3.1 Notes

1. Some elementary derivatives.

\(\frac{d}{dx} k \): The derivative of a constant.

Some arguments for \(\frac{d}{dx} k = 0 \):

- **Graphically:** The derivative gives the slope of the function at \(x \).
 For a constant function, the slope is 0 so \(\frac{d}{dx} k = 0 \).

- **Numerically:**

 \[
 \begin{array}{cccccc}
 x & -3 & 0 & 3 & 6 & 9 \\
 f(x) & k & k & k & k & k \\
 \hline
 & 0 & 0 & 0 & 0 & \\
 \end{array}
 \]

- **Algebraically (from definition):**

 \[
 \frac{d}{dx} k = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = \lim_{h \to 0} \frac{k - k}{h} = \lim_{h \to 0} 0 = 0
 \]

\(\frac{d}{dx} (mx + b) \): The derivative of a linear function.

- **Graphically:** The derivative gives the slope of the function at \(x \).
 For a linear function, the slope is \(m \) so \(\frac{d}{dx} (mx + b) = m \).

- **Numerically:**

 \[
 \begin{array}{ccccccc}
 x & -1 & 0 & 1 & 2 & 3 \\
 f(x) & -m + b & 0 + b & m + b & 2m + b & 3m + b \\
 \hline
 y & m & m & m & m & \\
 \end{array}
 \]

- **Algebraically (from definition):**

 \[
 \frac{d}{dx} (mx + b) = \lim_{h \to 0} \frac{m(x + h) + b - (mx + b)}{h} = \lim_{h \to 0} \frac{mh}{h} = \lim_{h \to 0} m = m
 \]

2. Some derivative properties

\(\frac{d}{dx} kf(x) \): The derivative of a constant times a function.

- **Numerical intuition:** Find the slopes between each pair of points to approximate the derivative of \(f(x) \):

 \[
 \begin{array}{cccc}
 x & -3 & 0 & 3 & 6 & 9 \\
 f(x) & 10 & 8 & 1 & 5 & 11 \\
 \end{array}
 \]

 Now repeat for the function \(y = 5f(x) \):

 \[
 \begin{array}{cccc}
 x & -3 & 0 & 3 & 6 & 9 \\
 5f(x) & 50 & 40 & 15 & 25 & 55 \\
 \end{array}
 \]

 How are the slopes of the two tables related?

The proof follows similar logic but uses limit properties and the definition of a derivative function which may make it seem more abstract.

Remember the definition of the derivative function is \(f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \)

Proof:

\[
\frac{d}{dx} kf(x) = \lim_{h \to 0} \frac{kf(x + h) - kf(x)}{h} = \lim_{h \to 0} \frac{k[f(x + h) - f(x)]}{h} = k \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = kf'(x)
\]
\[
\frac{d}{dx}(f(x) + g(x)):\text{ The derivative of the sum of functions.}
\]

Numerical intuition: Find the slopes between each pair of points to approximate the derivatives of \(f(x)\) and \(g(x)\):

\(x\)	\(-3\)	\(0\)	\(3\)	\(6\)	\(9\)
\(f(x)\)	10	8	1	5	11
\(g(x)\)	-2	1	6	15	27

Now repeat for the function \(y = f(x) + g(x)\):

| \(x\) | \(-3\) | \(0\) | \(3\) | \(6\) | \(9\) |
| \(f(x) + g(x)\) | 8 | 9 | 7 | 20 | 38 |

How are the slopes of \(f\), \(g\), and \(f + g\) related?

The proof follows:

Proof:

\[
\frac{d}{dx}(f(x) + g(x)) = \lim_{h \to 0} \frac{(f(x+h) + g(x+h)) - (f(x) + g(x))}{h} = \lim_{h \to 0} \frac{f(x+h) - f(x) + g(x+h) - g(x)}{h} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = f'(x) + g'(x)
\]

\[\Box\]

The same argument applies to \(\frac{d}{dx}(f(x) - g(x))\) so in general we say \(\frac{d}{dx}(f(x) \pm g(x)) = f'(x) \pm g'(x)\).

3. You might wonder if the same is true of the product of two functions, \(\frac{d}{dx}(f(x) \cdot g(x))\). As before, it’s worth some time to explore intuitively first so reuse the tables above to see if \(\frac{d}{dx}(f(x) \cdot g(x)) \approx f'(x) \cdot g'(x)\).

\(x\)	\(-3\)	\(0\)	\(3\)	\(6\)	\(9\)
\(f(x)\)	10	8	1	5	11
\(g(x)\)	-2	1	6	15	27
\(f(x) \cdot g(x)\)	-20	8	6	75	297

What does this suggest is (or isn’t) true about \(\frac{d}{dx}(f(x) \cdot g(x))\)?

4. **Power Rule Examples:**

 (a) \(\frac{d}{dx}(5x^2)\)

 (b) \(\frac{d}{dx}(\pi x^5 - \frac{2}{x^3})\)

 (c) \(\frac{d}{dx}\left(\frac{1}{x} - \frac{3\sqrt{x}}{x^3}\right)\)

 (d) \(\frac{d}{dx}\left(\frac{x^4 - 7x}{x^2}\right)\)