
Math 253

Dot Product

For ~v = (v1, v2, ..., vn), ~w = (w1, w2, ..., wn), ~v · ~w =

n∑
k=1

vkwk

And equivalently ~v · ~w = ||~v||||~w|| cos θ

The geometric definition is often used to determine the angle between two vectors:

θ = arccos

(
~v · ~w
||~v||||~w||

)

. . . and to determine the

work done in applying a force in

the direction an object moves.

W = ~F · d
θ

F

F cos
θ



A Little History . . .

William Rowan Hamilton
(1805 – 1865)

Dublin



Complex Numbers (a + bi), i =
√
−1
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Complex Numbers (a + bi)

(a + bi)(c + di)

= (ac− bd) + (ad + bc)i

Hamilton: C = R2

so a + bi⇒ (a, b)

and (a + bi)(c + di)⇒ (a, b)(c, d) = (ac− bd, ad + bc)
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What about multiplication in R3?

What are properties we’ve come to expect of multiplication?

• Commutativity: ab = ba

• Associativity: (ab)c = a(bc)

• Distributes over addition: a(b + c) = ab + ac

• and . . .



Unfortunately . . .

Creating a rule for multiplication in R3 that retained the properties and consequences of

multiplication found in R and R2 proved elusive.

Eventually (16 years after he began his pursuit), Hamilton had an epiphany . . .



Quaternions

If R3 won’t comply, why not consider R4?

Hamilton described numbers of the form a + bi + cj + dk where a was called the real or scalar part

and bi + cj + dk the vector or imaginary part.
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Quaternions

If R3 won’t comply, why not consider R4?

Hamilton described numbers of the form a + bi + cj + dk where a was called the real or scalar part

and bi + cj + dk the vector or imaginary part.

His epiphany?

i2 = j2 = k2 = ijk = −1

. . . of course.



Quaternions

Hamilton’s rules for quaternion multiplication are involved:

• ij = k = −ji

• ki = j = −ik

• jk = i = −kj

• i2 = j2 = k2 = ijk = −1

. . and while not commutative, skew symmetry was apparently close enough.

The set R4 with Hamilton’s quaternion multiplication is usually denoted H.



As luck would have it quaternions proved too cumbersome for most

(which may explain why Gauss, who had discovered many of the same results in 1819, never published

his observations) and it wasn’t until one of Hamilton’s students, Peter Tait, found himself playing with

the numbers that vector multiplication found its way into the math books.



Tait considered the product of ~v = v1i + v2j + v3k and ~w = w1i + w2j + w3k

(note the absence of the fourth dimension).

His results were

(~v)(~w) = −(v1w1 + v2w2 + v3w3) + (v2w3 − v3w2)i + (v1w3 − v3w1)j + (v1w2 − v2w1)k

. . . and following Hamilton’s lead, Tait proposed that vector multiplication in R3 could be separated

into two components . . .
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Tait considered the product of ~v = v1i + v2j + v3k and ~w = w1i + w2j + w3k

(note the absence of the fourth dimension).

His results were

(~v)(~w) = −(v1w1 + v2w2 + v3w3) + (v2w3 − v3w2)i + (v1w3 − v3w1)j + (v1w2 − v2w1)k

. . . and following Hamilton’s lead, Tait proposed that vector multiplication in R3 could be separated

into two components . . .

The scalar product: ~v · ~w = v1w1 + v2w2 + v3w3

and the vector product: ~v × ~w = (v2w3 − v3w2)i + (v1w3 − v3w1)j + (v1w2 − v2w1)k



Dot Product

For ~v = (v1, v2, ..., vn), ~w = (w1, w2, ..., wn), ~v · ~w =

n∑
k=1

vkwk

And equivalently ~v · ~w = ||~v||||~w|| cos θ

The geometric definition is often used to determine the angle between two vectors:

θ = arccos

(
~v · ~w
||~v||||~w||

)

. . . and to determine the

work done in applying a force in

the direction an object moves.

W = ~F · d
θ
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The Dot Product

Law of Cosines

c2 = a2 + b2 − 2ab cos(C)

A
C

B

a

b

c



The Dot Product

Law of Cosines

Proof:

a2 = h2 + k2

c2 = h2 + (b + k)2

= a2 − k2 + b2 + 2bk + k2

= a2 + 2bk
A

C
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b

c
h
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k

a
so k = a cos(180◦ − C).

From trigonometry we know cos(180◦ − C) = − cos(C)

So k = −a cos(C)



The Dot Product

Law of Cosines

Proof:

a2 = h2 + k2

c2 = h2 + (b + k)2

= a2 − k2 + b2 + 2bk + k2

= a2 + b2 + 2bk A
C

B

a

b

c
h

k

Now cos(180◦ − C) =
k

a
so k = a cos(180◦ − C).

From trigonometry we know cos(180◦ − C) = − cos(C)

So k = −a cos(C)

It follows that c2 = a2 + b2 − 2ab cos(C)
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The Dot Product

Vectors

Find the angle, θ between vectors ~u and ~v.

Solution:

Complete the triangle by finding the displacement

vector, ~v − ~u = 5~i + 2~j.

x

v
u

y

i j4 7+

i j– 5+

θ

i

j

5
2+



The Dot Product

Vectors

Find the angle, θ between vectors ~u and ~v.

Solution:

Complete the triangle by finding the displacement

vector, ~v − ~u = 5~i + 2~j.

x
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θ
√
26
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√
65

Calculating the magnitudes of the vectors gives us the sides of the triangle.



The Dot Product

Vectors

Find the angle, θ between vectors ~u and ~v.

Solution:

Complete the triangle by finding the displacement

vector, ~v − ~u = 5~i + 2~j.

x

y

i j4 7+

i j– 5+

θ
√
26

√
29

√
65

Calculating the magnitudes of the vectors gives us the sides of the triangle.

Then from the Law of Cosines we have

29 = 26 + 65− 2
√

26
√

65 cos θ

so cos θ =
29− (26 + 65)

−2
√

26
√

65
=

26 + 65− 29

2
√

26
√

65

And θ = arccos

(
31√
1690

)
≈ 41◦.



The Dot Product

Vectors

In general the Law of Cosines gives us some in-

sight into the relationship between the coordinate

form and trigonometric form of vectors.

Consider the vectors ~u and ~v with coordinate

forms ~u = u1~i + u2~j and ~v = v1~i + v2~j.
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Vectors

In general the Law of Cosines gives us some in-
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Completing the triangle with displacement vector ~v − ~u,
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of the vectors give us the side lengths.

It follows that ||~v − ~u||2 = ||~u||2 + ||~v||2 − 2||~u||||~v|| cos θ



The Dot Product

Vectors

In general the Law of Cosines gives us some in-

sight into the relationship between the coordinate

form and trigonometric form of vectors.

Consider the vectors ~u and ~v with coordinate

forms ~u = u1~i + u2~j and ~v = v1~i + v2~j.

v
u θ

v
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Completing the triangle with displacement vector ~v−~u, the magnitudes of the vectors give

us the side lengths.

It follows that ||~v − ~u||2 = ||~u||2 + ||~v||2 − 2||~u||||~v|| cos θ
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=

(√
u21 + u22

)2

+

(√
v21 + v22
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The Dot Product

Vectors

In general the Law of Cosines gives us some in-

sight into the relationship between the coordinate

form and trigonometric form of vectors.

Consider the vectors ~u and ~v with coordinate

forms ~u = u1~i + u2~j and ~v = v1~i + v2~j.

v
u θ

v
u–

Completing the triangle with displacement vector ~v−~u, the magnitudes of the vectors give

us the side lengths.

It follows that ||~v − ~u||2 = ||~u||2 + ||~v||2 − 2||~u||||~v|| cos θ

Then substituting the coordinate forms, we have(√
(v1 − u1)2 + (v2 − u2)2

)2
=

(√
u21 + u22

)2

+

(√
v21 + v22

)2

− 2||~u||||~v|| cos θ

Simplifying gives us

u1v1 + u2v2 = ||~u||||~v|| cos θ

and consequently

cos θ =
u1v1 + u2v2
||~u||||~v|| −→ θ = arccos

(
~u · ~v
||~u||||~v||

)



From the equivalence (u1, u2) · (v1, v2) = u1v1 + u2v2 = ||~u||||~v|| cos θ

We often describe the dot product as the projection of ~u in the direction of ~v.

That is, the component of ~u (of length ||~u|| cos θ)) that points in the direction of ~v.

Since work is defined as the

product of force in the direction

of motion...

W = ~F · ~d
θ

F

F cos
θ



Some Consequences . . .

The geometric relationship (u1, u2) · (v1, v2) = u1v1 + u2v2 = ||~u||||~v|| cos θ tells us that when ~u and ~v

are perpendicular (θ = 90◦), the dot product is 0.

Conversely, assuming ~u and ~v are non-zero, a zero dot product tell us the two vectors are

perpendicular.



Analytical model of a plane

A plane has the property that any two points

lying in a plane define a line that must also lie

entirely in the plane.

That means for a fixed point, (x0, y0, z0) in a

plane, the plane is composed of exactly those

points in space, (x, y, z) that form lines with

(x0, y0, z0) entirely contained in the plane.

If ~n = n1~i + n2~j + n3~k is a vector perpendicular

to the plane, then we can describe the plane as

the set of points, (x, y, z) whose displacement

vectors through (x0, y0, z0) are perpendicular to ~n.

x

y

z

x y z(  ,   ,   )0 0 0

x y z( ,  ,  )P

n

That is, those (x, y, z) whose displacement vector, (x− x0)~i + (y − y0)~j + (z − z0)~k has a zero dot

product with ~n:

((x− x0)~i + (y − y0)~j + (z − z0)~k) · (n1~i + n2~j + n3~k) =

n1(x− x0) + n2(y − y0) + n3(z − z0) = 0



Dot Product

Matrix form

(
u1 u2 u3

) v1
v2
v3




