
Math 200              
OLI Mod 7 study guide 
 
Variables and Classification 
 
Variable classification: 

• Categorical (descriptive – e.g. color, race, gender, phone number, . . .) 
o Binary and Non-Binary (categorical variables can be either binary (two options – e.g. yes/no; 

male/female) or non-binary (more than two – e.g. colors; races). 
• Quantitative (numerical – e.g. measures like height and weight, gpa, age, time, . . .) 

 
Cause and Effect: 

• Explanatory (also called independent or treatment - the variable that claims to explain, predict, or affect the 
response). 

• Response (also the response variable – is the outcome or result of a study). 
 
 
C ® Q 

Compares two or more categorical explanatory elements through quantitative responses. In essence we 
compare the distributions of the quantitative response for each category of the explanatory variable using 
side-by-side boxplots supplemented by descriptive statistics. 
 

1. Use medians to compare typical values. Use language like, “on average group A is 
<difference in medians> bigger than group B.” 

2. Use IQRs to compare spread of each. Use language that recognizes variability. “Group A 
has less variability than group B with the middle 50% of group A’s attribute <like height or 
weight> spanning <attribute units such as inches or pounds>, while the middle 50% of  
group B’s attribute ranges over  <attribute units>.” 

3. If the two distributions are more different than they are alike, use this opportunity to 
emphasize the disparity by comparing the quartile references. e.g. 75% of group A is greater 
than <some reference value> while 75% of group B is less than <the same reference 
value>. 

 
Calorie example from OLI: 
 

1. While beef and “other meat” types of hotdogs have about 
the same average calories – 155; the typical calories for 
poultry is about 30 points lower. 

2. All three categories exhibit about the same variability with 
the middle 50% of their data within about 40 calories of 
one another. 

3. While beef and “other meat” have about the same caloric 
content overall, about 75% of beef and “other” have over 
140 cal while about 75% of poultry dogs are below 140 
cal. 

 

 
Other examples: See Rivers handout or LBD activity comparing school programs. 
 
 
 
 
 
 
 



C ® C 
 Comparisons of two categorical variables involves the use of 2-Way tables (contingency).  

1. Identify the explanatory variable – label the corresponding table variable. 
2. Calculate percentages in the direction of the explanatory variable (if the EV is a column variable, then 

calculate column percentages using column totals; if the EV is the row variable, then calculate row 
percentages using row totals). 

3. Identify which of the response characteristics you are comparing and compare through division - either 
by dividing the larger by the smaller (this many times bigger) or by dividing the difference by the larger 
(relative difference). 

 
 
Recall the seatbelt example where we compare the 
incidence of fatal accidents for those wearing seatbelts 
with those who did not. 
Wearing the seatbelt (or not) is the explanatory 
variable while fatality (or not) is the response variable.  

We consider the probabilities P(fatal|seatbelt) and P(fatal|no seatbelt). Note the response variable (first slot – 
numerator) category remains the same (we’re interested in fatality) while the explanatory variable (second slot - 
denominator) or what we are comparing – covers the two values we are comparing. 
 

P(fatal|seatbelt) = 510/412878 ≈ 0.00124; P(fatal|no seatbelt) = 1601/164128 ≈ 0.00975 
Comparing, we have 0.00975/0.00124 = 7.9 so people wearing seat belts are about 8 times more likely to survive an 
accident than those who do not wear a seat belt. 
Alternatively, we can find the relative difference: ".""$%&'".""()*

".""$%&
≈ 0.873 meaning people who wear their seatbelts are 

87.3% more likely to survive an accident than those who don’t wear a seatbelt.  
 
Examples: see coffee study and dementia (discussed in class) or smallpox quiz. 
  
 
  



 
Q ® Q 
 

Scatter plots and Linear Regression. Both variables (in particular the explanatory variable) are quantitative and 
paired. 

1. Identify the explanatory variable and use this as the horizontal axis (x-axis) 
2. Graph the data as a scatterplot and identify:  

a. Direction (+/–) 
b. Form (Linear/Curvilinear) 
c.  Strength (strong/moderate/weak) 
d. Outliers 

3. For graphs with linear form find regression formula 
a.  Identify and interpret growth (or decay) rate (slope) and initial value (response intercept). 
b. Recognize Correlation Coefficient (r) as a measure of how well the line approximates the data. 
c. Recognize Coefficient of Determination (r2) as a measure of the percentage of variability in the 

response variable that can be explained by a linear relationship with the explanatory variable. 
d. Use the linear model as a tool for predicting data values within the bounds of the data 

(interpolation) and beware using the model as a predictive tool beyond the bounds of the 
data (extrapolation). In particular, be wary of using the response intercept as a prediction as 
it is often outside the data set. 

 
Note: 

Has r ~ 0 but has a strong association. 
 
 
Examples include posted examples and the car project. 
 
 
 
 
 
Causation and Lurking Variables 
When we explore the relationship between two variables, there is often a temptation to conclude from the observed 
relationship that changes in the explanatory variable cause changes in the response variable. 
Association does not imply causation! 
 
Confounding and lurking variables both affect the response variable in such a way as to suggest a causative relationship 
with the explanatory variable. Examples like the firefighters and fire damage or fat consumption and lifespan (from 
class) are good examples. Typically things like wealth, age, or degree of extremity act as confounding variables. 
 
 
 
Simpson’s Paradox 
Associations between variables that reverse their implication depending on whether data are aggregated or treated 
separately fall into the category of Simpson’s Paradox.  
Recall the example from class involving UC Berkeley graduate schools and the disparate admissions rates for men and 
women. 
 
 
Examples: See Causation LBD (both) on OLI and class examples. 


