

Hybridization

- Valence s, p, and (sometimes) d orbitals combine to make hybrid orbitals.
- > One hybrid orbital is needed for each electron region – whether it is a single, double, or triple bond.
 - 2 electron regions: sp
 - 3 electron regions: sp²
 - 4 electron regions: sp³
 - 5 electron regions: sp³d
 - 6 electron regions: sp³d²

Valence Bond Theory

- Main Principle: Atomic orbitals (hybridized or unhybridized) overlap to form covalent bonds between atoms.
- Orbital overlap means that the electrons in the bond have a higher probability of being found in the space between the two nuclei.
- Sigma Bond (σ) Bond in which the electron density is greatest along the axis of the bond. The first bond between two atoms is a sigma bond.
- > **Pi Bond** (π) Bond in which the electron density is greatest above and below the axis of the bond. The 2nd and 3rd bonds between two atoms are pi bonds.

However, in the electron configuration and in the Aufbau diagram for **Be**, we see that both of the valence electrons are already paired:

2nd E level: ↑↓

s

ррр

 $Be = 1s^22s^2$

The hybrid orbitals overlap with the 1s orbitals of 3 hydrogens to create sigma bonds.

