Measurement in Chemistry	
	Chapter 1

UNITS and Quantitative measurements

\rightarrow Numbers often make no sense if we do not have some sort of reference or standard to compare them to.

- Nearly all numbers MUST be followed by a unit label.
- The unit indicates the standard against which the number is measured.

Measurement in Chemistry

- Qualitative measurements -

Observations that describe a substance, mixture, reaction, or other process in WORDS.

- Quantitative measurements Observations that describe a property with NUMBERS and UNITS.

UNITS and Quantitative measurements

* The metric system is a system of measurement based on multiples of ten.
- In the metric system, a prefix may be added to the base unit to change the value of the unit by a factor of ten. The base unit is a reference to the standard.
- The English system of measurement is not based on powers of ten, and is therefore more difficult to use in calculations.
- Scientists almost exclusively work in the metric or SI system.

Base units: The Système Internationale (SI) base units are defined from some physically observable and reproducible quantity. The base units are:

Quantity	Unit	Symbol
Length	meter	m
Mass	kilogram (gram)	$\mathrm{kg} \mathrm{(g)}$
Time	second	S
Temperature	kelvin	K
Amount of a substance	mole	mol
Electric Current	ampere	A
Luminous Intensity	candela	cd

Prefix	Symbol	Multiple	Multiple
Tera-	T	10^{12}	1,000,000,000,000
Giga-	G	10^{9}	1,000,000,000
Mega-	M	10^{6}	1,000,000
kilo-	k	10^{3}	1,000
hecto-	h	10^{2}	100
deka-	dk	10^{1}	10
base unit		10°	1
deci-	d	10^{-1}	0.1
centi-	c	10^{-2}	0.01
milli-	m	10^{-3}	0.001
micro-	μ	10^{-6}	0.000001
nano-	n	10^{-9}	0.000000001
pico-	p	10^{-12}	0.000000000001

Simple Metric Conversions

- Converting from a larger prefix to a smaller one:
- Move the decimal to the right:

$$
0.896 \mathrm{~m} \rightarrow \mathrm{~cm}
$$

$$
0.896 \mathrm{~m} \rightarrow 89.6 \mathrm{~cm}
$$

- Converting from a smaller prefix to a larger one:
- Move the decimal to the left: $750 \mathrm{~mL} \rightarrow \mathrm{cL}$

EXAMPLES:

- 1 kilometer $(\mathrm{km})=1000$ meters (m)
+ $1.0 \mathrm{mg}=0.0010 \mathrm{~g}$
- $7.5 \mathrm{Ms}=7,500,000 \mathrm{~s}$
- $55 \mathrm{~cm}=5.5 \mathrm{dm}=0.55 \mathrm{~m}$
- $450 \mathrm{~nm}=0.000000450 \mathrm{~m}$
$\rightarrow 0.0233 \mathrm{ps} \quad=\quad \longrightarrow \mathrm{Ls}$
$\rightarrow 9.65 \times 10^{8} \mathrm{cg}=$ \qquad kg
$+7.87 \times 10^{-7} \mathrm{dm}=$ \qquad nm

SI derived units

- Derived units are mathematical combinations of the SI base units.
- Volume (space occupied by matter) is the most common derived unit that we will discuss in this course. The simplest formula for volume is for the volume of a box:

```
    . V = length x width x height
```

 - Consider a box with:
 \(I=5.0 \mathrm{~cm}, w=3.0 \mathrm{~cm}, h=7.0 \mathrm{~cm}\)
 - \(V=5.0 \mathrm{~cm} \times 3.0 \mathrm{~cm} \times 7.0 \mathrm{~cm}=105 \mathrm{~cm}^{3}\)
 - Just as the numbers are multiplied, so are the units.

Volume units

The units that we commonly use to discuss volume is the Liter (L) and the milliliter (mL):

MEMORIZE these conversions:
1 Liter (L) = 1 cubic decimeter (dm^{3})
1 milliliter (mL) = 1 cubic centimeter (cm^{3})

$$
\begin{aligned}
& =0.001 \mathrm{~L} \\
& =1 \mathrm{cc}
\end{aligned}
$$

Relationships of selected U.S. and Metric Units

- In the U.S., many of the everyday measurements we use are based on the older English system.
- We primarily use the metric system for measurements in labs in the U.S. However it is still often necessary to make some conversions to the metric system.

Length	Mass	Volume
$1 \mathrm{in}=2.54 \mathrm{~cm}$	$1 \mathrm{lb}=0.4536 \mathrm{~kg}$	$1 \mathrm{qt}=0.9464 \mathrm{~L}$
$1 \mathrm{yd}=0.9144 \mathrm{~m}$	$1 \mathrm{lb}=16 \mathrm{oz}$	$4 \mathrm{qt}=1 \mathrm{gal}$
$1 \mathrm{mi}=1.609 \mathrm{~km}$	$1 \mathrm{oz}=28.35 \mathrm{~g}$	
$1 \mathrm{mi}=5280 \mathrm{ft}$		

Dimensional Analysis \& Simple Unit conversions:

1) $4.5 \mathrm{~L} \rightarrow \mathrm{cL}$
2) $758 \mathrm{~nm} \rightarrow \mu \mathrm{~m}$
3) $\quad 153 . \mathrm{oz} . \rightarrow \mathrm{kg}$

Compound Unit Conversion

+ Convert: $65 \mathrm{mi} / \mathrm{hr} \rightarrow \mathrm{m} / \mathrm{s}$

Volume Conversion

\rightarrow Convert: $1.2 \times 10^{5} \mathrm{~cm}^{3} \rightarrow \mathrm{~m}^{3}$

Bond Length Conversion

Practice Problem 1.78 Water consists of molecules (groups of atoms). A water molecule has two hydrogen atoms, each connected to an oxygen atom. The distance between any one hydrogen atom and the oxygen atom is $0.96 \AA$. What is this dis-

Mass and Weight

- Mass is a measurement of how much matter is present.
- Weight is brought about by the force of gravity pulling one object toward another.
- Mass and weight are not the same things.
- Mass is independent of gravity.
- A classic balance functions by comparing the weight of some unknown mass to the weight of another object of known mass.
* With the same pull of gravity, two objects of the same mass will have the same weight.
- Mass is an extensive property of matter - it depends on the amount of matter present.

Slide C-18

Density

- Density is a physical property of matter that describes the relationship between mass and volume of a substance.

- Density is an intensive property of matter - A substance will have a characteristic density that is independent of the amount of the substance present.
- In lay terms, we might say it describes how "heavy" a substance is (a misuse of the word).

Slide C-20

5-step Method for Problem-solving

1. Identify the UNKNOWN in the problem.
2. Identify the GIVEN quantities and useful information.
3. Choose the appropriate formulas \& conversion factors.
4. Plan the solution.

- Identify how you will use formulas \& conversion factors.
- Set up dimensional analysis tables.
- Isolate unknown variables in formulas.

5. Substitute the givens (in formulas) and SOLVE. (Plug \& Chug!)

Problem Solving Examples

1. Ethanol has a density of $0.789 \mathrm{~g} / \mathrm{cm}^{3}$. What is the volume of ethanol that must be measured to equal 30.3 g ?
2. Convert the density of aluminum, $2.70 \mathrm{~g} / \mathrm{cm}^{3}$ to oz. / in ${ }^{3}$
3. Aluminum has a density of $2.70 \mathrm{~g} / \mathrm{cm}^{3}$. What is the mass of aluminum in a sheet that is $2.00 \mathrm{~m} \times 2.00 \mathrm{~m} \times 1.50 \mathrm{~mm}$?

Temperature

\rightarrow Temperature is the measure of the kinetic energy of particles.

- Temperature Scales:
- Fahrenheit - system in common use in the US.
- Celsius - system most commonly used in the laboratory and throughout the rest of the world. Has convenient reference points.
- Kelvin - absolute temperature scale. Zero Kelvin is the theoretical temperature at which all molecular motion stops (or reaches its lowest possible quantum level). No negative temperatures.

Temperature Conversions

- ${ }^{\circ} \mathrm{C}=5 / 9\left({ }^{\circ} \mathrm{F}-32\right)$
- ${ }^{\circ} \mathrm{F}=9 / 5^{\circ} \mathrm{C}+32$
- $\mathrm{K}={ }^{\circ} \mathrm{C}+\mathbf{2 7 3 . 1 5}$ MEMORIZE

EXAMPLES:

- Convert $10.0^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$ and to K .
- Convert 353 K to ${ }^{\circ} \mathrm{C}$.

