REVIEW EXERCISES AND PROBLEMS FOR CHAPTER 12 EXERCISES

1.

Which of the points $A=(23,92,48), B=(-60,0,0), C=(60,1,-92)$ is closest to the $y z$-plane? Which lies on the $x z$-plane? Which is farthest from the $x y$-plane?

ANSWER ${ }^{+}$

WORKED SOLUTION \oplus
2.

You are at the point $(-1,-3,-3)$, standing upright and facing the $y z$-plane. You walk 2 units forward, turn left, and walk for another 2 units. What is your final position? From the point of view of an observer looking at the coordinate system in Figure 12.2, are you in front of or behind the $y z$-plane? To the left or to the right of the $x z$-plane? Above or below the $x y$-plane?
3.

On a set of x, y, and z axes oriented as in Figure 12.5, draw a straight line through the origin, lying in the $x z$ plane and such that if you move along the line with your x-coordinate increasing, your z-coordinate is decreasing.

```
ANSWER ©
```

- In Exercises 4-6, determine if z is a function of x and y. If so, find a formula for the function.

4.

$6 x-4 y+2 z=10$
5.
$x^{2}+y^{2}+z^{2}=100$
ANSWER \oplus
WORKED SOLUTION ${ }^{\oplus}$
6.
$3 x^{2}-5 y^{2}+5 z=10+x+y$
7.

Figure 12.103 shows the parabolas $z=f(x, b)$ for $b=-2,-1,0,1,2$. Which of the graphs of $z=f(x, y)$ in Figure 12.104 best fits this information?

Figure 12.103
(I)

(II)
z

Figure 12.104

ANSWER \oplus

8.

Match the pairs of functions (a)-(d) with the contour diagrams (I)-(IV). In each case, which contours represent
f and which represent g ? (The x - and y-scales are equal.)

- (a) $f(x, y)=x+y, g(x, y)=x-y$
- (b) $f(x, y)=2 x+3 y, g(x, y)=2 x-3 y$
- (c) $f(x, y)=x^{2}-y, g(x, y)=2 y+\ln |x|$
- (d) $f(x, y)=x^{2}-y^{2}, g(x, y)=x y$
- I.

- II.
(II)

- III.
(III)

- IV.
(IV) y

9.

Match the contour diagrams (a)-(d) with the surfaces (I)-(IV). Give reasons for your choice.

- (a)

- (b)

- (c)

- (d)

- I.

- II.

- III.

- IV.

ANSWER ${ }^{\oplus}$

WORKED SOLUTION ${ }^{+}$

- In Exercises 10-13, make a contour plot for the function in the region $-2<x<2$ and $-2<y<2$. What is the equation and the shape of the contours?

10.

$z=3 x-5 y+1$
11.
$z=\sin y$
ANSWER \oplus
12.
$z=2 x^{2}+y^{2}$
13.

$$
z=e^{-2 x^{2}-y^{2}}
$$

ANSWER ©
 WORKED SOLUTION \oplus

14.

Describe the set of points whose x coordinate is 2 and whose y coordinate is 1 .
15.

Find the equation of the sphere of radius 5 centered at $(1,2,3)$.

ANSWER ${ }^{\oplus}$

16.

Find the equation of the plane through the points $(0,0,2),(0,3,0),(5,0,0)$.
17.

Find the center and radius of the sphere with equation $x^{2}+4 x+y^{2}-6 y+z^{2}+12 z=0$. ANSWER © ${ }^{(}$ WORKED SOLUTION ${ }^{\oplus}$

- Which of the contour diagrams in Exercises 18-19 could represent linear functions?

18.

19.

20.
(a)

Complete the table with values of a linear function $f(x, y)$.
y
2.53.03.50
$\begin{array}{lll}-1 & 6 & 8\end{array}$
$\begin{array}{llll}x & 1 & 1 & 2\end{array}$
3-6
(b)

Find a formula for $f(x, y)$.
21.

Find a formula for a function $f(x, y, z)$ whose level surfaces look like those in Figure 12.105.

Figure 12.105

```
ANSWER ¢
WORKED SOLUTION © 
```

- In Exercises 22-25, represent the surface as the graph of a function, $f(x, y)$, and by level surfaces of the form $g(x, y, z)=c$. (There are many possible answers.)

22.

Paraboloid obtained by shifting $z=x^{2}+y^{2}$ vertically 5 units
23.

Plane with intercepts $x=2, y=3, z=4$.
24.

Upper half of unit sphere centered at the origin.
25.

Lower half of sphere of radius 2 centered at ($3,0,0$).

ANSWER \oplus

WORKED SOLUTION ${ }^{\oplus}$
26.

Describe in words the level surfaces of the function $g(x, y, z)=\cos (x+y+z)$.

- Use the catalog to identify the surfaces in Exercises 27-28.

27.

$x^{2}+z^{2}=1$

ANSWER ${ }^{\oplus}$

28.

$-x^{2}+y^{2}-z^{2}=0$
29.

- (a)What features of the contour diagram of $g(x, y)$ in Figure 12.106 suggest that g is linear?

Figure 12.106

- (b)Assuming g is linear, find a formula for $g(x, y)$.

ANSWER ©

WORKED SOLUTION \oplus

PROBLEMS

30.

Use a computer or calculator to draw the graph of the vibrating guitar string function:

$$
g(x, t)=\cos t \sin 2 x, \quad 0 \leq x \leq \pi, \quad 0 \leq t \leq 2 \pi
$$

()

Relate the shape of the graph to the cross-sections with t fixed and those with x fixed.
31.

Consider the Cobb-Douglas production function $P=f(L, K)=1.01 L^{0.75} K^{0.25}$. What is the effect on production of doubling both labor and capital?
ANSWER \oplus
32.
(a)

Sketch level curves of $f(x, y)=\sqrt{x^{2}+y^{2}}+x$ for $f=1,2,3$.
(b)

For what values of c can level curves $f=c$ be drawn?
33.

Values of $f(x, y)=\frac{1}{2}(x+y-2)(x+y-1)+y$ are in Table 12.13.
Table12.13
y
123456
1136101521
22591420
3481319
${ }^{x} 471218$
51117
616
(a)

Find a pattern in the table. Make a conjecture and use it to complete Table 12.13 without computation. Check by using the formula for f.

```
WORKED SOLUTION ©
```

(b)

Using the formula, check that the pattern holds for all $x \geq 1$ and $y \geq 1$.
WORKED SOLUTION \oplus
34.

Show that the function f does not have a limit at $(0,0)$ by examining the limits of f as $(x, y) \rightarrow(0,0)$ along the line $y=x$ and along the parabola $y=x^{2}$:

$$
f(x, y)=\frac{x^{2} y}{x^{4}+y^{2}}, \quad(x, y) \neq(0,0)
$$

()
35.

By approaching the origin along the positive x-axis and the positive y-axis, show that the following limit does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x+y^{2}}{2 x+y}
$$

()
36.

Explain why the following function is not continuous along the line $y=0$:

$$
f(x, y)= \begin{cases}1-x, & y \geq 0 \\ -2, & y<0\end{cases}
$$

()
37.

A college admissions office uses the following equation to predict the grade point average of an incoming student:

$$
z=0.003 x+0.8 y-4
$$

()
where z is the predicted college GPA on a scale of 0 to 4.3 , and x is the sum of the student's SAT Math and SAT Verbal on a scale of 400 to 1600 , and y is the student's high school GPA on a scale of 0 to 4.3 . The college admits students whose predicted GPA is at least 2.3.
(a)

Will a student with SATs of 1050 and high school GPA of 3.0 be admitted?

ANSWER ${ }^{\oplus}$

WORKED SOLUTION \oplus
(b)

Will every student with SATs of 1600 be admitted?

ANSWER ${ }^{\oplus}$

WORKED SOLUTION ${ }^{+}$
(c)

Will every student with a high school GPA of 4.3 be admitted?
ANSWER ${ }^{\oplus}$
WORKED SOLUTION ${ }^{+}$
(d)

Draw a contour diagram for the predicted GPA z with $400 \leq x \leq 1600$ and $0 \leq y \leq 4.3$. Shade the points corresponding to students who will be admitted.

WORKED SOLUTION ${ }^{\oplus}$

(e)

Which is more important, an extra 100 points on the SAT or an extra 0.5 of high school GPA?

ANSWER \oplus

WORKED SOLUTION \oplus
38.

By setting one variable constant, find a plane that intersects the graph of $z=\left(x^{2}+1\right) \sin y+x y^{2}$ in a:
(a)

Parabola
(b)

Straight line
(c)

Sine curve
39.

The temperature T (in ${ }^{\circ} \mathrm{C}$) at any point in the region $-10 \leq x \leq 10,-10 \leq y \leq 10$ is given by the function

$$
T(x, y)=100-x^{2}-y^{2}
$$

()
(a)

Sketch isothermal curves (curves of constant temperature) for $T=100^{\circ} \mathrm{C}, T=75^{\circ} \mathrm{C}, T=50^{\circ} \mathrm{C}, T=25^{\circ} \mathrm{C}$, and $T=0^{\circ} \mathrm{C}$.

ANSWER \oplus

(b)

A heat-seeking bug is put down at a point on the $x y$-plane. In which direction should it move to increase its temperature fastest? How is that direction related to the level curve through that point?

ANSWER ${ }^{\oplus}$

40.

Find a linear function whose graph is the plane that intersects the $x y$-plane along the line $y=2 x+2$ and contains the point $(1,2,2)$.
41.
(a)

Sketch the level curves of $z=\cos \sqrt{x^{2}+y^{2}}$.

ANSWER ©

WORKED SOLUTION ${ }^{\oplus}$
(b)

Sketch a cross-section through the surface $z=\cos \sqrt{x^{2}+y^{2}}$ in the plane containing the x - and z-axes. Put units on your axes.
ANSWER \dagger
WORKED SOLUTION \oplus
(c)

Sketch the cross-section through the surface $z=\cos \sqrt{x^{2}+y^{2}}$ in the plane containing the z-axis and the line $y=x$ in the $x y$-plane.

ANSWER ${ }^{+}$

WORKED SOLUTION ${ }^{\oplus}$

- Problems 42-46 concern a vibrating guitar string. Snapshots of the guitar string at millisecond intervals are in Figure 12.107.
The guitar string is stretched tight along the x-axis from $x=0$ to $x=\pi$. Each point on the string has an x-value, $0 \leq x \leq \pi$. As the string vibrates, each point on the string moves back and forth on either side of the x-axis. Let $y=f(x, t)$ be the displacement at time t of the point on the string located x units from the left end. A possible formula is

$$
y=f(x, t)=\cos t \sin x, \quad 0 \leq x \leq \pi, \quad t \text { in milliseconds }
$$

()

Figure 12.107: A vibrating guitar string: $f(x, t)=\cos t \sin x$ for four t values.
42.

Use the contour diagram for $f(x, t)=\cos t \sin x$ in Figure 12.108 to describe in words the cross-sections of f with t fixed and the cross-sections of f with x fixed. Explain what you see in terms of the vibrating string in Problems 43-46.

Figure 12.108
43.

Explain what the functions $f(x, 0)$ and $f(x, 1)$ represent in terms of the vibrating string.
44.

Explain what the functions $f(0, t)$ and $f(1, t)$ represent in terms of the vibrating string.
45.
(a)

Sketch graphs of y versus x for fixed t values, $t=0, \pi / 4, \pi / 2,3 \pi / 4, \pi$.
ANSWER ©
WORKED SOLUTION \oplus
(b)

Use your graphs to explain why this function could represent a vibrating guitar string.

WORKED SOLUTION \oplus

46.

Describe the motion of the guitar strings whose displacements are given by the following:
(a)
$y=g(x, t)=\cos 2 t \sin x$
(b)
$y=h(x, t)=\cos t \sin 2 x$

CAS Challenge Problems

47.

Let $A=(0,0,0)$ and $B=(2,0,0)$.
(a)

Find a point C in the $x y$-plane that is a distance 2 from both A and B.

ANSWER ${ }^{(+)}$

(b)

Find a point D in 3 -space that is a distance 2 from each of A, B, and C.

ANSWER ${ }^{\oplus}$

(c)

Describe the figure obtained by joining A, B, C, and D with straight lines.

ANSWER © ${ }^{+}$

48.

Let $f(x, y)=3+x+2 y$.
(a)

Find formulas for $f(x, f(x, y)), f(x, f(x, f(x, y)))$ by hand.
(b)

Consider $f(x, f(x, f(x, f(x, f(x, f(x, y))))))$. Conjecture a formula for this function and check your answer with a computer algebra system.
49.

A function $f(x, y, z)$ has the property that $f(1,0,1)=20, f(1,1,1)=16$, and $f(1,1,2)=21$.
(a)

Estimate $f(1,1,3)$ and $f(1,2,1)$, assuming f is a linear function of each variable with the other variables held fixed.

ANSWER ©

WORKED SOLUTION ${ }^{\oplus}$
(b)

Suppose in fact that $f(x, y, z)=a x^{2}+b y z+c z x^{3}+d 2^{x-y}$, for constants a, b, c and d. Which of your estimates in part a do you expect to be exact?
ANSWER ${ }^{\oplus}$
WORKED SOLUTION ${ }^{\oplus}$
(c)

Suppose in addition that $f(0,0,1)=6$. Find an exact formula for f by solving for a, b, c, and d.

ANSWER © ${ }^{+}$

WORKED SOLUTION \oplus
(d)

Use the formula in part c to evaluate $f(1,1,3)$ and $f(1,2,1)$ exactly. Do the values confirm your answer to part b ?
ANSWER \oplus
WORKED SOLUTION \oplus

Copyright © 2017 John Wiley \& Sons, Inc. All rights reserved.

