Quiz 3.2

Solutions

1. A bank offers a one year certificate of deposit at 6% compounded quarterly.

(a) On a \$10,000 deposit, how much more would you make if it were compounded continuously?

Solution: At the quarterly rate, we get $P = 10000(1 + \frac{.06}{4})^4 \approx \$10,613.64$

For continuous compounding we have $P = 10000e^{.06} \approx \$10, 618.37$. The difference tells us we make \$4.73 more using continuous compounding.

(b) On a \$10,000 deposit, what is the equivalent simple interest rate?

Solution: At the quarterly rate, we got $P = 10000(1 + \frac{.06}{4})^4 \approx \$10, 613.64$. We what to see the euivalent result for simple interest (compounded once) so we have 10000(1 + r) = 10, 613.64. Solving for r gives us $r \approx 6.14\%$. \Box

2. Simplify the expression $10^{\log A}$.

Solution: Since $\log A$ is the exponent we raise 10 to in order to get A, it follows that 10 raised to this exponent will give us A. Alternatively, since $y = 10^x$ and $y = \log x$ are inverse functions, once undoes the other so we get back what we originally input, A.

3. Solve $4(2.3)^x - 5 = 6$

Solution:

$$4(2.3)^{x} - 5 = 6$$

$$4(2.3)^{x} = 11$$

$$(2.3)^{x} = \frac{11}{4}$$
since $10^{\log(2.3) \cdot x} = 10^{\log(\frac{11}{4})}$
it follows, $\log(2.3) \cdot x = \log\left(\frac{11}{4}\right)$
so $x = \frac{\log(\frac{11}{4})}{\log(2.3)} \approx 1.215$

4. The population of Trashtown was 2400 in 1980 and has grown at a continuous rate of 1.2% ever since. By what year will the population of Trashtown be 10,000?

Solution:

Since the initial population is 2400 and the continuous growth rate is 1.2%, we have $P = 2400e^{0.012t}$. Solving $10000 = 2400e^{0.012t}$ gives us $t = \frac{\ln(\frac{10000}{2400})}{0.012} \approx 118.9$ years.