Quantum Chemistry 4: Quantum Numbers & Periodic Properties

1) Write the full set of quantum numbers for the electron circled in the diagram below:

2) Write the full set of quantum numbers for the electron circled in the diagram below:

3) Draw an orbital diagram (as in 1 & 2 above) if the last electron filling in a ground state atom has the following set of 4 quantum numbers:

4) Draw an orbital diagram (as in 1 & 2 above) if the last electron filling in a ground state atom has the following set of 4 quantum numbers:

$$n = 6$$
, $l = 0$, $m_l = 0$, $m_s = -\frac{1}{2}$

5) Place the following in order of increasing (smallest to largest) particle size:

6) Place the following in order of increasing (smallest to largest) particle size:

 $K \quad K^{+} \quad Se \quad Se^{2-}$

7)	Put the following in order of	owing in order of increasing (smallest to largest 1st ioni					tion energy:
	Al	K	Mg	Na			

8) What atom in the third row of the periodic table will have the largest jump between its 5th and 6th ionization energies?

9) What does the following reaction correspond to? $S_{(g)} + e^{-} \rightarrow S^{-}$

10) Write the reaction for the 2nd ionization of barium.

- 11) Using only an ordinary periodic table:
 - A) Put the following in order of INCREASING radius:

Al Al
$$^{3+}$$
 P P $^{3-}$

$$Al^{3+} < P < Al < P^{3-}$$

B) Put the following in order of INCREASING 1st ionization energy:

C) Put the following in order of INCREASING electronegativity:

12) Which element in the 3rd period will have its most significant jump in ionization energies between its 5th and 6th?