Enthalpy and Internal Energy

- H or △H is used to symbolize enthalpy.
- The mathematical expression of the First Law of Thermodynamics is: ΔE = q + w, where ΔE is the change in internal energy, q is heat and w is work.
- Work can be defined in terms of an expanding gas and has the formula: w = -P△V, where P is pressure in pascals (N/m²) and V is volume in m³.

Enthalpy and Internal Energy

Enthalpy (H) is related to energy.

$$H = E + PV$$

However, absolute energies and enthalpies are rarely measured.
 Instead, we measure CHANGES in these quantities. Reconsider the above equations (at constant pressure):

$$\Delta H = \Delta E + P \Delta V$$

recall:
$$w = -P\Delta V$$

therefore:
$$\Delta H = \Delta E - w$$

substituting:
$$\Delta H = q + w - w$$

$$\Delta H = q$$
 (at constant pressure)

 Therefore, at constant pressure, enthalpy is heat. We will use these words interchangeably.

State Functions

- Enthalpy and internal energy are both STATE functions.
- A state function is path independent.
- Heat and work are both non-state functions.
- A non-state function is path dependant.

Consider:

Location (position)

Distance traveled

Change in position

Molar Enthalpy of Reactions (∆H_{rxn})

- Heat (q) is usually used to represent the heat produced
 (-) or consumed (+) in the reaction of a specific quantity
 of a material.
- For example, q would represent the heat released when 5.95 g of propane is burned.
- The "enthalpy (or heat) of reaction" is represented by $\Delta H_{reaction}$ (ΔH_{rxn}) and relates to the amount of heat evolved per one mole or a whole # multiple as in a balanced chemical equation.

molar
$$\Delta H_{\text{rxn}} = \frac{q_{\text{rxn}}}{\text{moles reacting}}$$
 (in units of kJ/mol)

Enthalpy of Reaction

 Sometimes, however, knowing the heat evolved or consumed per gram is useful to know:

gram
$$\Delta H_{rxn} = \frac{q_{rxn}}{grams reacting}$$
 (in units of J/g)

Enthalpy of Reaction

7. Consider the combustion of hexene:

$$C_6H_{12(I)} + 9O_{2(g)} \rightarrow 6CO_{2(g)} + 6H_2O_{(g)}$$

The combustion of 12.1 g of hexene in a calorimeter releases (exothermic, negative value) 44,700 J of heat.

- A) What is the molar heat of combustion of hexene?
- B) What is the gram heat of combustion of hexene?

Enthalpy Change in Chemical Reactions: Thermochemistry and Stoichiometry

- Heat may be considered as a reactant for endothermic reactions and as a product for exothermic reactions.
- In stoichiometry problems that involve heat, heat always keep the sign on ΔH to indicate whether heat is produced or consumed.

Example:

8. Consider the following endothermic reaction:

4 NO_(g) + 6 H₂O_(g)
$$\rightarrow$$
 4 NH_{3(g)} + 5 O_{2(g)} Δ H°= 906.22 kJ

What quantity of heat will be consumed when 58.0 g of NH₃ is produced?

Thermochemistry & Limiting Reagents

 When carrying out stoichiometry problems that involve heat, all the same principles of stoichiometry apply, including Limiting Reagents.

Example:

9. How much heat is released when a mixture containing 10.0 g CS₂ and 10.0 g Cl₂ react by the equation:

$$CS_{2(g)} + 3CI_{2(g)} \rightarrow S_2CI_{2(g)} + CCI_{4(g)}$$
 $\Delta H = -232 \text{ kJ}$

Enthalpy of Reactions – Summary

Heats of reaction (ΔH) can be calculated in one of three ways, all experimentally derived:

- Calorimetry (direct experiment)
- Hess's Law of Heat Summation
 (using ΔH values of other reactions that were previously determined by experiment)
- Heats of Formation

 (an application of Hess's Law)

Determining the Enthalpy of Reactions by Calorimetry

- All enthalpies of reaction must be determined experimentally, or calculated from the enthalpies of other reactions (which were experimentally determined and compiled in tables – see appendix L).
- We can use calorimetry to directly determine the enthalpy of a reaction, by measuring the heat transferred between a reaction (the system) to some defined surroundings (usually a calorimeter and water).

Example: Determining the Enthalpy of Reactions by Calorimetry

10. The 0.548-g of arabinose, C₅H₁₀O₅ is completely burned in oxygen in a calorimeter with a heat capacity of 825 J/C° and containing 3.58 kg of water. The temperature rises from 21.203 °C to 21.743 °C.

What is the molar heat of combustion (ΔH) of arabinose?

Example: Determining the Enthalpy of Reactions by Calorimetry

11) Consider the reaction of 10.08-g of aluminum hydroxide with 200.0 mL of sulfuric acid solution with a concentration high enough to react all of the base.

If the reaction takes place in a coffee-cup calorimeter with a heat capacity of 63.5 J/C°, and the temperature of all of the materials rise from 22.31°C to 28.52°C, what is the heat of reaction (ΔH) for this neutralization reaction?

(Assume the density and the heat capacity of the solution are the same as water.)

Hess's Law of Heat Summation

If a reaction is the sum of 2 or more reactions, then its overall ΔH is equal to the sum of the ΔH values of the other reactions.

12. Example: Consider the reaction for which ΔH is unknown:

$$2 S_{(s)} + 3 O_{2(g)} \rightarrow 2 SO_{3(g)}$$

However, the heats of reaction of the following two reactions are known:

$$S(s) + O_{2(g)} \rightarrow SO_{2(g)}$$
 $\Delta H = -297 \text{ kJ}$
 $2 SO_{3(g)} \rightarrow 2 SO_{2(g)} + O_{2(g)}$ $\Delta H = 198 \text{ kJ}$

We can calculate the heat of reaction for the reaction for the unknown by combining these two reactions.

Hess's Law Example

13. Consider the reaction:

$$W_{(s)} + C_{(s,graphite)} \rightarrow WC_{(s)}$$

for which the heat of reaction is not known. Calculate ΔH_{rxn} using the following information:

$$2 W_{(s)} + 3 O_{2(g)} \rightarrow 2 WO_{3(s)}$$

$$\Delta H = -1680.6 \text{ kJ}$$

$$C_{(graphite)} + O_{2(g)} \rightarrow CO_{2(g)}$$

$$\Delta H = -393.5 \text{ kJ}$$

$$2 \text{ WC}_{(s)} + 5O_{2(g)} \rightarrow 2 \text{ WO}_{3(s)} + 2 \text{ CO}_{2(g)}$$

$$\Delta H = -2391.6 \text{ kJ}$$

Enthalpy Diagram

(13 continued) Draw an energy diagram that illustrates the relationships of the ΔH values for each of above reaction steps and the overall reaction.

Hess's Law Example

Consider the gas-phase reaction:

$$2 N_2 O_5 \rightarrow 4 NO_2 + O_2$$

A) Based on the gas-phase reactions below with the enthalpies given, determine the ΔH value for the above reaction.

$$4 \text{ NO} + 3 \text{ O}_2 \rightarrow 2 \text{ N}_2 \text{O}_5$$

$$\Delta H = -445 \text{ kJ}$$

$$2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_2$$

$$\Delta H = -112 \text{ kJ}$$

Enthalpy Diagram

B. (continued from previous slide) Draw an energy diagram that illustrates the relationships of the ΔH values for each of above reaction steps and the overall reaction.

ΔH (kJ)

Example continued

 What quantity of heat is produced or consumed by the decomposition of 25.0 g of dinitrogen pentoxide?

Heats of Formation

- The *standard molar enthalpy of formation* for a compound is the amount of energy required to make one mole of a compound from its elements in their standard states.
- Thermodynamic standard conditions are defined:
 - 1 atmosphere (760 mmHg) pressure
 - 25.00 °C (298.15K)
 - Solutions at 1.00 M

Heats of Formation

 Consider HCI. The reaction that defines its standard enthalpy of formation is:

$$\frac{1}{2} H_{2(g)} + \frac{1}{2} Cl_{2(g)} \rightarrow HCl_{(g)}$$

$$\Delta H_{rxn} = -92.3 \text{ kJ}$$

- Therefore, $\Delta H_f^{\circ} = -92.3 \text{ kJ/mol. } Note the units!$
- The standard heat of formation of an element in its standard state is always defined as zero.

STANDARD THERMODYNAMIC VALUES FOR SELECTED SUBSTANCES AT 298 K

Substance or Ion	ΔH ⁰ (kJ∕mol)	∆G ⁰ (kj∕mol)	5° (J∕mol·K)	Substance or Ion	ΔH ^o (kJ∕mol)	∆G ⁰ (kJ∕mol)	5° (J/mol·K)
e ⁻ (g)	0	0	20.87	CaCO ₃ (s)	-1206.9	-1128.8	92.9
Aluminum			20.01	CaO(s)	-635.1	-603.5	38.2
Al(s)	0	0	28.3	$Ca(OH)_2(s)$	-986.09	-898.56	83.39
$Al^{3+}(aq)$	-524.7	-481.2	-313	$Ca_3(PO_4)_2(s)$	-4138	-3899	263
$AlCl_3(s)$	-704.2	-628.9	110.7	$CaSO_4(s)$	-1432.7	-1320.3	107
$Al_2O_3(s)$	-1676	-1582	50.94	Carbon	1.02.	102010	
Barium	1070	1502	20.51	C(graphite)	0	0	5.686
Ba(s)	0	0	62.5	C(diamond)	1.896	2.866	2.439
Ba(g)	175.6	144.8	170.28	C(g)	715.0	669.6	158.0
$Ba^{2+}(g)$	1649.9	_	_	CO(g)	-110.5	-137.2	197.5
$Ba^{2+}(aq)$	-538.36	-560.7	13	$CO_2(g)$	-393.5	-394.4	213.7
$BaCl_2(s)$	-806.06	-810.9	126	$CO_2(aq)$	-412.9	-386.2	121
$BaCO_3(s)$	-1219	-1139	112	$CO_3^{2-}(aq)$	-676.26	-528.10	-53.1
BaO(s)	-548.1	-520.4	72.07	$HCO_3^-(aq)$	-691.11	587.06	95.0
$BaSO_4(s)$	-1465	-1353	132	$H_2CO_3(aq)$	-698.7	-623.42	191
Boron				$CH_4(g)$	-74.87	-50.81	186.1
B(β-rhombo-	0	0	5.87	$C_2H_2(g)$	227	209	200.85
hedral)	-	_		$C_2H_4(g)$	52.47	68.36	219.22
$BF_3(g)$	-1137.0	-1120.3	254.0	$C_2H_6(g)$	-84.667	-32.89	229.5
$BCl_3(g)$	-403.8	-388.7	290.0	$C_3H_8(g)$	-105	-24.5	269.9
$B_2H_6(g)$	35	86.6	232.0	$C_4H_{10}(g)$	-126	-16.7	310
$B_2O_3(s)$	-1272	-1193	53.8	$C_6H_6(I)$	49.0	124.5	172.8
$H_3BO_3(s)$	-1094.3	-969.01	88.83	CH ₃ OH(g)	-201.2	-161.9	238
55(/							

Calculating Heats of Reaction from ΔH_f

The heat of a reaction can be calculated by the following formula:

$$\Delta H^{\circ}_{rxn} = \Sigma n_{p} \Delta H^{\circ}_{f,products} - \Sigma n_{r} \Delta H^{\circ}_{f,reactants}$$
where n_{x} is the stoichiometric coefficient.

14. Calculate the heat of reaction for the following reactions. (A chart of standard heats of formation can be found in appendix L.)

$$2 \text{ HNO}_{3(aq)} + \text{ NO}_{(g)} \rightarrow 3 \text{ NO}_{2(g)} + \text{ H}_2 \text{O}_{(l)}$$

$$4 \text{ NH}_{3(g)} + 5 \text{ O}_{2(g)} \rightarrow 4 \text{ NO}_{(g)} + 6 \text{ H}_2 \text{O}_{(g)}$$

Heats of Formation – Applied

Calculate what quantity of heat that will be absorbed or released when 15.0 g of silver chloride (AgCl) is converted to silver oxide (Ag₂O) in the following reaction:

$$4 \text{ AgCl}_{(s)} + O_{2(g)} \rightarrow 2 \text{ Ag}_2O_{(s)} + 2 \text{ Cl}_{2(g)}$$

Thermochemistry – Applied Example

A 2.21-g sample of C₂H₂ is burned in excess oxygen in a bomb calorimeter with a heat capacity of 453 J/C° that contains 250.0 g of water. What increase in temperature should be observed?

(Assume that ALL reactants and products are in the gaseous state.)

Thermochemistry – Applied Example

Consider the reaction of:

100.0 mL of 0.500 M Ba(NO₃)₂ with 100.0 mL of 1.00 M Na₂SO₄ solution to form solid BaSO₄.

Both solutions start at 25.05°C and are mixed in a calorimeter that absorbs a negligible quantity of heat. The final temperature of the mixture is 28.15°C.

What is the enthalpy (△H) of the reaction?

(Assume the density and specific heat of the solution are the same as water.)