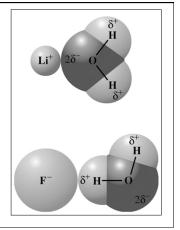

Solutions & Concentration

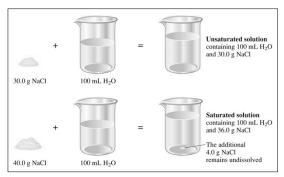
Silberberg - Section 3.5


Solutions

- A solution is a homogeneous mixture composed of a solvent and one or more solutes.
- A **solute** is a substance dissolved in the solvent.
- The **solvent** is the substance that dissolves the solute or solutes.
- **Note:** Sometimes it is not clear what is the solvent or the solute. The solvent is *generally* considered to be the most abundant substance.
- Aqueous (aq) means "dissolved in water".

Dissolution of Lithium Fluoride in Water

Attraction of water molecules to ions because of the ion-dipole force.



Degrees of Saturation:

- Unsaturated more solute may be dissolved in a solution.
- Saturated the maximum amount of solute is dissolved in a solution.
- Supersaturated more solute is dissolved in a solution than is stable at that temperature.

(A precipitate is likely to form.)

Comparison of Unsaturated and Saturated Solutions

Molarity

- Concentration is the measure of the amount of solute in a solution (part / whole).
- Molar concentration, or molarity is a measure of the moles of a solute in one liter of solution.

Molarity =
$$\frac{n}{V}$$
 = $\frac{\text{moles of solute}}{\text{volume of solution}}$ = $\frac{\text{mol solute}}{\text{L solution}}$ = M

 Brackets around a formula indicate the concentration of the substance is being discussed:

[NaCI] means "the molarity of NaCI"

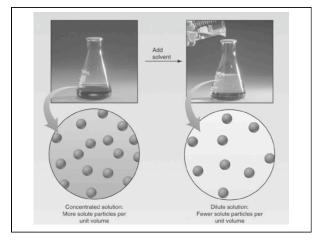
Calculating Concentration

- Example #1: What is the concentration of a solution found to contain 0.00834 mol of BaCl₂ in a 20.0 mL sample of solution?
- Example #2: What is the concentration of sodium hypochlorite solution prepared by dissolving 5.66 g of NaOCI in enough water to make 250.0 mL of solution?

Preparing a Solution

- To prepare a solution of known concentration from a solid substance soluble in water:
 - Determine the mass required to make the desired volume of the solution.
 - 2. Dissolve that quantity of solid in the appropriate volumetric flask.
- Example: An experiment calls for 250.0 mL of 0.2000 M solution of CuSO₄. Describe how to prepare this solution starting with solid CuSO₄•5H₂O.

Dilutions


- When you have a stock solution of known concentration, you may prepare less concentrated solutions by diluting the stock solution with water.
- When a quantity of solution is diluted, the number of moles of solute does not change, only the total volume, therefore:

mol solute in the concentrated solution =

mol solute in the dilute solution

■ Because: concentration x volume = mol

■ We can use the relationship: M₁V₁ = M₂V₂

Dilution Examples

- What volume of a 0.333 M NaOH stock solution is required to make 250.0 mL of a 0.100M NaOH solution? Describe its preparation.
- 3. What is the concentration of a solution prepared by diluting 2.00 mL of a 0.250 *M* solution of sucrose to 25.0 mL?

Compounds and lons in solution

- Ionic compounds often dissociate into their ions when dissolved in water.
- Compounds that undergo complete (100%) dissociation (like NaCl) are called strong electrolytes because their solutions are good electrical conductors.
- Some ionic compounds only partially dissociate in water (like H₃PO₄) and are called weak electrolytes, because their solutions are poor electrical conductors.

Compounds and lons in solution

- Covalent compounds (like glucose, C₆H₁₂O₆) do NOT dissociate in water and are called nonelectrolytes, because their solutions do not conduct electricity.
- Note: Pure water (which we rarely actually have) is a very poor electrical conductor.

Dissociation of Ionic Compounds

When an ionic compound like NaCl dissociates in water, one sodium ion and one chloride ion are released into solution for each formula unit:

$$NaCl_{(s)} \xrightarrow{H_2O} NaCl_{(aq)} \rightarrow Na^+_{(aq)} + Cl^-_{(aq)}$$

■ What is the concentration of sodium ions and chloride ions in a solution that is 0.500 *M* NaCl?

Dissociation of Ionic Compounds

When an ionic compound like MgBr₂ dissociates in water, one magnesium ion and two bromide ions are released into solution for each formula unit:

$$MgBr_{2(a)} \xrightarrow{H_2O} MgBr_{2(aq)} \xrightarrow{} Mg^{2+}_{(aq)} + 2Br^{-}_{(aq)}$$

- What are the concentrations of Mg²⁺ ions and Br ions in a 0.30 M solution of MgBr₂?
- What are the concentrations of iron and phosphate ions in a 0.10 *M* iron (II) phosphate solution?

Mass Percent

- Calculate the percent by mass of magnesium chloride in a solution if 18.3 g dissolved in 250.0 mL of of pure water. (D_{H2O}=1.00 g/mL)
- What mass of aluminum nitrate is in 500.0 mL of a solution that is 7.85% aluminum nitrate?
 The density of the solution is 1.093 g/mL.

Parts per million (ppm)

$$ppm = \frac{mass \, solute}{mass \, solution} \times 1 \times 10^{6}$$

- Calculate the ppm concentration of a solution that contains 265 mg of mercury ions in 8.00 L of solution (D = 1.00 g/mL)
- Express the above ppm concentration as a percent by mass.