

- An ion is an atom (or group of bonded atoms) that has lost or gained electrons, resulting in a charge.
- An ionic compound is formed when
positively charged ions and negatively
charged ions attract
- lonic compounds are neutral.
Compounds

Cations

- Metals tend to LOSE electrons to achieve an octet - 8 valence electrons.
- Neutral metals are oxidized to form CATIONS (positive ions).
- The process of oxidation involves the loss of one or more electrons.

- Other examples:
$\mathrm{Ba} \rightarrow \mathrm{Ba}^{+2}+2 e$
$\mathrm{Al} \rightarrow \mathrm{Al}^{+3}+3 \mathrm{e}^{-}$

Molecular Compounds

- A molecule is a collection of atoms that are covalently bound (share electrons).
- A molecule acts as a single, free entity and is smallest units of covalent compounds.
- The formula for a molecular compound is the number of atoms of various elements in a single molecule.
- Examples: $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
SO_{2}

Ion formation

- Valence electrons are the outermost electrons in an atom. These electrons participate in bonding of atoms.
- Cations are atoms that have a positive charge.
- Anions are atoms that have a negative charge.
- Monatomic lons are ions composed of a single atom.
- Polyatomic lons are ions composed of two or more atoms.

Predicting the Charges of Monatomic lons:

- The periodic table can help us to determine what the charge on ions will be.
- Noble gases (group 8A) have a very stable electron configuration, and generally do not form ions. They are inert, or non-reactive.
- A - group elements usually gain or lose electrons to get the same number of electrons as a noble gas.
- Ions formed from \boldsymbol{A} - group metals and non-metals have very predictable charges that can be determined from their placement on the table.

Predicting the Charges of Monatomic lons:

- lons formed from metals in groups 1A, 2A, and 3A have positive charges equal to their group number.

Na forms +1 ions, Sr forms +2 ions, and Al forms +3 ions.

- Non-metals generally form ions that have charges that are equal to their distance from the end of the row.
- The Halogens (group 7A) elements form - 1 ions, because they want to gain one electron to have the same number of electrons as a Noble Gas.
- The non-metals in the Oxygen group form -2 ions and those in the Nitrogen group form - 3 ions.

Predicting the Charges of Monatomic lons:

- In general, Carbon and many of the metalloids do not form ions, but instead make covalent compounds.
- For other metals on the periodic table, it is harder to predict the charges of their ions,
- The transition metals, or B-group metals, often form more than one kind of cation. The names of these elements will include a roman numeral that tells the charge.
- Also, the metals below the non-metals (p-block) often have more than one possible charge and require a Roman numeral to indicate their charge.
- Examples:

Iron (II) $=\mathrm{Fe}^{2+}$
Lead (II) $=\mathrm{Pb}^{2+}$
Iron (III) $=\mathrm{Fe}^{3+}$
Lead (IV) $=\mathrm{Pb}^{4+}$

| Polyatomic lons |
| :--- | :--- |
| - Polyatomic ions are |
| ions composed of |
| more than one atom. |
| - Polyatomic ions may |
| be cations or anions. |
| - They are covalently |
| bound groups of |
| atoms that have lost |
| or gained electrons. |
| - Polyatomic ions are |
| "molecules with a |
| charge". |

Roman Numerals

One $=$ I	Seven $=$ VII
Two $=$ II	Eight $=$ VIII
Three $=$ III	Nine $=$ IX
Four $=$ IV	Ten $=$ X
Five $=$ V	Eleven $=$ XI
Six $=$ VI	Twelve $=$ XII

Ion name	Ion Formula
ammonium	$\mathbf{N H}_{4}{ }^{+}$
cyanide	$\mathbf{C N}^{-}$
hydroxide	$\mathbf{O H}^{-}$
nitrate	$\mathbf{N O}_{3}{ }^{-}$
nitrite	NO^{-}
sulfate	$\mathbf{S O}_{4}{ }^{2-}$
sulfite	$\mathrm{SO}_{3}{ }^{2-}$
hydrogen sulfate (bisulfate)	$\mathrm{HSO}_{4}{ }^{-}$
carbonate	$\mathbf{C O}_{3}{ }^{2-}$

Ion name	Ion Formula
hydrogen carbonate (bicarbonate)	$\mathrm{HCO}_{3}{ }^{-}$
phosphate	$\mathbf{P O}_{4}{ }^{3-}$
hydrogen phosphate	$\mathrm{HPO}_{4}{ }^{2-}$
dihydrogen phosphate	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
permanganate	$\mathbf{M n O}_{4}^{-}$
perchlorate	ClO_{4}^{-}
chlorate	$\mathbf{C l O}_{3}^{-}$
chlorite	ClO_{2}^{-}
hypochlorite	ClO^{-}

General Properties of lonic Compounds

- All ionic compounds are neutral, and composed of cations and anions whose charges cancel (add up to zero).
- The formula unit is the smallest ratio of cations and anions
- Many ionic compounds are composed of a metal and a non-metal.
- In other cases, the cation and/or anion is a polyatomic ion.

Predicting Formulas of lonic Compounds:

- When writing formulas:
- the cation (often a metal) is always written first
- the anion (often a non-metal) is always written second.
- The SMALLEST ratio of cation to anion is always written.
- The charges on the ions are not usually written in the formula of the ionic compound.
- The formula for magnesium chloride is $\mathbf{M g C l}_{\mathbf{2}}$

$$
\text { not } \mathrm{Mg}_{2} \mathrm{Cl}_{4} \quad \text { not } \mathrm{Mg}^{2+} \mathrm{Cl}_{2}
$$

Considering Polyatomic lons in writing formulas:

- In some cases, the metal or non-metal is replaced by a polyatomic ion. The polyatomic ion is simply treated as a SINGLE UNIT.
- What is the formula for the combination of potassium ions and nitrate ions into an ionic compound?
\mathbf{K} forms +1 ions. \quad Nitrate $\left(\mathbf{N O}_{3}{ }^{-1}\right)$ is a -1 ion.
- The formula for potassium nitrate is KNO_{3}

Predicting Formulas of a lonic Compounds:

- What is the formula for a compound formed by the combination of magnesium ions and chloride ions?

Mg forms +2 ions. $\mathbf{C l}$ forms -1 ions.

- Because compounds are NEUTRAL, one Mg^{+2} ion will combine with two Cl^{-1} ions.
- Therefore, the formula for magnesium chloride is MgCl_{2}.

Predicting Formulas of lonic Compounds

- We can always reason out how the charges cancel by adding them up. However, there is a simpler way:
- What is the formula for an ionic compound made up of aluminum and oxygen?
Al forms +3 ions.
O forms-2 ions.
- To find the formula, simply write both ions in correct order, and CROSS charges:

- The compound is neutral:
$\mathrm{Al}_{2} \mathrm{O}_{3}$

$$
\begin{aligned}
& 2 \times\left(\mathrm{Al}^{+3}\right)=+6 \\
& 3 \times\left(\mathrm{O}^{-2}\right)=-6 \\
& \hline 0 \text { (neutral) }
\end{aligned}
$$

Considering Polyatomic lons in writing formulas:

- What is the formula for the combination of Aluminum and sulfate ions?

$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
- Parentheses must be used when more than one of the same polyatomic ion is in the formula unit.

Write formulas for IONIC compounds:

1. Potassium bromide
2. Sodium oxide
3. Strontium phosphide
4. Aluminum sulfide
5. Ammonium sulfate
6. Nickel (II) phosphate
7. Magnesium nitrite
8. Lead (IV) selenide

Binary Ionic Compounds

- Binary means "two".
- Any compound composed of just two elements (not necessarily two atoms) is a binary compound.
- A binary ionic compound is composed of a metal and a non-metal.
- Examples: $\mathrm{NaCl} \quad \mathrm{MgBr}_{2} \quad \mathrm{Al}_{2} \mathrm{O}_{3}$
- Ionic compounds with a polyatomic ion are NOT binary ionic compounds, as they will have more than two atoms.
- For example, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ is NOT a binary compound.

Naming IONIC compounds

- Naming ionic compounds is easy. You simply write the name of the CATION followed by the name of the ANION.

Naming the CATION

- If it is a Group A metal (representative elements), simply use the name of the metal.
- If the cation is a polyatomic ion, use the name of the ion. Note that the only common polyatomic cation is ammonium $\left(\mathbf{N H}_{\mathbf{4}}{ }^{\mathbf{+}}\right.$).

Naming the CATION

If the cation is a Transition metal, use the name of the element and a Roman Numeral signifying the charge.

$$
\begin{array}{ll}
\mathrm{Cu}^{+2}=\text { copper }(I I) & \mathrm{Cu}^{+1}=\text { copper }(I) \\
\mathrm{Mn}^{+7}=\text { manganese }(\text { VII }) & \mathrm{Mn}^{+2}=\text { manganese }(I I)
\end{array}
$$

- EXCEPTIONS:

No Roman Numeral is needed for naming.

- Zn always forms +2 ions
- Cd always forms +2 ions
- Ag always forms +1 ions

Naming the CATION

- If the cation is a metal in the p-block of the periodic table (underneath the stair-step line), it may also need a Roman numeral to signify its charge.
- Pb and Sn both may have +2 or +4 charges:

$$
\mathrm{Pb}^{2+}=\text { lead (II) } \quad \mathrm{Pb}^{4+}=\text { lead (IV) }
$$

- TI and In both may have +1 or +3 charges:

$$
\mathrm{In}^{+}=\text {Indium (I) } \quad \operatorname{In}^{3+}=\text { Indium (III) }
$$

Naming the ANION

If the anion is a non-metal, then follow these 2 steps:

1. Drop the suffix on the element name.
2. Add-ide.

- Example:

For chlorine, drop the -ine and add -ide.
The name of chlorine as an anion is chloride.

- Other Examples:

Fluorine	\rightarrow fluoride
Oxygen	\rightarrow oxide
Phosphorus	\rightarrow phosphide

Naming the ANION

- If the anion is a polyatomic ion, use the name of the ion. See table in the book.
- Note that most polyatomic anions end in -ite or -ate.
- Exceptions:
- $\mathrm{OH}^{-}=$hydroxide
- $\mathrm{CN}^{-}=$cyanide

Polyatomic lons and Hydrogen

- Many polyatomic oxoanions form acids when hydrogen ion covalently bond to one of the oxygens. For example:

$$
\text { carbonate ion }=\mathrm{CO}_{3}{ }^{2-}
$$

carbonic acid $=\mathrm{H}_{2} \mathrm{CO}_{3}$

- However, sometimes the ion will take on fewer hydrogens than need to fully cancel the charge, and you still have a polyatomic ion:
hydrogen carbonate ion $=\mathrm{HCO}_{3}{ }^{-}$
This ion is also known as bicarbonate.

Phosphorus oxoanions

$\mathrm{PO}_{4}{ }^{3-}=$ phosphate ion
$\mathrm{HPO}_{4}{ }^{2-}=\quad$ hydrogen phosphate ion
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}=$dihydrogen phosphate ion

Sulfur oxoanions

$\mathrm{SO}_{4}{ }^{2-}=$ sulfate ion
$\mathrm{SO}_{3}{ }^{2-}=$ sulfite ion
$\mathrm{HSO}_{4}^{-}=$hydrogen sulfate ion or bisulfate ion

Write Names for these IONIC Compounds

1) $\mathrm{Na}_{2} \mathrm{SO}_{3}$
2) $\mathrm{Na}_{2} \mathrm{~S}$
3) $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$
4) FeCl_{3}
5) $W_{3} P_{4}$
6) $\mathrm{Mn}_{2} \mathrm{O}_{7}$
7) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
8) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CrO}_{4}$
9) Znl_{2}
10) PbSO_{4}

Names and Formulas for BINARY Molecular (Covalent) Compounds

- Binary molecular compounds are composed of two non-metals.
- The ratios in which they combine are not as predictable as they are for IONIC compounds.
- For example, C and H can form compounds with many different formulas, including $\mathrm{CH}_{4}, \mathrm{C}_{3} \mathrm{H}_{8}$, $\mathrm{C}_{50} \mathrm{H}_{102}$.

Formulas \& Naming: Covalent Compounds
Rules for naming molecular compounds:

1. The first element in the formula is named by its name on the periodic table.
2. The second element is named as it would be if it were the anion of the element. (Though it is not the anion!)
3. Use prefixes to indicate how many of each element is present.

Exception: If only one of the FIRST element in the formula is present, do NOT use the prefix monoJust leave it off.

Prefixes for Naming Covalent compounds:

\# of atoms of element	Prefix
1	mono-
2	di-
3	tri-
4	tetra-
5	penta-
6	hexa-
7	hepta-
8	octa-
9	nona-
10	deca-
11	undeca-
12	dodeca-

Binary Covalent Compounds - Examples

- Write the name or formula:

1. CO
2. CO_{2}
3. $\mathrm{N}_{2} \mathrm{O}_{5}$
4. $\mathrm{N}_{2} \mathrm{O}$
5. NO_{2}
6. $\mathrm{P}_{4} \mathrm{O}_{10}$
7. Sulfur trichloride
8. Oxygen difluoride
9. Disulfur trioxide

Common Names

- Many compounds - both molecular and ionic are known by their common names.
- There are three common molecular compounds with special names that you need to know:

Water	$\mathrm{H}_{2} \mathrm{O}$
Ammonia	NH_{3}
Methane	CH_{4}

Naming Acids

- Acids are compounds that have a Hydrogen that can dissociate in water.
- Acids are named using the name of the anion as the root as shown in the table below.

Anion SUFFIX	Acid Name	Example:
-ide	Hydro-root-ic acid	HCl anion $=$ chloride Acid name $=$ hydrochloric acid
-ate	-ic acid	HCIO_{3} anion $=$ chlorate Acid name $=$ chloric acid
-ite	-ous acid	HCIO_{2} anion $=$ chlorite Acid name $=$ chlorous acid

Writing Acid names and formulas

1) HNO_{3}
2) $\mathrm{H}_{2} \mathrm{SO}_{3}$
3) HBrO_{3}
4) HBr
5) Phosphoric acid
6) Hydrocyanic acid
7) Nitrous acid
8) Hydrofluoric acid

Naming Compounds - Summary

1. Determine the type of compound you are trying to name:

- Ionic
- Covalent (molecular)
- Acid

2. Use the appropriate naming scheme.

Hydrates

- Hydrates are compounds that crystallize with water molecules in their crystal lattice. Hydrates contain a specific ratio of water molecules to formula units.

- Naming Hydrates:

The name of a hydrate is simply the name of the compound followed by an indication of the number of waters of hydration.
$\mathrm{ZnSO}_{\mathbf{4}} \cdot \mathbf{4} \mathrm{H}_{\mathbf{2}} \mathrm{O}=$ zinc sulfate tetrahydrate
formulas, the acid " H " is not always at the start of the formula. Both of the following formulas are valid for acetic acid:
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

The Diatomic Elements - Review

- Seven elements exist as diatomic molecules in their elemental form.
- For example, Oxygen is an element. However, Oxygen in the air is not simply O atoms, but as O_{2} molecules.
- The diatomic elements are:
$\begin{array}{lllllll}\mathrm{H}_{2} & \mathrm{O}_{2} & \mathrm{~N}_{2} & \mathrm{~F}_{2} & \mathbf{C l}_{2} & \mathrm{Br}_{2} & \mathbf{I}_{2}\end{array}$
- Note: These elements are necessarily diatomic only when alone as elements. They will sometimes have other subscripts in compounds.

Calculating Molar Masses for Compounds

- Molar mass is the most general term of the mass of one mole of an element or compound.
- Also used are: atomic mass, formula mass, and molecular mass depending on the material described. Or, the word weight might substitute for mass.
- To calculate the molar mass for a compound, dd together the atomic masses for all of the atoms in a molecule or formula unit of the compound.
- Units may be expressed as amu or $9 / \mathrm{mol}$

