# **Atomic Theory & Isotopes**

#### Chapter 2

# **Theories of Matter Composition**

#### Democritus

(5<sup>th</sup> – 4<sup>th</sup> century BC) ATOMISM

#### Aristotle

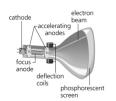
 $\begin{array}{l} (4^{th}-5^{th}\ century\ BC)\\ CONTINUOUS\ MATTER\\ FOUR\ ELEMENTS-Earth,\ Air,\ Fire,\ Water \end{array}$ 

## Boyle

(17<sup>th</sup> century) Reintroduced ATOMISM in modern times.

#### Dalton

(19<sup>th</sup> century)
Atomic Theory to explain results of EXPERIMENTS.

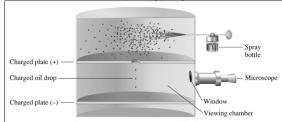

# **Development of the Modern Atomic Theory**

In 1803, John Dalton proposed an atomic theory that is still the basis for many of our theories about the atom.

- All matter is composed of atoms, which are tiny, indivisible particles
- A chemical reaction is a rearrangement of atoms to form different compounds. Atoms are neither created nor destroyed in a chemical reaction (the law of conservation of mass)
- Atoms of one element cannot be converted into another element. Atoms of an element are identical in mass and other properties, and are different from every other element.
- A compound is a combination of atoms of two or more elements in specific ratios (the law of definite composition).

# J.J. Thompson and the Discovery of the Electron.

# Cathode Ray Tube:



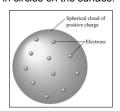



**Electron:** Very small, subatomic, negatively charged particle.

From his experiments, Thompson calculated the <u>ratio</u> of the electron's mass,  $m_{\rm e}$ , to its electric charge,  ${\rm e}$ .

# Millikan's Oil-drop Experiment

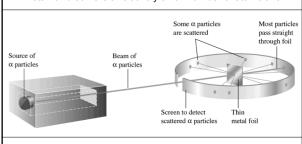



The work of Thomson and Millikan combined provided us with the electron's mass of  $9.109 \times 10-31 \text{ kg}$ , which is more than 1800 times smaller than the mass of the lightest atom (hydrogen).

These experiments also showed that the electron is a subatomic particle.

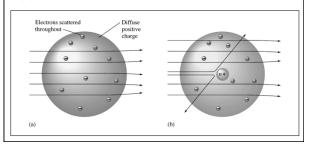
View Video Clips

# Thomson's Atomic Theory:


 JJ Thomson favored the plum pudding model.
He believed that the atom is a large mass of positive charge, with tiny electrons moving around in circles on the surface.



- Ernest Rutherford, a student of Thomson, was working with alpha particles, large positively charged particles.
- He and his students (Geiger & Morrison) found that the behavior of alpha particles was not consistent with Thomson's model.


## Rutherford's Gold Foil Experiment

- Rutherford used alpha particles to further study the atomic model.
- He directed alpha particles from a source at thin pieces of metal foil that were a relatively small number of atoms thick.



#### **Rutherford's Experiment**

- (a) The expected results of the metal foil experiment if the diffuse model were correct.
- (b) Actual results.



#### Rutherford's model of the atom:

An atom is made up of a small, central, positively charged nucleus, surrounded by even smaller, negatively charged electrons that are moving around the atom.

#### **NUCLEUS:**

- 1) Subatomic particle: Core of the atom.
- 2) Positively charged.
- 3) Takes up very little space in the atom.
- 4) Contains most of the mass of the atom.

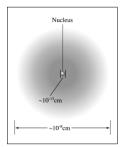



Figure:
A nuclear atom viewed in cross section.

(Note that this drawing is not to scale.)

# The Modern Model of the Atom

Atoms are made up of three subatomic particles:

Proton (p+): Positively charged subatomic

particle found in the nucleus of the

atom.

Neutron (n<sup>0</sup>): Neutral subatomic particle found in

the nucleus of the atom.

Electron (e<sup>-</sup>): Negatively charged subatomic

particle found outside the nucleus.

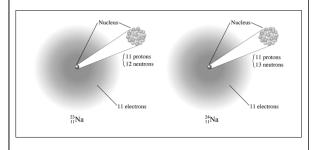
| Particle | Mass                              | Charge* |  |
|----------|-----------------------------------|---------|--|
| Electron | $9.11 \times 10^{-31} \text{ kg}$ | 1-      |  |
| Proton   | $1.67 \times 10^{-27} \text{ kg}$ | 1+      |  |
| Neutron  | $1.67 \times 10^{-27} \text{ kg}$ | None    |  |

# **Elements**

- The identity of an element is determined by the number of protons in the nucleus.
- For example, any atom with 6 protons in the nucleus is a Carbon atom.
- Number of protons in the nucleus = atomic number (Z)
- In a neutral atom, # electrons = # protons.
- The symbol for an element is simply its 1, 2, or 3 letter abbreviation from the periodic table.
- Elements are arranged in the periodic table by their atomic number (Z)

# Elements and Atomic Number, Z

- All atoms of the same element have the same number of protons in the nucleus, Z.
- Elements are arranged on the periodic table by their atomic number.


13 ← Atomic number
AI ← Atom symbol
26.981 ← Atomic weight

## Isotopes

- Isotopes are atoms of the same element with different numbers of neutrons.
- Most elements have more than one isotope.
- Isotopes of an element are have nearly identical properties.
- The number of protons and electrons, which are the same in all isotopes of an element, has much more to do with the chemical and physical properties of an element.

# Isotopes

Atoms of the same element (Z) but different mass number (A).



#### Mass Number

• The *mass number* (A) is the sum of the protons and the neutrons in the nucleus of an atom.

mass number = # protons + # neutrons

- The name for an isotope is the element name followed by the mass number.
- The symbol for an isotope is its element symbol along with its mass number (A) and atomic number (Z).

# Mass Number (cont.)

Consider the isotope Phosphorus-31 symbol:

A = 31 (mass number = the sum of protons and neutrons)

Z = 15 (atomic number = protons)

151

- In order to determine how many neutrons are in the nucleus of an atom simply subtract:
- # neutrons = mass number atomic number = 31 – 15 = **16 neutrons**

| Isotope Name  | Isotope<br>Symbol | Atomic<br>Number<br>(Z) | Mass<br>Number<br>(A) | protons | electrons | neutrons |
|---------------|-------------------|-------------------------|-----------------------|---------|-----------|----------|
| Rhenium - 187 |                   |                         |                       |         |           |          |
|               |                   | 80                      | 201                   |         |           |          |
|               |                   |                         | 27                    |         | 13        |          |
|               | <sup>237</sup> Np |                         |                       |         |           |          |
|               |                   |                         |                       |         |           |          |
|               |                   |                         |                       |         |           |          |

# **Atomic Mass**

- · Atoms are very small.
- For example, 18 mL (~ 4 teaspoons) of water contains ~ 602,200,000,000,000,000,000,000 molecules of H<sub>2</sub>O.
- A single water molecule has a mass of 2.99 x 10<sup>-23</sup> grams.
- Working in grams to describe the mass of single atoms or molecules is not convenient.
- Instead, we typically express the mass of atom in terms of atomic mass units, amu, or simply u.

# **Atomic Mass (cont.)**

• The atomic mass unit is defined as  $^{1}/_{12}$  of the mass of an atom of the carbon-12 isotope.

#### $1 \ amu = 1/12 \ mass \ of \ C-12$

 Both the neutron and the proton have a mass of approximately 1 amu:

## 1 amu ~ 1 proton ~ 1 neutron

Electrons are very small:

#### 1 electron ~ 0.00055 amu

 Because the mass number is the sum of protons and neutrons, the mass number is a whole number approximation of the atomic mass of an isotope.

# **Average Atomic Mass**

- Most elements are a mixture of two or more isotopes.
- The percentage of an isotope in a naturally occurring sample of an element is called the *isotopic abundance* (or *percentage abundance*) of that that isotope.
- The *isotopic mass* is the mass of a single atom of an isotope.
- The average atomic mass is the weighted average of the masses of isotopes of an element.

# Calculating Average Atomic Mass from Isotope Data

\(\sum\_{\text{(Fractional Abundance} \times \text{Isotope Mass)}\)

Consider the element **Magnesium**, composed of three isotopes of the following percentage abundances:

| Isotope | % Abundance | Isotope Mass (amu) |
|---------|-------------|--------------------|
| Mg-24   | 79.0 %      | 23.985             |
| Mg-25   | 10.0 %      | 24.986             |
| Mg-26   | 11.0 %      | 25.982             |

# Calculating Percent Abundances from Mass Data

Consider the two isotopes of Boron:

| Isotope  | Isotope Mass<br>(amu) | %Abundance |
|----------|-----------------------|------------|
| Boron-10 | 10.0129               |            |
| Boron-11 | 11.0093               |            |

What is the percent abundance of each isotope?