Summary of Convergence Tests for Series

Test	Series	Convergence or Divergence	Comments
n^{th} term test (or the zero test)	$\sum a_n$	Diverges if $\lim_{n \to \infty} a_n \neq 0$	Inconclusive if $\lim_{n \to \infty} a_n = 0.$
Geometric series	$\sum_{n=0}^{\infty} ax^n \left(\operatorname{or} \sum_{n=1}^{\infty} ax^{n-1} \right)$	Converges to $\frac{a}{1-x}$ only if $ x < 1$ Diverges if $ x \ge 1$	Useful for comparison tests if the n^{th} term a_n of a series is similar to ax^n .
<i>p</i> -series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	Converges if $p > 1$ Diverges if $p \le 1$	Useful for comparison tests if the n^{th} term a_n of a series is similar to $\frac{1}{n^p}$.
Integral	$\sum_{n=c}^{\infty} a_n (c \ge 0)$ $a_n = f(n) \text{ for all } n$	Converges if $\int_{c}^{\infty} f(x) dx$ converges Diverges if $\int_{c}^{\infty} f(x) dx$ diverges	The function f obtained from $a_n = f(n)$ must be continuous, positive, decreasing and readily integrable for $x \ge c$.
Comparison	$\sum a_n \text{ and } \sum b_n$ with $0 \le a_n \le b_n$ for all n	$\sum b_n \text{ converges} \Longrightarrow \sum a_n \text{ converges}$ $\sum a_n \text{ diverges} \Longrightarrow \sum b_n \text{ diverges}$	The comparison series $\sum b_n$ is often a geometric series or a <i>p</i> -series.
Limit Comparison	$\sum_{n \in A_n} and \sum_{n \in B_n} b_n$ with $a_n, b_n > 0$ for all n and $\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$	$\sum b_n \text{ converges} \Longrightarrow \sum a_n \text{ converges}$ $\sum b_n \text{ diverges} \Longrightarrow \sum a_n \text{ diverges}$	The comparison series $\sum b_n$ is often a geometric series or a <i>p</i> -series. To find b_n consider only the terms of a_n that have the greatest effect on the magnitude.
Ratio	$\sum a_n$ with $\lim_{n \to \infty} \frac{ a_{n+1} }{ a_n } = L$	Converges (absolutely) if $L < 1$ Diverges if $L > 1$ or if L is infinite	Inconclusive if $L = 1$. Useful if a_n involves factorials or n^{th} powers.
Root	$\sum a_n \text{ with } \lim_{n \to \infty} \sqrt[n]{ a_n } = L$	Converges (absolutely) if $L < 1$ Diverges if $L > 1$ or if L is infinite	Test is inconclusive if $L = 1$. Useful if a_n involves n^{th} powers.
$\begin{array}{c} \text{Absolute Value} \\ \hline \\ & \sum a_n \end{array}$	$\sum a_n$	$\sum a_n \text{ converges} \Longrightarrow \sum a_n \text{ converges}$	Useful for series containing both positive and negative terms.
Alternating series	$\sum_{n=1}^{\infty} (-1)^{n-1} a_n (a_n > 0)$	Converges if $0 < a_{n+1} < a_n$ for all n and $\lim_{n \to \infty} a_n = 0$	Applicable only to series with alternating terms.

