In the winter of 1906 I was called on to investigate a household epidemic of typhoid fever which had broken out in the latter part of August at Oyster Bay, N. Y. The epidemic had been studied carefully immediately after it took place, but its cause had not been ascertained with as much certainty as seemed desirable to the owner of the property.

The essential facts concerning the investigation follow:

THE OYSTER BAY OUTBREAK.

At Oyster Bay in the summer of 1906 six persons in a household of eleven were attacked with typhoid fever. The house was large, surrounded with ample grounds, in a desirable part of the village, and had been rented for the summer by a New York banker.

The first person was taken sick on August 27 and the last on September 3. The diagnosis of typhoid was positive. Two of the patients were sent to the Nassau hospital at Mineola. The others were attended by capable physicians at Oyster Bay. None of the subsequent cases apparently resulted from the first, although the interval from the first to the last might permit of this assumption. But whether the disease was transmitted from one person to another after the first case occurred was not a matter of great consequence. The most important question was how the first case occurred.

Typhoid fever is an unusual disease in Oyster Bay, according to the three physicians who share the medical practice there. At the time of the outbreak no other case was known. None followed.

The milk supply of this house was the same as used by most of the other persons in the village, all of whom [remained well.]

The cream also was from a source which supplied several other families in the vicinity.

To the first investigators it seemed that the water must have been contaminated. They were unable to ascribe the fever to food, flies or milk, whereas if they could discover that the water had been contaminated they would be able to account for the epidemic.

The water supply for the house was from a driven well said to be 167 feet deep. The well was at a distance of 210 feet from the house, within 60 feet of a stable drain, 115 feet from a privy behind the stable, and 224 feet from two cesspools which received the drainage of the house. The cesspools and privy had been cleaned out in April. The house was provided with one water closet, situated on the second floor. This was used by the family. The sic servants used the privy. The sewage from the house was carried by a tile pipe to the two cesspools just referred to. The soil is sandy and gravelly throughout this region.

George Soper was a civil engineer hired by private citizens of New York City to investigate the outbreak of typhoid in Oyster Bay, New York. He was known for his experience in investigating typhoid fever epidemics using epidemiological analyses. This paper about his investigation of Mary Mallon was read before the biological society of Washington, D.C., on April 6, 1907.

The water was pumped from the well by a gas engine to a covered wooden tank situated 186 feet from the stable and 320 feet from the house. Water ran from this outside tank to an open tank in the attic of the house, removed from the nearest living rooms by a steep and narrow ladder.

Samples of the water were taken and subjected to careful chemical and bacteriological analysis. They were collected direct from the pump, from the outside tank and from a faucet in the house. There were five
samples taken in all. Four were examined by E. E. Smith, M.D., Ph.D., the well-known analytic expert, and the other by D. D. Jackson, Ph.D., director of the laboratories of the New York City Department of Water Supply, Gas and Electricity.

The essential facts concerning these analyses, including the condensed statements of the resulting opinions, follow:

ANALYSIS OF WATER FROM OYSTER BAY

<table>
<thead>
<tr>
<th>1906</th>
<th>Source of Sample</th>
<th>Opinion of Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept. 12.</td>
<td>Outside tank</td>
<td>Probably safe</td>
</tr>
<tr>
<td>Sept. 13.</td>
<td>Pump over well</td>
<td>No evidence of pollution</td>
</tr>
<tr>
<td>Sept. 27.</td>
<td>Outside tank</td>
<td>Typhoid from this source impossible</td>
</tr>
<tr>
<td>Sept. 29.</td>
<td>Outside tank</td>
<td>Evidence does not show pollution</td>
</tr>
</tbody>
</table>

In addition to these examinations, an experimental study was made of the possibility that the typhoid germs might have percolated through the ground to the well from some receptacle of excrement. On September 29 Dr. Smith put fluorescein in the bowl of the water closet in the house, in the cesspools, in the stable manure vault, in the privy vault on this property and in another on adjacent property and in the bowl of the water closet in a neighboring house. He looked for traces of this fluorescein in water from the well, obtained after much pumping, two days and five days later. Six samples of water were collected during this test. They entirely failed to reveal pollution.

Even this thorough work on the water supply did not entirely destroy local confidence in the theory that the water had been the cause of the outbreak. A contamination of the outside covered tank of such nature as to escape detection by analysis was suspected as offering a possible explanation of the trouble. According to this idea the tank, which had been cleaned early in the spring, might have received typhoid bacilli from the cleaners who, perhaps, carried typhoid excreta on their boots. It was supposed that a gradual accumulation of organic matter from the water and dust from the air, aided by the continued warmth of the summer sun, might have led these germs to multiply until at last they escaped to the water and infected the household.

It did not seem to me that the water theory was tenable. The analyses proved that the well was not continuously polluted. The fluorescein tests showed that occasional contamination was not likely. An inspection of the premises and inquiries concerning the way the outside tank was cleaned made it seem unlikely that this tank became infested in the way supposed.

It would have been more probable to suppose that the tank in the house, which was without a cover and accessible to occupants of the house, had become polluted. Such contamination was not without precedent. Had typhoid existed in the house at the time, it was possible that the tank could have become contaminated in this way. But there had been no case. Moreover, inquiry made it seem unlikely that the tank had been visited all summer. It was much more convenient for persons to get water otherwise than by climbing the narrow ladder to the attic. It seemed more probable that they infectious material had been carried to the house by some person or some article of food.

I was led from the proper track for a time by being assured that no person who had had typhoid, at least within many months, had lived in the house or visited it during the whole summer, and by discovering that the family was extremely fond of soft clams. My suspicion for a time attached to clams. It was found that soft clams had frequently been obtained in the summer from an old Indian woman who lived in a tent on the beach not far from the house. It was impossible to find this woman, but I made inspections of the sources of soft clams at Oyster Bay, which showed that they were some-
times taken from places where they were polluted with sewage.

But if clams had been responsible for the outbreak it did not seem clear why the fever should have been confined to this house. Soft clams form a very common article of diet among the native inhabitants of Oyster Bay. On inquiring closely into the question of the food eaten before the outbreak it was eventually found that no clams had been eaten subsequent to July 15. This removed the possibility that the epidemic had been caused by clams. From July 15 to August 27, six weeks, was too long a period for an outbreak of this character to remain undeveloped. The infectious matter which produced the epidemic had been taken with food or drink, in my opinion, on or before August 20.

The supplies of vegetables and fruit were next considered. It was found that the persons attacked had not eaten any raw fruit or vegetables which had not also been eaten by many persons who escaped the fever.

The history of the house with regard to typhoid was inquired into. It was found that but one case of typhoid had occurred on the premises or been nursed there in thirteen years. This case occurred in 1901. Care seemed to have been taken to destroy the infectious nature of the discharges. The case produced no secondary cases at the time. The house had been occupied every summer since without typhoid.

Attention was now concentrated for a time on the first cases to determine whether the infection could have occurred during a temporary absence from Oyster Bay. It was found that those persons who were taken sick at the outset had not been on a visit, or picnic, or, in fact, away from Oyster Bay on any account for several weeks prior to the onset of the illness.

The social position of the persons attacked differed decidedly. Among the first to be taken sick were a daughter of the head of the family and two maid servants, one of which was colored. Following in a quick succession were the wife and then another daughter of the tenant and, finally, the gardener who lived permanently at Oyster Bay and had worked on the place for years.

Believing that some peculiar event might have occurred in the family on or shortly before August 20, which, if studied, might give the necessary clue to the cause of the epidemic, careful inquiry was made into the immediate history of the household at this time. The key of the situation was thus discovered.

It was found that the family had changed cooks on August 4. This was about three weeks before the typhoid epidemic broke out. A cook who had been with the family several years had been discharged and a new one employed. Little was known about the new cook’s history. She had been engaged at an employment bureau which gave her an excellent recommendation. She remained in the family only a short time, leaving about three weeks after the outbreak of typhoid occurred. Her present whereabouts were unknown. The cook was described as an Irish woman about 40 years of age, tall, heavy, single. She seemed to be in perfect health.

Here was by all means the most important possibility in the way of a clue which had come to my notice. If this woman could be found and questioned, it seemed likely that she could give facts from which the cause of the epidemic could be ascertained.

When, after much difficulty, she was found, this hope was destroyed. No information of value was obtainable from her. She refused to speak to me or any one about herself or her history except on matters which she knew were already well known.

It became necessary to work out the cook’s history without her help. This effort has been only partially satisfactory. Her whereabouts for only a part of the time in the last ten years have been ascertained. About two years of time among the last five years remain unaccounted for. In the last ten years she has worked for eight families to my positive knowledge; in seven of these typhoid has followed her. She has always es-
escaped in the epidemics with which she had been connected.

The most interesting features of the other outbreaks of typhoid with which this cook has been connected follow:

In 1904 a well-known New York family on moving to Sands Point, L. I., to spend the summer experienced an epidemic of typhoid which attracted a considerable among of attention at the time. The household consisted of eleven persons, seven of whom were servants. The household arrived on June 1. On June 8, or about one week later, typhoid began to appear.

The first person to be taken sick was the laundress. She had entered the employ of this family ten days before for the summer season. Following this case in irregular succession three other persons were taken sick. Within three weeks after arrival, there were four persons, in all, all attacked.

None of the family itself was taken sick. No person was attacked who had been long with the family. The new laundress fell ill first, then the gardener who had not come from the city with the family, but worked on the place the year round, then the butler’s wife, and finally the butler’s wife sister. The latter was not in the family service, but lived with the other servants in a little house separate from the main dwelling.

The cook had been in the family nine months, seemingly without suffering from typhoid fever or producing typhoid.

The Sands Point epidemic was confined to the house where the servants lived. There were no other cases in the vicinity. None preceded this outbreak and on followed at Sands Point. No doubt could be placed on the diagnosis. One of the cases, that of the laundress, was long and severe. There was no death.

The outbreak was studied by several persons. Finally, Dr. R. L. Wilson of the New York City Department of Health was called as expert to investigate it. Dr. Wilson examined the water supply, drainage and other sanitary conditions. He caused an analysis of the water to be made by Dr. Jeffreys of the New York Polyclinic. It is unnecessary to describe this analysis or the details of Dr. Wilson’s careful investigation.

Dr. Wilson’s conclusion was that the epidemic must have been caused by the laundress. In his opinion, she had probably been infected before entering this employment. Her case, he thought, gave rise to the others. Dr. Wilson tried to find how the laundress became infected before joining this family, but was unsuccessful.

EPIDEMIC AT DARK HARBOR, MAINE, IN 1902

In 1902 a severe outbreak of typhoid occurred in the family of a prominent New York lawyer who had just taken his household, consisting of four in family and five servants, to Dark Harbor, Maine, to spend this summer. Seven members of this household of nine were soon ill of typhoid. In addition, a trained nurse was attacked, as, it is said, was a woman who was employed to work by the day.

The first case occurred two weeks after the arrival at Dark Harbor, on June 17. The onset of this case was sudden. In just one week another case occurred. Two days later there was a third. The remainder followed rapidly. The only persons who escaped were the cook and the head of the family; he had had an attack of typhoid fever some years before.

All the servants, except the cook, had been employed in this family for one month or more in New York. The cook had been engaged especially for the summer and had joined the family three weeks before it left New York.

The outbreak at Dark Harbor was studied by a number of persons and especially by Dr. E. A. Daniels of Boston and Dr. Louis Starr of Philadelphia. The house was new, never having been occupied before. It has been impossible to rent it since.

Because of its newness, the water supply of the house was not in every way satisfactory. A tank on the top floor of the house had not been cleaned since it was set in
place. Until this cleaning was accomplished drinking water was obtained from a spring.

Water was never believed to have been the original cause of the outbreak. Two analyses of the water were made; one at the Massachusetts Institute of Technology in Boston and one in New York. They confirmed the opinion that the water was safe.

It was suspected that the household supply later became contaminated. A pitcher from a room in which the first typhoid case was nursed was supposed to have been filled at an open tank on the same floor, this infecting the household supply. But the epidemic had already broken out when this event was believed to have occurred. Typhoid fever was scarcely known in Dark Harbor at the time of this outbreak and had been exceedingly rare since. No case immediately preceded or succeeded it.

It was believed by some that the original cause of the epidemic was the sickness of a footman—the first case. The theory was that the footman contracted his illness before going to Dark Harbor, either in New York or on the way. Dr. Daniels was of opinion that the first three cases received their infection in this way at the same time and place.

On making a careful study of the facts, both views seem to me untenable. The period of time which elapsed from the first to the second case was too short to agree with the theory that the first case led to the others. The incubation period required to be covered in the event that the first three cases were infected before reaching Dark Harbor was too long. Beside, for the most part, these three persons had not shared the same food for a long time.

OUTBREAK IN NEW YORK IN 1901.

The history of the cook before going to Dark Harbor is not entirely clear. In 1901-2, she lived about eleven months in one family. Here a laundress was taken ill and removed to Roosevelt Hospital, Dec. 9, 1901, one month after the cook’s arrival. This case was seen by Dr. R. J. Carlisle of New York. The diagnosis was positive. The cause of the attack was not, apparently, investigated at the time, and fuller information concerning it has so far been difficult to obtain.

OUTBREAK AT MAMARONECK IN 1900.

My earliest record of the cook’s employment is in a New York family which has a summer residence at Mamaroneck, N. Y. In this instance, a young man who made a visit to the family was attacked, his illness dating from Sept. 4, 1900. The circumstances in this case were such as to lead to the impression at the time that the infection occurred on Long Island. He had spent two weeks at East Hampton within a few miles of a fever-ridden camp occupied by U. S. soldiers at Montauk Point. It was thought that he might have been infected from water or by drinking from a cup used by some typhoid patient, or in some other way not known.

Inasmuch as the patient lived in the Mamaroneck household for at least ten days before the onset of his illness, and, as his supposed exposure to typhoid on Long Island was by no means reasonably clear, it seems to me probable that he was infected by the cook. The cook left within a few days after the onset of this illness. She had been in the family for three years without, apparently, being connected in any way with typhoid.

OUTBREAK IN TUXEDO, N. Y., IN 1906.

Subsequent to her employment at Oyster Bay, the cook went to live in a family at Tuxedo Park, N. Y. She remained there from Sept. 21 to October 27, 1906. On October 5, fourteen days after her arrival, a laundress was taken sick with typhoid fever and removed to St. Joseph’s Hospital, N. J.

According to Dr. E. C. Rushmore, who saw this case, no other case of typhoid had been known in Tuxedo for several years. Excepting the cook, all the servants had been in the family for two months or more. The cause of the laundress’ illness was not made clear at the time.
The cook has escaped sickness in every instance. In only one instance is it known that she has worked in a family where no typhoid has occurred. This family consisted of two people of advanced age and one old servant. In all there have been twenty-six cases and one death. Twenty-four of these cases have occurred within the last five years.

THE CAPTURE OF TYPHOID MARY

In 1907 Sara Josephine Baker, a physician and New York City medical inspector, was dispatched to visit Mary Mallon, the famous cook who became known as "Typhoid Mary." George Soper at the [New York City] Department of Health Laboratories had investigated seven family epidemics of typhoid going back to 1900. He found that they were all linked to the cook in each family. Baker was sent to collect specimens for culture. On her first visit, Baker had the door slammed in her face. The next day, when she returned with several policemen, Mary answered the door and against tried to slam it shut, but a policeman's food was in the door. Mary ran into the house and could not be found in a search of the house. But looking out the rear window, Dr. Baker noticed a chair against the fence and footprints in the snow. Mary was found next door hiding in a closet. She was most uncooperative and fought against having blood taken so she was forcibly transported in an ambulance to a hospital where specimens were obtained.

Dr. M. Goodwin did the bacteriological work under Dr. Park’s direction. It was expected by me that germs might be found in the urine, but more probably in the stools. None was found in the urine. The stools contained the germs in great numbers. Daily examinations made for over two weeks have

Bourdain, Anthony. Typhoid Mary: An Urban Historical. New York City: Bloomsbury, 2001*
failed only twice to reveal the presence of the \textit{Bacillus typhosus}, and on these occasions the sample taken was perhaps too small to reveal them. The blood gave a positive Widal reaction. The cook appeared to be in perfect health.

We have here, in my [Soper] judgement, a case of a chronic typhoid germ distributor, or, as the Germans say, a "typhusbazillenträgerin."

Captured on March 20, 1907, Mary Mallon was confined to Willard Parker Hospital for two years and 11 months during which time every available remedy was tried to rid her of the typhoid organisms. All efforts failed. On the promise that she would return every three months to the laboratory and take up some occupation other than cooking, Mary was released. She promptly disappeared.

For the next five years Mary worked in homes and institutions in and around New York, often under assumed names. In February 1915, a devastating outbreak of typhoid (1,300 reported cases) was traced to her. She was apprehended and made no struggle against the second capture. This time she was sent to North Brother Island where she remained for 23 years, to the end of her life in 1938, a special guest of New York City.

Discussions of the ethics of her case, the morality of depriving her of liberty, had commenced at the annual meeting of the American Medical Association in Chicago in 1910. Concurrently there was consternation of the probability that many more typhoid carriers must be at liberty in many communities.

The bacterium that causes typhoid fever is \textit{Salmonella enterica} Typhi.

The Widal test is a serological test to detect antibodies against the \textit{S. enterica} Typhi in a patient's serum. Bacteria are placed on a slide and patient serum is added. Agglutination of the bacteria indicates the presence of antibodies.