1. A bank offers a one year certificate of deposit at 6% compounded quarterly.
(a) On a $\$ 10,000$ deposit, how much more would you make if it were compounded continuously?

Solution: At the quarterly rate, we get $P=10000\left(1+\frac{.06}{4}\right)^{4} \approx \$ 10,613.64$
For continuous compounding we have $P=10000 e^{.06} \approx \$ 10,618.37$.
The difference tells us we make $\$ 4.73$ more using continuous compounding.
(b) On a $\$ 10,000$ deposit, what is the equivalent simple interest rate?

Solution: At the quarterly rate, we got $P=10000\left(1+\frac{.06}{4}\right)^{4} \approx \$ 10,613.64$. We wnat to see the euivalent result for simple interest (compounded once) so we have $10000(1+r)=10,613.64$. Solving for r gives us $r \approx 6.14 \%$.
2. Simplify the expression $10^{\log A}$.

Solution: Since $\log A$ is the exponent we raise 10 to in order to get A, it follows that 10 raised to this exponent will give us A. Alternatively, since $y=10^{x}$ and $y=\log x$ are inverse functions, once undoes the other so we get back what we originally input, A.
3. Solve $4(2.3)^{x}-5=6$

Solution:

$$
\begin{aligned}
4(2.3)^{x}-5 & =6 \\
4(2.3)^{x} & =11 \\
(2.3)^{x} & =\frac{11}{4} \\
\text { since } 10^{\log (2.3) \cdot x} & =10^{\log \left(\frac{11}{4}\right)} \\
\text { it follows, } \log (2.3) \cdot x & =\log \left(\frac{11}{4}\right) \\
\text { so } x & =\frac{\log \left(\frac{11}{4}\right)}{\log (2.3)} \approx 1.215
\end{aligned}
$$

4. The population of Trashtown was 2400 in 1980 and has grown at a continuous rate of 1.2% ever since.

By what year will the population of Trashtown be 10,000 ?

Solution:

Since the intital population is 2400 and the continuous growth rate is 1.2%, we have $P=2400 e^{0.012 t}$.
Solving $10000=2400 e^{0.012 t}$ gives us $t=\frac{\ln \left(\frac{10000}{2400}\right)}{0.012} \approx 118.9$ years.

