EM Radiation & Photoelectric Effect • Chem 210

1. A dance radio station broadcasts at a frequency of 92.7 MHz. What is the wavelength associated with the radio waves?

$$C=\lambda v$$

$$\lambda = \frac{C}{V} = \frac{3.00 \times 10^8 \, \text{m/s}}{92.7 \times 10^6 \, \text{1/s}} = 3.23 \, \text{m}$$

2. What is the energy of a photon of EM radiation if its wavelength is 195 nm? What is the energy of a mole of these photons?

energy of a mole of these photons?

$$E = hv \quad c = 2v$$

$$= \frac{1.019 \times 10^{-18} \text{ J. Godanio}^{-3} \text{ photon}}{1 \text{ photon}}$$

$$= \frac{614 \text{ kg}}{195 \times 10^{-9} \text{ m}} = 1.02 \times 10^{-18} \text{ J. photon}$$

3. What is the maximum wavelength of EM radiation that can cause electrons to be ejected from the surface of lithium metal in a photoelectric cell? The ionization energy for lithium is 513.3 kJ/mol.

$$\frac{513.3 \, \text{E}}{1 \, \text{mod}} \frac{1000 \, \text{J}}{1000 \, \text{J}} = 8.524 \times 10^{-19} \, \text{J}$$

$$\frac{1}{1000} \frac{1000 \, \text{J}}{1000 \, \text{J}} = \frac{10000 \, \text{J}}{1000 \, \text{J}}$$

4. The threshold frequency that will allow electrons to be ejected from the surface of beryllium metal is 2.25 x 10¹⁵ Hz. What is the ionization energy (in kJ/mol) for Be?

5. What is the minimum uncertainty in the position of an electron traveling at $8.4 \times 10^4 \pm 0.6 \times 10^4$ km/s?

1 Joule (J) =
$$1 \text{ kg} \cdot \text{m}^2/\text{s}^2$$

$$m_{electron} = 9.11 \times 10^{-31} \text{ kg}$$

$$\Delta x \cdot M \Delta u \leq \frac{h}{4\pi}$$

$$\Delta x = 4.8 \times 10^{-12} \text{m} = 4.8 \text{pm}$$