Thermochemistry 1

1. When 25.0 g of an unknown metal at $79.7^{\circ} \mathrm{C}$ is placed in a calorimeter with a heat capacity of $62.5 \mathrm{~J} / \mathrm{C}^{\circ}$ containing 125 g of $\mathrm{H}_{2} \mathrm{O}$ at $22.2^{\circ} \mathrm{C}$, thermal equilibrium is reached at $24.6^{\circ} \mathrm{C}$. What is the specific heat capacity of the metal?

$$
\begin{aligned}
& - \text { lost }^{\text {qugained }} \\
& -q_{\text {metal }}=9 \text { water }+ \text { ocalarimeter } \\
& -M_{\text {metal }} C_{\text {metal }} \Delta T_{\text {metal }}=m_{w} C_{w} \Delta T_{w}+H_{c} \Delta T_{w}
\end{aligned}
$$

$$
\begin{aligned}
& \left(13 \overline{7} 7.5 \mathrm{~g} \mathrm{C}^{\circ}\right) C_{\text {metal }}=1255.2 \mathrm{~J}+1 \overline{5} 0 \mathrm{~J} \\
& C_{\text {metal }}=1.0 \mathrm{~J} / \mathrm{g} c^{\circ}
\end{aligned}
$$

2. What will be the final temperature if a $45.0-\mathrm{g}$ piece of zinc at $80.0^{\circ} \mathrm{C}$ is dropped into 125.0 g of water at $18.2^{\circ} \mathrm{C}$? (Assume no heat is lost to the environment or the container.)

$$
\begin{aligned}
& -q_{\text {lost }}=\pi \text { gand } \\
& -m_{z_{n}} C_{z x}\left(T_{f}-T_{C} z_{z_{n}}=M_{\mu_{2} O} C_{\mu_{2} O} T_{f}-T_{1}\right)_{H 20} \\
& -(45.0 g)(0.388 \pi / g)\left(T_{f}-80.06\right)=(125.0 \mathrm{~d})(4.1845 / 6 C 0)\left(T_{f}-18.2{ }^{\circ} \mathrm{C}\right) \\
& -17.46 T_{f}+1396.8=523 T_{f}-95: 8.6 \\
& 10915.4=540.46 \mathrm{~T}_{\mathrm{f}} \\
& T_{f}=20.2{ }^{\circ} \mathrm{C}
\end{aligned}
$$

3. Consider the gas-phase reaction below, for which $\Delta \mathrm{H}=-124.1 \mathrm{~kJ}: \quad 2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$

Calculate the quantity and sign of the heat associated with the production of 1.00 kg of SO_{3} by this process.
4. The combustion of $1.33-\mathrm{g}$ of a propene $\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)$ results in the release of $3,370 \mathrm{~J}$ of heat. What is the enthalpy of combustion of propene in kJ / g and in $\mathrm{kJ} / \mathrm{mol}$?
5. What is the mass of a piece of nickel metal if it is heated to $100.0^{\circ} \mathrm{C}$ and placed into 250.0 grams of water at $21.52{ }^{\circ} \mathrm{C}$ in a calorimeter with a heat capacity of $95.3 \mathrm{~J} / \mathrm{K}$ and the temperature stabilizes at $25.82{ }^{\circ} \mathrm{C}$?

$$
M_{N i}=149 \mathrm{~g}
$$

$$
\begin{aligned}
& -q_{0} N_{i}=q H_{8} O+q^{\circ} \text { calosinaber } \\
& -_{M_{N i}} C_{N i} \Delta T_{N_{i}}=m_{H_{2} O} G_{H_{2} O} \Delta T_{H 20}+H_{C} \Delta T_{\text {talanimetere }} \\
& \Delta T_{N_{i}}=25.82-100=-74.18 \mathrm{C}^{\circ} \quad \Delta T_{4.0}=\Delta T_{\text {calder }}=25.82-2152: 4.3 c^{\prime} \\
& -m_{N i}\left(0.444^{5} / g c^{\circ}\right)\left(-74.18 c^{\circ}\right)=(250 \mathrm{~g})\left(4.184 \mathrm{~J} / \mathrm{g} 0^{\circ}\right)\left(4.3 C^{\circ}\right)+(95.35 / 20)(4.30(4) \\
& 32.95 m_{N i}=4497.8+409.73
\end{aligned}
$$

$$
\begin{aligned}
& 1.33 g \left\lvert\, \frac{1 \text { end }}{42.09 g}=0.03160 \mathrm{mot} \quad q=-3370 \mathrm{~J}\right. \\
& \Delta H=\frac{-3370 \mathrm{~J}}{1.33 \mathrm{~g}}=-2530 \mathrm{~J} / \mathrm{g} \quad \Delta H=\frac{-3370 \mathrm{~J}}{0.3160 \mathrm{ka}}=-107,000 \mathrm{~J} / \mathrm{mol} \\
& =-2,530 \mathrm{~kJ} / \mathrm{g} \\
& =-107 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

