\qquad
You may use a calculator to compute solutions but show your set-ups.

(1) You are standing above the point $(1,3)$ on the surface $z=20-\left(2 x^{2}+y^{2}\right)$.
(a) In which direction should you walk to descend fastest? (Give your answer as a 2 -vector.)
(b) If you start to move in this direction, what is the slope of your path?
(c) In what direction should you walk in order to remain at the same altitude? \qquad
(2) Consider the surface given by $z=g(x, y)$ shown below along with its contour diagram. At each point, A, B and C, on the contour diagram, indicate the direction of the gradient.

Then order the gradient magnitudes from least to greatest below.
\qquad $<$ \qquad $<$ \qquad

Figure 1: Level curves of $z=g(x, y)$.

Figure 2: Surface $z=g(x, y)$.
(3) Consider the surface $x^{2}-\frac{y}{z^{2}}=1$
(a) Verify the equation of the plane tangent to the surface at $(2,3,1)$ is $z=-\frac{2}{3} x+\frac{1}{6} y+\frac{11}{6}$.
(b) What is your rate of climb (or descent) as you move along the surface from the point $(2,3,1)$ in the direction $3 \vec{i}+4 \vec{j}$? Are you climbing or descending?
(4) The power, P (in watts) accross a circuit is given by Watt's law: $P=I^{2} R$, where I is the current (in amps) flowing through the circuit and R is the resistance (in ohms). If we place two circuits, with resistance R_{1} and R_{2}, in parallel, then their combined resistance, R, is given by $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$.
Suppose the current is 2 amps and increasing at $10^{-2} \mathrm{amp} / \mathrm{sec}$ and R_{1} is 3 ohms and increasing at $0.5 \mathrm{ohm} / \mathrm{sec}$, while R_{2} is 5 ohms and decreasing at $0.1 \mathrm{ohm} / \mathrm{sec}$.

Calculate the rate at which the wattage is changing.

