Solutions

You may use a calculator to verify solutions, but not to provide them.

1. Solve:

 (a) \[x^2 = 5x + 14 \]
 \[x^2 - 5x - 14 = 0 \]
 \[(x - 7)(x + 2) = 0 \]
 \(x - 7 = 0 \) and \(x + 2 = 0 \)
 \(x = 7 \) and \(x = -2 \)

 (b) \[16x^2 - 25 = 0 \]
 \[(4x - 5)(4x + 5) = 0 \]
 \[4x - 5 = 0 \] and \(4x + 5 = 0 \)
 \(x = 5/4 \) and \(x = -5/4 \)

 (c) \[x^2 - x = \frac{1}{5} \]
 \[\frac{x^2}{5} - \frac{x}{2} = \frac{1}{5} \]
 \[10 \left(\frac{x^2}{5} - \frac{x}{2} \right) = 10 \left(\frac{1}{5} \right) \]
 \[2x^2 - 5x = -2 \]
 \[2x^2 - 5x + 2 = 0 \]
 \[(2x - 1)(x - 2) = 0 \]
 \(x = 1/2 \) and \(x = 2 \)

2. Write a quadratic equation for which \(x = -4 \) and \(x = \frac{3}{2} \) are solutions.

 Solution: The factored form might look like \((x + 4)(x - \frac{3}{2}) = 0 \). However, to write this without fractions we can take a hint from problems like 1(b) above and write it as \((x + 4)(2x - 3) = 0 \).

3. Write an equation of a parabola for which \(x = -4 \) and \(x = \frac{3}{2} \) are the \(x \)-intercepts.

 Solution: This is similar to (2) but the equation of a parabola is a function so the \(x \)-intercepts are just the special case where \(y = 0 \). Therefore our answer is \(y = (x + 4)(2x - 3) \) or, if we distribute it, \(y = 2x^2 + 5x - 12 \).

4. Write an equation of a *different* parabola for which \(x = -4 \) and \(x = \frac{3}{2} \) are the \(x \)-intercepts.

 Solution: Anything of the form \(y = k(x + 4)(2x - 3) \) will work here, since the \(x \)-intercepts remain the same.
 The distinction is that as you change \(k \), the steepness of the parabola changes – or it flips, if you use \(k < 0 \).

5. Find the point symmetric with the \(y \)-intercept of the parabola \(y = x^2 - 7x + 5 \).

 Solution: The \(y \)-intercept is \((0, 5) \) so the symmetric point will be at the other solution to \(x^2 - 7x + 5 = 5 \).
 Solving gives us:
 \[x^2 - 7x + 5 = 5 \]
 \[x^2 - 7x = 0 \]
 \[x(x - 7) = 0 \]
 \(x = 0 \) and \(x = 7 \)
6. The graph of \(y = -x^2 + x + 6 \) is shown to right. Find the values of the intercepts \(k, m, \) and \(n \) and the coordinates of the vertex (the high point), without a calculator.

Solution: \(k \) is the \(y \)-intercept so we know \(x = 0 \) and it follows that \(k = -(0)^2 + 0 + 6 = 6 \)

The \(x \)-intercepts, \(m \) and \(n \) occur where \(y = 0 \) so

\[
\begin{align*}
-x^2 + x + 6 &= 0 \\
-1(-x^2 + x + 6) &= -1(0) \\
x^2 - x - 6 &= 0 \\
(x + 2)(x - 3) &= 0 \\
x &= -2 & \text{and} & \quad x &= 3
\end{align*}
\]

So \(m = -2 \) and \(n = 3 \).

The vertex occurs between any two symmetric points so if we average the \(x \)-intercepts we get the \(x \)-coordinate of the vertex: \(x = \frac{-2 + 3}{2} = \frac{1}{2} \).

The \(y \)-coordinate comes from plugging \(x \) into the original equation: \(y = -(\frac{1}{2})^2 + \frac{1}{2} + 6 = 6\frac{1}{4} \). Therefore the vertex is at \((\frac{1}{2}, \frac{25}{4}) \).

7. The graph of a parabola of the form \(y = ax^2 + bx + c \) is shown to right. Find the equation of this parabola using the given intercepts.

Solution: From the graph we know the parabola has \(x \)-intercepts at \(x = 2 \) and \(x = 3 \) so it has factors \((x - 2)(x - 3) \). From \#4 above, we have seen the general form of this parabola will be \(y = k(x - 2)(x - 3) \). Since the \(y \)-intercept is at \((0, 12) \), we know that when \(x = 0 \) in our equation we should have \(y = 12 \) so

\[
\begin{align*}
12 &= k(0 - 2)(0 - 3) \\
12 &= 6k \\
2 &= k
\end{align*}
\]

Then we have \(y = 2(x - 2)(x - 3) \) or \(y = 2x^2 - 10x + 12 \).