Chapter 6, Problem 78.

For the frame and loading shown, determine the components of all forces acting on member \textit{DECF}.
Chapter 6, Problem 91.

(a) Show that when a frame supports a pulley at \(A \), an equivalent loading of the frame and of each of its component parts can be obtained by removing the pulley and applying at \(A \) two forces equal and parallel to the forces that the cable exerted on the pulley. (b) Show that if one end of the cable is attached to the frame at point \(B \), a force of magnitude equal to the tension in the cable should also be applied at \(B \).
Chapter 6, Problem 98.

For the frame and loading shown, determine the components of all forces acting on member ABD.

Dimensions in mm
Chapter 6, Problem 110.

The frame shown consists of members $ABCD$ and $EFGH$ and two links that connect the two members. Determine the force in each link for the given loading.
Chapter 6, Problem 118.

The shear shown is used to trim electronic-circuit-board laminates. Knowing that $P = 400 \text{ N}$, determine (a) the vertical component of the force exerted on the shearing blade at D, (b) the reaction at C.
Arm BCD is connected by pins to crank AB at B and to a collar at C. Neglecting the effect of friction, determine the couple M required to hold the system in equilibrium when $\theta = 0$.

Chapter 6, Problem 129.
Chapter 6, Problem 140.

The tool shown is used to crimp terminals onto electric wires. Knowing that a worker will apply forces of magnitude \(P = 135 \text{ N} \) to the handles, determine the magnitude of the crimping forces that will be exerted on the terminal.
A locking C-clamp is used to clamp two pieces of \(\frac{1}{4} \)-in. steel plate. Determine the magnitude of the gripping forces produced when two 30-lb forces are applied as shown.

Chapter 6, Problem 142.