CHEM 220 - Exam 2 - Spring 2011 Answer Section

MULTIPLE CHOICE

1.	ANS:	C	PTS:	1
2.	ANS:	E	PTS:	1
3.	ANS:	D	PTS:	1
4.	ANS:	В	PTS:	1
5.	ANS:	E	PTS:	1
6.	ANS:	F	PTS:	1
7.	ANS:	E	PTS:	1
8.	ANS:	C	PTS:	1
9.	ANS:	C	PTS:	1

Name:	Key	Section:

FREE RESPONSE: (16 points each)

- Please answer 4 of the following 5 questions. Cross-out the one you DO NOT want graded, or the first 4 will be graded.
- No answer requires a quadratic solution. You MAY NOT use your calculator to solve quadratic, cubic, or higher order equations apply appropriate approximations when needed.
- Assume ideal gas behavior.
- Watch significant figures. You must show all work and units!
- 1. Determine the **pH** and the **[OH]** of a 0.40 M bromic acid (HBrO₃) solution.

2. At 75°C, 50.0 g of solid phosphorus (excess) is placed in a 4.00-L container with 1.00 mol chlorine gas and no diphosphorus dichloride. The reaction below is allowed to reach equilibrium. Determine the equilibrium concentrations of all gas species. $K_C = 36.0$ at 75°C.

$$P_{4(s)} + 2Cl_{2(g)} \Leftrightarrow 2P_{2}Cl_{2(g)}$$

$$\vdots \quad excess \qquad \bullet.250 \text{ M}$$

$$C \quad -(\chi) \qquad -\lambda \chi \qquad +2\chi$$

$$e \quad excess \qquad 0.350 - \lambda \chi \qquad \lambda \chi$$

$$K_{c} = 36 = \frac{(2\chi)^{2}}{(0.25 - \lambda \chi)^{2}}$$

$$G = \frac{\lambda \chi}{(0.25 - \lambda \chi)^{2}}$$

$$G = \frac{\lambda \chi}{(0$$

A fixed container holds the gases below at the following initial pressures:

Pressure of
$$P_2O_4 = 0.60$$
 atm

Pressure of
$$O_2 = 0.50$$
 atm

Pressure of $P_2O_5 = 0.40$ atm

What are the equilibrium pressures of all species if $K_P = 2.0 \times 10^4$.

What are the equilibrium pressures of all species if
$$K_p = 2.0 \times 10^4$$
.

B

 $2 P_2 O_{4(g)} + O_{2(g)} \Leftrightarrow 2 P_2 O_{5(g)}$

Start 0.6 0.5 0.4

Assome
 1.00

N. I. \emptyset
 0.2
 1.00
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2

The initial pressure of N₂O₄ in the system below is 9.00 atm with no products present. At equilibrium, the total pressure in the system is 16.5 atm. What is K_P for the reaction.

$$2 N_{2}O_{4(g)} \Leftrightarrow 2 N_{2}O_{(g)} + 3 O_{2(g)}$$

$$2 N_{2}O_{4(g)} \Leftrightarrow 2 N_{2}O_{4(g)} + 3 O_{2(g)}$$

5. The reaction below was studied at 350 K. A mixture of gases initially contained the reactants at the following concentrations: $[H_2] = [CO] = 0.80 M$ with no products present. At equilibrium, $[CH_4]$ was found to be 0.20 M. What is the value of K_C for this reaction?

$$3 H_{2(g)} + CO_{(g)} \Leftrightarrow CH_{4(g)} + H_{2}O_{(g)}$$
 $0.80 M \quad 0.80 M \quad \varnothing \quad \varnothing$
 $C \quad -0.6 \quad -0.2 \quad +0.2 \quad +0.2$
 $C \quad 0.20 M \quad 0.60 M \quad 0.20 M \quad 0.20 M$
 $C \quad 0.20 M \quad 0.20 M \quad 0.20 M$