Math 110
More Notes on Linear Equations

1. Sketch and label lines with the indicated slopes.
 (a) \(m \) is positive and large.
 (b) \(m \) is positive and close to zero.
 (c) \(m \) is negative and close to zero.
 (d) \(m < -2 \)

 Arrange the lines above (a – d) in order from least slope to greatest slope:
 \[(d) < (c) < (b) < (a) \]

2. Graph two different lines with slope \(\frac{3}{4} \).

3. Write the equation of a line parallel to \(y = \frac{3}{4}x - 4 \).
 \[\text{e.g. } y = \frac{3}{4}x + 1 \]

4. Make a table for the equation \(y = \frac{7}{2}x + 3 \).

 \[
 \begin{array}{c|c|c|c|c}
 x & -4 & -2 & 0 & 2 & 4 \\
 \hline
 y & -11 & -4 & 3 & 10 & 17 \\
 \end{array}
 \]

5. Find the equation for the table below.
 \[y = -\frac{5}{3}x + 2 \]
 \[
 \begin{array}{c|c|c|c|c}
 x & -6 & -3 & 0 & 3 & 6 \\
 \hline
 y & 12 & 7 & 2 & -3 & -8 \\
 \end{array}
 \]
 \[m = \frac{-5}{3} \quad y \cdot \text{int: } (0, 2) \]
\(\frac{3}{2} = m \)

\((0, 5)\)

\[s + x \left(\frac{3}{2} \right) = y \]

8. Write the equation of the line below.

\(\frac{y}{h} = \frac{x}{s} \)

Draw the line through \((-6, -2)\) that is perpendicular to \(s + x \frac{3}{2} = y \).

(b) Plot the point \((-6, -2)\).

(4) Graph the equation \(s + x \frac{3}{2} = y \).

9. \(\frac{y}{h} = \frac{x}{s} \)

Draw the line through \((-3, 5)\) that is parallel to \(s - x \frac{3}{2} = h \).

(b) Plot the point \((-3, 5)\).

(5) Graph the equation \(s - x \frac{3}{2} = h \).