POWERS OF 10

Negative powers:

$$10^{-x} = \frac{1}{10^x}$$

Multiplication with the same base (of 10): $10^x \cdot 10^y = 10^{x+y}$

$$10^x \cdot 10^y = 10^{x+y}$$

Division with the same base (of 10): $\frac{10^x}{10^y} = 10^{x-y}$

$$\frac{10^x}{10^y} = 10^{x-1}$$

Nested Exponentials: $(10^{x})^{y} = 10^{x \cdot y}$

$$(10^x)^y = 10^{x \cdot y}$$

Addition and subtraction with numbers including base 10 exponentials (as in scientific notation) requires that the exponent on the power of 10 be identical: $[\mathbf{a} \times \mathbf{10^z}] + [\mathbf{b} \times \mathbf{10^z}] = [(\mathbf{a+b}) \times \mathbf{10^z}]$

1)
$$10^2 \cdot 10^5 = 10^{7}$$

2)
$$\frac{10^3}{10^7} = 10^{-4}$$

3)
$$(5.7 \times 10^{-25}) - (1.3 \times 10^{-25}) = 4.4 \times 10^{-25}$$

4)
$$(10^3)^6 = 10^{18}$$

$$5) \frac{10^6}{10^{-12} \cdot (10^{-2})^{-2}} = 10^{-14}$$

6)
$$(3.0 \times 10^5) + (2 \times 10^4) =$$
 3, 2 × 10⁵

SCIENTIFIC NOTATION

A numbers written in scientific notation should always reflect all of the significant figures in a number.

Express the following numbers in scientific notation with the proper number of significant digits:

7) 0.000 002 158

8) 6,024,000

9) 500.0

10) 0.00120

Express the following numbers in long form with the proper number of significant digits:

$$11)3.56 \times 10^{-3}$$

$$12)6.85 \times 10^5$$

$$13) 9.500 \times 10^{2}$$

$$14)3.80 \times 10^{-2}$$

DIMENSIONAL ANALYSIS

15) Calculate the number of moles equal to 1.23 x 10²⁴ molecules of PCl₅.

equal to 2.50 mol of Uranium atoms. 16) Calculate the number of

17) Calculate the number of formula units equivalent to 5.93 g of SiO₂.

$$5.93g$$
 | Inol SiO₂ | 6.022×10^{23} form.on. = 5.94×10^{32} form. Calculate the number of pg equal to 4.5×10^{-6} cg.

18) Calculate the number of **pg** equal to 4.5 x 10⁻⁰

DENSITY

19) Calculate the density of a mineral sample if it causes the level of water in a graduated cylinder to increase from 22.3 mL to 35.6 mL and has a mass of 60.891 g.

$$V = \frac{35.6}{-22.3} \qquad m = 60.8913 \qquad (InL = Icm3)$$

$$D = \frac{m}{V} = \frac{60.8918}{13.3 \, \text{nc}} = \frac{4.588 \, \text{mc}}{13.3 \,$$

20) Ethylene glycol, used in antifreeze, has a density of 1.11 g/mL. What is the mass in kg of 1.00 gallons of the compound? $gal \rightarrow L \rightarrow g \rightarrow k_3$