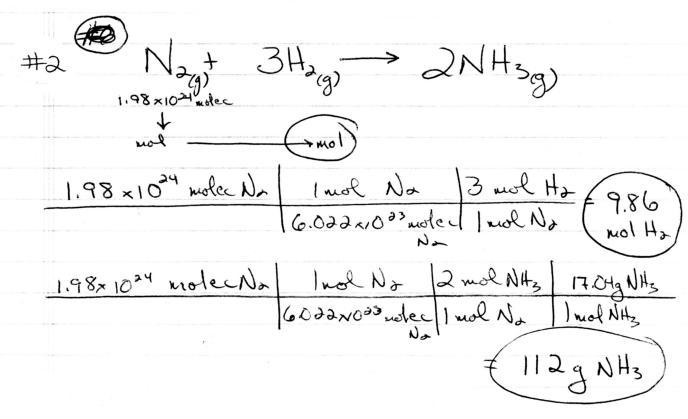
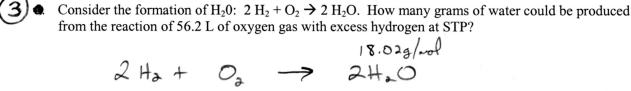

Stoichiometry 5

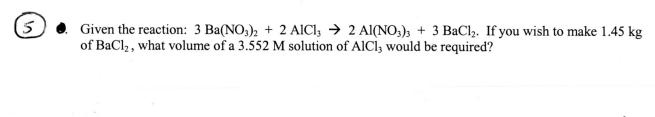

How many atoms of magnesium will react with 4.5 g of nitrogen to make magnesium nitride (Mg₃N₂)?



2. Consider the reaction of nitrogen gas with hydrogen gas with to make ammonia gas: $N_2+3~H_2 \Rightarrow 2~NH_3$

A) How many moles of hydrogen are required to fully react with 1.98 x 10²⁴ molecules of nitrogen?

B) What is the theoretical yield of ammonia produced in this reaction?


$$2 + 4 + 0_{a} \rightarrow 2 + 20$$

4. Iron metal reacts with oxygen to make iron (III) oxide by the following reaction:

 $4 \text{ Fe} + 3 \text{ O}_2 \rightarrow 2 \text{ Fe}_2 \text{O}_3$. If 72.0 g of iron and 67.0 g of oxygen are present initially,

- A) What is the limiting reagent?
- B) What mass of iron(III) oxide is produced?
- C) What mass of the excess reagent remains at the end of the reaction?

Fe is LR

1450g Bacto 2 mol Baclo 2 mol Alclo 11 Alclos

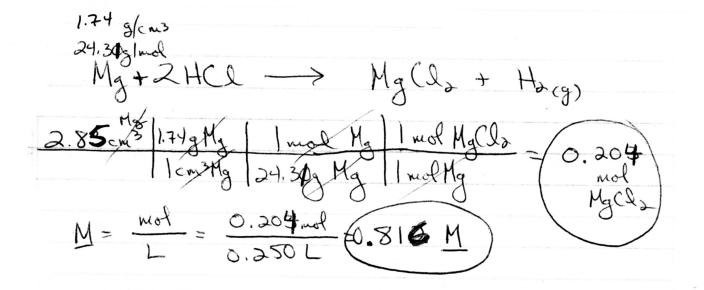
208.23g Bacto, 3 mol Bacto, 3557 Alclos

= 1,31 Alclos

Lead (II) nitrate reacts with ammonium phosphate to produce a precipitate. If 455 mL of a 2.55 M lead (II) nitrate solution is reacted with excess ammonium phosphate, what mass of the precipitate will be formed?

3 Pb(NO3) + 2(NHy) 3 PO4 > Pb3(PO4) + 6NHyNO3

455 m L
2.55 mol [


PKNO3] 1 rol Pb3(PO4) | 811.54 g Pb3(PO4)

1 L Pb(NO3) 3 mol Pb(NO3) | 1 mol Pb3(PO4)

4313 g Pb3 (PO4) 2

- Consider the reaction of Mg with HCl. If a long strip of Mg with a volume of 2.85 cm³ were allowed to react with excess HCl,
 - A) How many moles of MgCl₂ would be produced?
 - B) What would be the molarity of MgCl₂ if the total volume of the solution were 250 mL?

A sample of sandstone contains silica (SiO₂) and calcite (CaCO₃). When the sandstone is heated the CaCO₃ decomposes by the reaction: $CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)}$. What is the percentage of silica in the sandstone if heating 18.7 mg of the rock yields 3.95 mg CO₂?

3.95 mg Co, / lust Co2 / lust Co2