# **Quantum Mechanics**

Wave Properties of the Electron Chapters 7-8

# De Broglie Wavelength

- Light exhibits some of the same properties as matter, as demonstrated by the photoelectric effect.
- Louis Victor de Broglie hypothesized that matter might exhibit some of the same properties as energy (waves). He derived the de Broglie wavelength for moving particles.
- Consider the equation relating Energy and wavelength:

 $\lambda = \frac{hc}{E}$ 

#### De Broglie Wavelength (continued)

■ If energy is substituted with the E of Einstein's equation, **E=mc²**, the equation becomes:



■ The particle is traveling at some velocity (v) slower than the speed of light. Therefore c is replaced with v, and the equation becomes the De Broglie wavelength:

#### De Broglie Wavelength (continued)

- The wavelength is only of significance if the particle in question is VERY small.
- Example 1: What is the wavelength of an electron traveling at 80% of the speed of light?

  m<sub>e</sub> = 9.11 x 10<sup>-31</sup> kg

$$\lambda = \frac{h}{mv} = \frac{6.626 \times 10^{-34} \text{ J}}{9.11 \times 10^{-31} \text{ kg}} \cdot (0.8)(3.00 \text{ x } 10^8 \text{ m/s})$$
$$\lambda = 3.0 \times 10^{-12} \text{ m} = 3.0 \text{ pm}$$

Radius of H atom  $\approx$  3.7 x  $10^{-11}$  m or 37pm; therefore, the electron has a wavelength on the same scale as the size of the atom.

#### De Broglie Wavelength (continued)

■ Example 2: What is the wavelength of a jogger with a mass of 72 kg traveling at 2.2 m/s?

$$\lambda = \frac{h}{mv} = \frac{6.626 \times 10^{-34} \text{ J}}{72 \text{ kg} \cdot 2.2 \text{ m/s}}$$

$$\lambda = 4.2 \times 10^{-34} \text{ m}$$

Height of  $jogger \approx 1.8$  m. Therefore, the wavelength of the jogger is negligible relative to the overall size of the jogger.

# Development of the Quantum Mechanical Model of the Atom

- In Bohr's model, we considered the electrons orbiting the nucleus like planets around a sun.
- If this model were correct, the electrons should spiral into the nucleus.
- Generally speaking, electrons do not collide with the nucleus the planetary model is NOT correct.
- However, the concept of Bohr's ENERGY LEVEL (n) does hold up to experimentation and is the basis of the quantum mechanical model of the atom.

#### Quantum Mechanical Model of the Atom (continued)

■ The Heisenberg uncertainty principle says that there is a limitation to how precisely we can know the speed and position of a moving body:

$$\Delta x \cdot \Delta(mv) \ge \frac{h}{4\pi}$$

■ This uncertainty is only significant for small, fastmoving particles, like an electron.

#### Quantum Mechanical Model of the Atom (continued)

- The quantum (or wave) mechanical model was proposed by Erwin Schrödinger.
- He treated the electron mathematically as a wave function, describing its position in space as a function of its x,y, and z coordinates:



where H is a mathematical operator, E is energy, and  $\Psi$  is a wave function (a treatment of the electron as a standing wave).

The standing waves caused by the vibration of a guitar string fastened at both ends. Each dot represents a node (a point of zero displacement). The hydrogen electron visualized as a standing wave around the nucleus. Notice that only whole numbers will

Quantum Mechanical Model of the Atom (continued)



- By this treatment, the electron is not considered to "orbit" the nucleus, but instead, it occupies distinct energy levels within an atom.
- Solving the wave function will give an electron probability map, indicating where the electron can be found in the atom a certain percentage of the time.
- The electron moves randomly within its electron probability distribution.

Cross-sectional & cut-away representations of the probability distributions of  $\boldsymbol{s}$  orbitals.



- An electron has a 99% probability of being within the 99% contour line.
- 1% of the time the electron will be outside this region.
- The position and speed of the electron in this space cannot both be known with certainty.

Purple areas represent highest probability of finding an electron.

White circle represents a

# **Quantum Numbers**

- A set of *four* quantum numbers can be used to describe the energy of and the space where an electron may be found within an atom.
- Every electron in an atom has a unique set of 4 quantum numbers.
- Quantum numbers can be used with the Schrödinger Equation to determine the wave function and probability map of a specific electron.

## The Principle Quantum Number (n)

- The ENERGY LEVEL of the electron.
- $\blacksquare$  n = 1,2,3,4,5,....(to infinity)
- Corresponds to the Bohr model energy level.
- Corresponds to the ROW of the periodic table.
- The # of electrons in level  $n = 2n^2$
- The higher the energy level, the higher the energy of the electron. However, as **n** increases the energy difference between adjacent energy levels decreases.

## The Angular Momentum Quantum Number (I)

- The ENERGY SUBLEVEL of the electron.
- Also indicates the SHAPE of the orbital (region of space occupied by an electron.
- Every energy level (n) can be broken down into n sublevels.
  - For example, the third energy level can be broken down into three sublevels).
- I -values range from zero to n-1.
  - For example, in the third energy level, the I quantum number can be equal to 0, 1, or 2).

# Sublevels have the following letter designations. Each sublevel has an orbital shape characteristic to it.

| ℓ- value     | letter | shape                                         |
|--------------|--------|-----------------------------------------------|
| l = 0        | s      | Spherical                                     |
| <i>l</i> = 1 | р      | Peanut (figure 8)                             |
| <i>ℓ</i> = 2 | d      | Four 4-leaf clovers One dumbbell with a donut |
| <i>€</i> =3  | f      | Flower                                        |

## The Magnetic Quantum Number (m)

- Determines the orbital (specific region of space within a sublevel) that an electron occupies.
- The number of orbitals within an energy level, *n*, equals *n*<sup>2</sup>.
- The number of orbitals within a sublevel,  $\ell$ , is equal to  $2 \ell + 1$
- $m_{\ell}$  ranges from  $-\ell$  to  $+\ell$

For example, if  $\ell=2$ ,  $m_{\ell}$  may equal -2, -1, 0, 1, 2

- Each orbital in a sublevel has the same shape, but a different orientation in space.
- An orbital may hold up to 2 electrons.

## The Spin Quantum Number (m<sub>e</sub>)

- Designates the magnetic properties of the electron: Spin.
- $\blacksquare$  Spin is usually considered up or down.
  - Spin up is often designated  $m_s = +\frac{1}{2}$
  - Spin down is often designated  $m_s = -1/2$ .
- Expression of the Pauli exclusion principle:

Every electron in an atom has a unique set of quantum numbers.

#### Quantum number designations

How many *orbitals* can have the following designations. Note that some may not be allowed.

- n=6, l=5
- n=6, l=5,  $m_l=-3$
- n=6
- n=9, l=9
- n=3, l=2,  $m_1=0$ ,  $m_s=+\frac{1}{2}$
- 3s
- 5f
- \_ 2d

## Quantum number designations

How many *electrons* can have the following designations. Note that some may not be allowed.

- n=5, l=3
- n=4, l=2, m<sub>i</sub>=0
- n=3, l=3, m<sub>l</sub>=-2
- n=6, l=1,  $m_1=-1$ ,  $m_2=-\frac{1}{2}$
- 2p
- 2p<sub>x</sub>

# **Electron Configurations**

- A detailed list of energy levels, sublevels, and orbitals of electrons in the atom.
- The "address" of the electrons.

# Electron Orbital-Filling in Atoms

- Aufbau Diagram a map to determine the location of electrons within an atom helps to write the electron configuration.
- When filling orbital diagrams, follow these rules:
  - Aufbau principle When filling electron orbitals, lower energy orbitals fill first. All of the orbitals of the same sublevel (degenerate = same energy) are filled before a new sublevel begins filling.
  - Note: The higher the electron energy level in an atom, the more it overlaps with adjacent energy levels.

Orbital-filling rules (cont.):

- **Hund's Rule** Place one electron in each orbital of the same sublevel before pairing electrons.
- Pauli Exclusion Principle An orbital may hold a maximum of two electrons with opposite spins. By convention, we will put the first electron with spin up, and the second with spin down.
- Use the Aufbau diagram to write electron configurations for the following atoms:

Electron configurations can be written more quickly by looking at the pattern of orbitals and sublevels. The following diagram will help you use these patterns. Simply list the electron orbitals:

Then, use diagonal arrows as below:

Using the diagram above write electron configurations for the following atoms:



# Abbreviated electron configurations

- Noble Gases have the most stable electron configurations.
- All noble gases end with an octet filled outer s & p energy sublevels (s²p<sup>6</sup>).
- The symbol for a noble gas may be substituted for its electron configuration for writing longer configurations.
- Write abbreviated electron configurations for the following atoms:

#### Valence & Core electrons

#### ■ Core electrons = inner electrons

- In the electron configuration, the core electrons are equivalent to a noble gas configuration (plus any full outer d or f sublevels).
- These electrons do NOT participate in chemical bonding.

#### ■ Valence electrons

- Electrons in the outermost s & p sublevels and unfilled d & f sublevels.
- These electrons can participate in chemical bonding.

# Exceptions to orbital-filling rules

- Transition Metals (d-block)
  - Copper group
  - Chromium group
  - Others:
- Inner transition metals (f-block)
  - $\bullet~d^1$  rule and exceptions

#### **Electron Configurations and ION formation**

- Many METALS lose electrons to achieve an electron configuration equivalent to a noble gas (an OCTET).
- Many NON-METALS gain electrons to achieve a Noble Gas electron configuration.
- *Transition metals* and *p-block* metals sometimes form ions with a pseudo-Noble Gas electron configuration, or other stable electron configuration.