Math 253
12.4 Notes

Linear Functions in \mathbb{R}^{3}
(1.) Sketch the graph (trace) of $6 x+5 y-3 z=30$.

Math 253
12.4 Notes

Linear Functions in \mathbb{R}^{3}
(1.) Sketch the graph (trace) of $6 x+5 y-3 z=30$.

x	y	z
0	0	-
0		0
-	0	0

12.4 Notes

Linear Functions in \mathbb{R}^{3}
(1.) Sketch the graph (trace) of $6 x+5 y-3 z=30$.

$$
\begin{array}{c|c|c}
x & y & z \\
\hline 0 & 0 & -10 \\
0 & 6 & 0 \\
5 & 0 & 0
\end{array}
$$

Note, if we solve $6 x+5 y-3 z=30$ for z we have

$$
z=f(x, y)=2 x+\frac{5}{3} y-10
$$

Note, if we solve $6 x+5 y-3 z=30$ for z we have

$$
z=f(x, y)=2 x+\frac{5}{3} y-10
$$

In the $x z$-plane we have a slope of $\frac{\Delta z}{\Delta x}=\frac{2}{1}$ and in the $y z$-plane we have a slope of $\frac{\Delta z}{\Delta y}=\frac{5}{3}$.

Example: Find an equation for the linear function with the table below.

$x \backslash y$	10	20	30	40
100	3	6	9	12
200	2	5	8	11
300	1	4	7	10
400	0	3	6	9

Example: Find an equation for the plane containing $(1,2,3),(4,-1,-2)$, and $(-3,1,1)$.

Example: Find an equation for the plane containing $(1,2,3),(4,-1,-2)$, and $(-3,1,1)$.

Solution:

We want a solution of the form $z=m x+n y+z_{0}$ so substituting into the equation gives us:

$$
\begin{align*}
3 & =m+2 n+z_{0} \tag{1}\\
-2 & =4 m-n+z_{0} \tag{2}\\
1 & =-3 m+n+z_{0} \tag{3}
\end{align*}
$$

The difference of (1) and (2) gives $5=-3 m+3 n$ and the difference of (2) and (3) gives $-3=7 m-2 n$ this produces:

$$
\begin{align*}
5 & =-3 m+3 n \tag{4}\\
-3 & =7 m-2 n \tag{5}
\end{align*}
$$

Multiplying (4) by 2 and (5) by 3 gives

$$
\begin{align*}
10 & =-6 m+6 n \tag{6}\\
-9 & =21 m-6 n \tag{7}
\end{align*}
$$

Solving gives us $m=\frac{1}{15}$

Since $m=\frac{1}{15}$ it follows
$5=-3\left(\frac{1}{15}\right)+3 n \longrightarrow n=\frac{26}{15}$
And $3=\frac{1}{15}+2\left(\frac{26}{15}\right)+z_{0} \longrightarrow z_{0}=-\frac{8}{15}$
Then we have $z=\frac{1}{15} x+\frac{26}{15} y-\frac{8}{15}$

