Important Review Topics from Organic Chemistry 1

- Concepts related to stereochemistry and general organic structures.
- Acid-Base Chemistry
- Reaction Energetics
- Some important reactions will be of use in multi-step syntheses:
 - Substitution and Elimination (S_N1, S_N2, E1, E2)
 - H-C≡C: ions as nucleophiles
 - Addition reactions to double and triple bonds
 - Hydrogenation Reactions

Primary Topics from Organic Chemistry 2

Chapter 11
- Reactions of Alcohols & Ethers (review from first semester)
- Epoxides
 - Reactions and Mechanisms

Chapter 12
- General Concepts: Oxidation / Reduction Reactions and Carbonyls
- Oxidations:
 - \(\text{H}_2\text{CrO}_4 \) & Jones Reagent
 - PCC
- Hydride Reductions:
 - \(\text{NaBH}_4 \)
 - \(\text{LiAlH}_4 \)
 - DIBAL-H (Ch.16)
 - tri-tert-butoxyaluminum hydride (Ch.16)
- Organometallic Reactions
 - Grignard Reactions
 - Alkyl Lithium Reagents

Chapter 13
- Conjugated, \(\pi \) systems
 - Electron delocalization
 - Resonance Stabilization
 - Molecular Orbital Theory
 - UV / Vis Spectroscopy
- Allylic groups
- Allyl Radical and Allyl Cation
 - Reactions and Mechanisms
- Polyunsaturated Hydrocarbons
 - 1,4 additions
- Diels-Alder Reaction

Note on molecular orbitals and conjugated \(\pi \) systems
- Be familiar with the HOMO & LUMO, as well as \(\pi \) bonding, non-bonding, and \(\pi^* \) antibonding orbitals.
- Understand their importance in UV/Vis spectroscopy as well as chemical reactions (allyl radical and cation).
Chapter 14
- Aromatic Compounds
- Predicting aromaticity
 - 4n+2 rule
 - Cyclical, planar, conjugated \(\pi \) system
- Molecular Orbitals
 - Relative energies

Chapter 15
Electrophilic Aromatic Substitution
- EAS – General Mechanism
- EAS Reactions:
 - Halogenation
 - Nitration
 - Sulfonation
 - Friedel-Crafts alkylation
 - Friedel-Crafts acylation
- Ortho-para directors
 - Activating (resonance stabilization)
 - Deactivating (halides)
- Meta directors
 - Deactivating (partial positive charge adjacent to the ring)

Carbonyl Compounds (Multiple Chapters)
- Properties
- Classes of carbonyl compounds

Chapter 16
- Aldehydes and Ketones
 - General properties and reactivity
- Hemiacetals and Acetals
 - Structure
 - Acid-catalyzed formation
 - Base-catalyzed formation
 - Role of acetals as protecting groups (consider ethylene glycol)
- Wittig Reaction
- Imenes & Enamines

Chapter 18
- Carboxylic Acids & Derivatives
 - Basic structure, nomenclature, and reactivities of:
 - Carboxylic acids
 - Carboxylate anions
 - Esters
 - Amides
 - Acid Chlorides
 - Anhydrides
- Esterification
 - Acid-catalyzed esterification & hydrolysis
 - Saponification (base-promoted hydrolysis)
 - Trans-esterification
Chapter 18 (cont.)

- Acid Chlorides
 - Synthesis from carboxylic acids – SOCl₂, PCl₃, PCl₅
 - Conversions to other carboxylate derivatives – conditions and mechanism
- Anhydrides
 - Synthesis from acid chlorides and carboxylic acids.
 - Cyclic anhydrides
 - Conversions to esters and amides
- Amides
 - Synthesis from acid chlorides & anhydrides.
 - Hydrolysis (acidic or basic conditions)
 - Amine protecting groups.
- Nitriles
 - Cyanide ion as a nucleophile
 - Acidic or basic hydrolysis of a nitrile
 - Grignard Reduction of a nitrile (section 16.5D)

Chapter 17 & Chapter 19

- Enols & Enolates
 - Acidity of the α hydrogen
 - Resonance-stabilization of the enolate ion
- Keto-enol tautomerization
 - Acid & Base catalysis
 - Racemization of chiral ketones
- Aldol Reaction
 - Reaction Process of an aldol condensation:
 - Aldol Addition
 - Dehydration of the Aldol addition product (formation of the α,β unsaturated carbonyl)
- Mechanisms for Aldol formation / dehydration reactions with acid or base catalysis
- Aldehyde vs. Ketone reactivity
- Reversibility
- Crossed Aldol Reactions
- Claisen-Schmidt Reactions
- Intramolecular Aldol Condensations (ring formation)
- Lithium Enolates (17.7)
 - LDA – Lithium diisopropyl amide as a strong base
 - Regioselectivity of enolate reactions
 - Thermodynamic enolate vs. Kinetic enolate
 - Aldol & Claisen-Schmidt reactions with lithium enolates
 - Direct Alkylation of ketones
- Addition to α,β-unsaturated aldehydes & ketones (17.9)
 - Simple addition at the carbonyl carbon vs. conjugate addition at the β carbon.
 - Reactivity of the nucleophile.
 - Michael Addition
 - Conjugate addition of an enolate.
 - Robinson Annulation
 - Michael addition, followed by an aldol reaction to produce a ring.
Chapter 17-19 (cont.)

- β-dicarbonyl compounds (19.1 – 19.2A)
 - Acidity
 - Claisen Condensation
 - Formation of a β-keto ester
 - Dieckmann Condensation (Intramolecular Claisen)
 - Crossed Claisen
 - Hydrolysis of a β-keto ester (acidic or basic conditions) to a β-keto acid
 - Decarboxylation of a β-keto acid (section 18.10)