Solutions \& Concentration

Silberberg - Section 3.5

Attraction of water molecules to ions because of the ion-dipole force.

Degrees of Saturation:

- Unsaturated - more solute may be dissolved in a solution.
- Saturated - the maximum amount of solute is dissolved in a solution.
- Supersaturated - more solute is dissolved in a solution than is stable at that temperature.
(A precipitate is likely to form.)

Solutions

- A solution is a homogeneous mixture composed of a solvent and one or more solutes.
- A solute is a substance dissolved in the solvent.
- The solvent is the substance that dissolves the solute or solutes.
- Note: Sometimes it is not clear what is the solvent or the solute. The solvent is generally considered to be the most abundant substance.
- Aqueous (aq) means "dissolved in water".

Comparison of Unsaturated and Saturated Solutions

Molarity

- Concentration is the measure of the amount of solute in a solution (part / whole).
- Molar concentration, or molarity is a measure of the moles of a solute in one liter of solution.

Molarity $=\frac{\mathrm{n}}{\mathrm{V}}=\frac{\text { moles of solute }}{\text { volume of solution }}=\frac{\text { mol solute }}{\mathrm{L} \text { solution }}=M$

- Brackets around a formula indicate the concentration of the substance is being discussed:
[NaCl] means "the molarity of NaCl "

Calculating Concentration

- Example \#1: What is the concentration of a solution found to contain 0.00834 mol of BaCl_{2} in a 20.0 mL sample of solution?
- Example \#2: What is the concentration of sodium hypochlorite solution prepared by dissolving 5.66 g of NaOCl in enough water to make 250.0 mL of solution?

Preparing a Solution

- To prepare a solution of known concentration from a solid substance soluble in water:

1. Determine the mass required to make the desired volume of the solution.
2. Dissolve that quantity of solid in the appropriate volumetric flask.

- Example: An experiment calls for 250.0 mL of 0.2000 M solution of CuSO_{4}. Describe how to prepare this solution starting with solid $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$.

Dilution Examples

1. What volume of a 0.333 M NaOH stock solution is required to make 250.0 mL of a 0.100 M NaOH solution? Describe its preparation.
2. What is the concentration of a solution prepared by diluting 2.00 mL of a 0.250 M solution of sucrose to 25.0 mL ?

Compounds and lons in solution

- Ionic compounds often dissociate into their ions when dissolved in water.
- Compounds that undergo complete (100%) dissociation (like NaCl) are called strong electrolytes because their solutions are good electrical conductors.
- Some ionic compounds only partially dissociate in water (like $\mathrm{H}_{3} \mathrm{PO}_{4}$) and are called weak electrolytes, because their solutions are poor electrical conductors.

Compounds and Ions in solution

- Covalent compounds (like glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$) do NOT dissociate in water and are called nonelectrolytes, because their solutions do not conduct electricity.
- Note: Pure water (which we rarely actually have) is a very poor electrical conductor.

Dissociation of Ionic Compounds

- When an ionic compound like NaCl dissociates in water, one sodium ion and one chloride ion are released into solution for each formula unit:
$\mathrm{NaCl}_{(\mathrm{s})} \xrightarrow{\mathrm{H}, \mathrm{O}} \mathrm{NaCl}_{(\text {(qq) }} \rightarrow \mathrm{Na}_{\text {(aq) }}^{+}+\mathrm{Cl}_{(\mathrm{aq})}^{-}$
- What is the concentration of sodium ions and chloride ions in a solution that is 0.500 M NaCl ?

- Calculate the percent by mass of magnesium chloride in a solution if 18.3 g dissolved in 250.0 mL of of pure water. $\left(D_{\mathrm{H} 2 \mathrm{O}}=1.00 \mathrm{~g} / \mathrm{mL}\right)$
- What mass of aluminum nitrate is in 500.0 mL of a solution that is 7.85% aluminum nitrate?
The density of the solution is $1.093 \mathrm{~g} / \mathrm{mL}$.

Dissociation of Ionic Compounds

- When an ionic compound like MgBr_{2} dissociates in water, one magnesium ion and two bromide ions are released into solution for each formula unit:

- What are the concentrations of Mg^{2+} ions and Br^{-} ions in a 0.30 M solution of MgBr_{2} ?
- What are the concentrations of iron and phosphate ions in a 0.10 M iron (II) phosphate solution?

Parts per million (ppm)

- Calculate the ppm concentration of a solution that contains 265 mg of mercury ions in 8.00 L of solution ($\mathrm{D}=1.00 \mathrm{~g} / \mathrm{mL}$)
- Express the above ppm concentration as a percent by mass.

