar Masses

Avogadro's number relates the atomic mass unit and the gram:

6.022 x 10²³ amu = 1.000 g (measured)

- Therefore: 1 amu = 1 $^{g}I_{mol}$ (exact)
- An atom of Carbon-12 has an atomic mass of exactly (by definition) 12 amu or a molar mass of 12 g/mol.
 - 6.02214 x 10²³ Carbon-12 atoms will have a mass of 12.0000 α
- The **molar mass** of an element is its average atomic mass from the periodic table expressed in units of g/mol.

Slide B-13

More Mole Conversions

- 1) What is the mass of 3.11 mol of nickel atoms?
- 2) What is the mass of 3.5 x 10²² atoms of gold?
- 3) How many formula units is 335 mg of magnesium chloride (MgCl₂)?
- 4) How many atoms are in 1.000 gram of xenon?
- 5) What is the mass of a single sodium-23 atom in grams? The isotopic mass of Na-23 is 22.99

Slide B-16