Math 253

12.4 Notes

Linear Functions in \mathbb{R}^3

(1.) Sketch the graph (trace) of 6x + 5y - 3z = 30.

Math 253

12.4 Notes

Linear Functions in \mathbb{R}^3

(1.) Sketch the graph (trace) of 6x + 5y - 3z = 30.

x	y	z
0	0	
0		0
	0	0

Math 253

12.4 Notes

Linear Functions in \mathbb{R}^3

(1.) Sketch the graph (trace) of 6x + 5y - 3z = 30.

x	y	z
0	0	-10
0	6	0
5	0	0

Note, if we solve 6x + 5y - 3z = 30 for z we have

$$z = f(x, y) = 2x + \frac{5}{3}y - 10$$

Note, if we solve 6x + 5y - 3z = 30 for z we have

$$z = f(x, y) = 2x + \frac{5}{3}y - 10$$

In the *xz*-plane we have a slope of $\frac{\Delta z}{\Delta x} = \frac{2}{1}$ and in the *yz*-plane we have a slope of $\frac{\Delta z}{\Delta y} = \frac{5}{3}$.

Example: Find an equation for the linear function with the table below.

$x \setminus y$	10	20	30	40
100	3	6	9	12
200	2	5	8	11
300	1	4	7	10
400	0	3	6	9

Example: Find an equation for the plane containing (1, 2, 3), (4, -1, -2), and (-3, 1, 1).

Example: Find an equation for the plane containing (1, 2, 3), (4, -1, -2), and (-3, 1, 1).

Solution:

We want a solution of the form $z = mx + ny + z_0$ so substituting into the equation gives us:

$$3 = m + 2n + z_0 \tag{1}$$

$$-2 = 4m - n + z_0 \tag{2}$$

$$1 = -3m + n + z_0 \tag{3}$$

The difference of (1) and (2) gives 5 = -3m + 3n and the difference of (2) and (3) gives -3 = 7m - 2n this produces:

$$5 = -3m + 3n \tag{4}$$

$$-3 = 7m - 2n \tag{5}$$

Multiplying (4) by 2 and (5) by 3 gives

$$10 = -6m + 6n \tag{6}$$

$$-9 = 21m - 6n$$
 (7)

Solving gives us $m = \frac{1}{15}$

Since
$$m = \frac{1}{15}$$
 it follows
 $5 = -3\left(\frac{1}{15}\right) + 3n \longrightarrow n = \frac{26}{15}$
And $3 = \frac{1}{15} + 2\left(\frac{26}{15}\right) + z_0 \longrightarrow z_0 = -\frac{8}{15}$
Then we have $z = \frac{1}{15}x + \frac{26}{15}y - \frac{8}{15}$