Measurement in

 Chemistry

Measurement in Chemistry

- Qualitative measurements -

Observations that describe a substance, mixture, reaction, or other process in WORDS.

- Quantitative measurements Observations that describe a property with NUMBERS and UNITS.

UNITS and Quantitative measurements

* Numbers often make no sense if we do not have some sort of reference or standard to compare them to.
- Nearly all numbers MUST be followed by a unit label.
* The unit indicates the standard against which the number is measured.

UNITS and Quantitative measurements

- The metric system is a system of measurement based on multiples of ten.
* In the metric system, a prefix may be added to the base unit to change the value of the unit by a factor of ten. The base unit is a reference to the standard.
* The English system of measurement is not based on powers of ten, and is therefore more difficult to use in calculations.
- Scientists almost exclusively work in the metric or SI system.
Base units: The Système Internationale (SI) base units are defined from some physically observable and reproducible quantity. The base units are:

Quantity

Length
Mass
Time
Temperature
Amount of a substance
Electric Current
Luminous Intensity

Unit
meter
kilogram (gram)
second
kelvin
mole
ampere
candela

Symbol
m
kg (g)
S
K
mol
A
cd

Metric Prefixes: The prefixes below change any of the base or derived metric units into a power of 10 .

Prefix	Symbol	Multiple	Multiple
Tera-	T	10^{12}	$1,000,000,000,000$
Giga-	G	10^{9}	$1,000,000,000$
Mega-	M	10^{6}	$1,000,000$
kilo-	k	10^{3}	1,000
hecto-	h	10^{2}	100
deka-	dk	10^{1}	10
base unit		10^{0}	1
deci-	d	10^{-1}	0.1
centi-	c	10^{-2}	0.01
milli-	m	10^{-3}	0.001
micro-	μ	10^{-6}	0.000001
nano-	n	10^{-9}	0.000000001
pico-	p	10^{-12}	0.000000000001

TABLE 1.2 The Prefixes Used in the SI System (Those most commonly encountered are shown in blue.)

Prefix	Symbol	Meaning	Exponential Notation
exa	E	$1,000,000,000,000,000,000$	10^{18}
peta	P	$1,000,000,000,000,000$	10^{15}
tera	T	$1,000,000,000,000$	10^{12}
giga	G	$1,000,000,000$	10^{9}
mega	M	$1,000,000$	10^{6}
kilo	k	1,000	10^{3}
hecto	h	100	10^{2}
deka	da	10	10^{1}
-	-	1	10^{0}
deci	d	0.1	10^{-1}
centi	c	0.01	10^{-2}
milli	m	0.001	10^{-3}
micro	μ	0.000001	10^{-6}
nano	n	0.000000001	10^{-9}
pico	p	0.000000000001	10^{-12}
femto	f	0.000000000000001	10^{-15}
atto	a	0.000000000000000001	10^{-18}

Simple Metric Conversions

- Converting from a larger prefix to a smaller one:
- Move the decimal to the right:

$$
0.896 \mathrm{~m} \rightarrow \mathrm{~cm}
$$

$0.89 .6 \mathrm{~m} \rightarrow 89.6 \mathrm{~cm}$

- Converting from a smaller prefix to a larger one:
- Move the decimal to the left:
$750 \mathrm{~mL} \rightarrow \mathrm{cL}$
$750 \mathrm{~mL} \rightarrow 75.0 \mathrm{cL}$

EXAMPLES:

* 1 kilometer (km) = 1000 meters (m)
* $1.0 \mathrm{mg}=0.0010 \mathrm{~g}$
+ $7.5 \mathrm{Ms}=7,500,000 \mathrm{~s}$
* $55 \mathrm{~cm}=5.5 \mathrm{dm}=0.55 \mathrm{~m}$
- $450 \mathrm{~nm}=0.000000450 \mathrm{~m}$
* 0.0233 ps
$=\quad \mu \mathrm{s}$
* $9.65 \times 10^{8} \mathrm{cg}=\quad \mathrm{kg}$
+ $7.87 \times 10^{-7} \mathrm{dm}=$ nm

SI derived units

* Derived units are mathematical combinations of the SI base units.
* Volume (space occupied by matter) is the most common derived unit that we will discuss in this course. The simplest formula for volume is for the volume of a box:
- V=length x width x height
- Consider a box with:

$$
I=5.0 \mathrm{~cm}, w=3.0 \mathrm{~cm}, \quad h=7.0 \mathrm{~cm}
$$

- $V=5.0 \mathrm{~cm} \times 3.0 \mathrm{~cm} \times 7.0 \mathrm{~cm}=105 \mathrm{~cm}^{3}$
- Just as the numbers are multiplied, so are the units.

Volume Conversion Factors

Cubic decimeters \rightarrow cubic centimeters
$1 \mathrm{dm}=10 \mathrm{~cm}$
$(1 \mathrm{dm})^{3}=(10 \mathrm{~cm})^{3}$
$1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}$

Sone volurte equivalintas $1 \mathrm{~m}^{3}=1000 \mathrm{dm}^{3}$ $1 \mathrm{dm}^{3}=1600 \mathrm{~cm}^{3}$
$1 \mathrm{~cm}^{2}=1 \mathrm{~L} 00 \mathrm{~mm}^{3}$
$1 \mathrm{~cm}^{3}=1000 \mathrm{nes}{ }^{3}$
$\begin{aligned} & 1 \mathrm{~mm}^{2}=1 \mathrm{~mL}=1060 \mathrm{LL} \\ & 1 \mathrm{~mm}^{2}\end{aligned}$

Volume units

The units that we commonly use to discuss volume is the Liter (L) and the milliliter (mL): MEMORIZE these conversions:

1 Liter (L) = 1 cubic decimeter (dm^{3})
1 milliliter $(\mathrm{mL})=1$ cubic centimeter $\left(\mathrm{cm}^{3}\right)$

$$
=0.001 \mathrm{~L}
$$

$$
=1 \mathrm{cc}
$$

Common types of laboratory equipment used to measure liquid volume.

Relationships of selected U.S. and Metric Units

- In the U.S., many of the everyday measurements we use are based on the older English system.
* We primarily use the metric system for measurements in labs in the U.S. However it is still often necessary to make some conversions to the metric system.

Length
$1 \mathrm{in}=2.54 \mathrm{~cm}$
$1 \mathrm{yd}=0.9144 \mathrm{~m}$
$1 \mathrm{mi}=1.609 \mathrm{~km}$
$1 \mathrm{mi}=5280 \mathrm{ft}$

Mass

$1 \mathrm{lb}=0.4536 \mathrm{~kg} \quad 1 \mathrm{qt}=0.9464 \mathrm{~L}$
$1 \mathrm{lb}=16 \mathrm{oz} \quad 4 \mathrm{qt}=1 \mathrm{gal}$
$1 \mathrm{oz}=28.35 \mathrm{~g}$

Dimensional Analysis \& Simple Unit conversions:

1) $4.5 \mathrm{~L} \rightarrow \mathrm{cL}$
2) $758 \mathrm{~nm} \rightarrow \mu \mathrm{~m}$
3) \quad 153. oz. $\rightarrow \mathrm{kg}$

Bond Length Conversion

Practice Problem 1.78 Water consists of molecules (groups of atoms). A water molecule has two hydrogen atoms, each connected to an oxygen atom. The distance between any one hydrogen atom and the oxygen atom is $0.96 \AA$. What is this distance in millimeters?

Conversion factor: $1 \AA=1 \times 10^{-10} \mathrm{~m}$

Compound Unit Conversion

- Convert: $65 \mathrm{mi} / \mathrm{hr} \rightarrow \mathrm{m} / \mathrm{s}$

Volume Conversion

- Convert: $1.2 \times 10^{5} \mathrm{~cm}^{3} \rightarrow \mathrm{~m}^{3}$

Mass and Weight

* Mass is a measurement of how much matter is present.
* Weight is brought about by the force of gravity pulling one object toward another.
* Mass and weight are not the same things.
- Mass is independent of gravity.
- A classic balance functions by comparing the weight of some unknown mass to the weight of another object of known mass.
* With the same pull of gravity, two objects of the same mass will have the same weight.

4 Mass is an extensive property of matter - it depends on the amount of matter present.

Slide C-19

Density

* Density is a physical property of matter that describes the relationship between mass and volume of a substance.

$$
\text { Density }=\frac{\text { mass }}{\text { volume }}
$$

$$
\mathrm{D}=\frac{\mathrm{m}}{\mathrm{~V}}
$$

* Density is an intensive property of matter - A substance will have a characteristic density that is independent of the amount of the substance present.
* In lay terms, we might say it describes how "heavy" a substance is (a misuse of the word).

The relative densities of methylene chloride, water (with dye added) and hexanes.

The relative densities of copper and mercury.

5-step Method for Problem-solving

1. Identify the UNKNOWN in the problem.
2. Identify the GIVEN quantities and useful information.
3. Choose the appropriate formulas \& conversion factors.
4. Plan the solution.

- Identify how you will use formulas \& conversion factors.
- Set up dimensional analysis tables.
- Isolate unknown variables in formulas.

5. Substitute the givens (in formulas) and SOLVE. (Plug \& Chug!)

Problem Solving Examples

1. Ethanol has a density of $0.789 \mathrm{~g} / \mathrm{cm}^{3}$. What is the volume of ethanol that must be measured to equal 30.3 g ?
2. Convert the density of aluminum, $2.70 \mathrm{~g} / \mathrm{cm}^{3}$ to oz. / in ${ }^{3}$
3. Aluminum has a density of $2.70 \mathrm{~g} / \mathrm{cm}^{3}$. What is the mass of aluminum in a sheet that is $2.00 \mathrm{~m} \times 2.00 \mathrm{~m} \times 1.50 \mathrm{~mm}$?

Temperature

* Temperature is the measure of the kinetic energy of particles.
- Temperature Scales:
- Fahrenheit - system in common use in the US.
- Celsius - system most commonly used in the laboratory and throughout the rest of the world. Has convenient reference points.
- Kelvin - absolute temperature scale. Zero Kelvin is the theoretical temperature at which all molecular motion stops (or reaches its lowest possible quantum level). No negative temperatures.

Temperature Scales

Temperature Conversions

$$
\begin{array}{rlrl}
\star & { }^{\circ} \mathrm{C}=5 / 9\left({ }^{\circ} \mathrm{F}-32\right) \\
* & & \\
\bullet & \mathrm{~F}=9 / 5^{\circ} \mathrm{C}+32 \\
* & \mathrm{~K}={ }^{\circ} \mathrm{C}+273.15 \quad \text { MEMORIZE }
\end{array}
$$

EXAMPLES:

- Convert $10.0^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$ and to K .
- Convert 353 K to ${ }^{\circ} \mathrm{C}$.

