
Math 253

The Directional Derivative
The derivative of a real valued function (scalar field) with respect to a vector.

What is the vector space analog to the usual derivative in one variable? f ′(x) = lim
h→0

f(x+ h)− f(x)

h
?

Suppose f is a real valued function (a mapping f : Rn → R).
(e.g. f(x, y) = x2 − y2).

Unlike the case with plane figures, functions grow in a variety of
ways at each point on a surface (or n–dimensional structure).

We’ll be interested in examining the way (f) changes as we move
from a point ~X to a nearby point in a particular direction.
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Figure 1: f(x, y) = x2 − y2



The Directional Derivative

We’ll be interested in examining the way (f) changes as we move
from a point ~X to a nearby point in a particular direction.
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Figure 2: f(x, y) = x2 − y2
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Figure 3: Change in position
along line parallel to ~u

If we give the direction by using a second vector, say ~u, then for
any real number h, the vector ~X + h~u represents a change in
position from ~X along a line through ~X parallel to ~u.



The Directional Derivative

We’ll be interested in examining the way (f) changes as we move
from a point ~X to a nearby point in a particular direction.
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Figure 4: f(x, y) = x2 − y2
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Figure 5: Change in position
along line parallel to ~u

If we give the direction by using a second vector, say ~u, then for
any real number h, the vector ~X + h~u represents a change in
position from ~X along a line through ~X parallel to ~u.

e.g. Imagine this diagram applied to f(x, y) = x2 − y2 and note
the change in f as ~X changes along the line parallel to ~u.
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The Directional Derivative

We can express this change as the difference quotient

f( ~X + h~u)− f( ~X)

h
which tells us the average rate of change in f over the segment from
~X to ~X + h~u.

If we allow h to grow smaller and smaller the limiting value of the
difference quotient (if it exists) is called the Derivative of f in the
direction of ~u.
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Figure 6: f(x, y) = x2−y2 in the
first octant showing change from
~X to ~X + h~u.

If we add the condition that ~u is a unit vector then we get the special case:

Definition: The Directional Derivative of f at ~X with respect to unit vector ~u is defined by

f~u( ~X) = f ′( ~X;~u) = lim
h→0

f( ~X + h~u)− f( ~X)

h

For a function with its domain in R2 we typically write

f~u(x, y) = lim
h→0

f(x+ hu1, y + hu2)− f(x, y)

h



Example:

f~u(x, y) = lim
h→0

f (x + hu1, y + hu2)− f (x, y)

h

Consider the saddle curve f (x, y) = x2 − y2. Compute the

rate of change in f at the point (3, 2) in the direction of the

vector ~Y = 2~i +~j.

First we need to construct a unit vector from ~Y :

~u =
~Y

||~Y ||
=

2√
5
~i +

1√
5
~j

Then
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Figure 7: f(x, y) = x2− y2 in the first octant.

f~u(x, y) = lim
h→0

f (x + hu1, y + hu2)− f (x, y)

h
(1)

= lim
h→0

(x + hu1)2 − (y + hu2)2 − [x2 − y2]

h
(2)

= lim
h→0

2xhu1 + (hu1)2 − 2yhu2 − (hu2)2

h
(3)

= lim
h→0

��h(2xu1 + hu2
1 − 2yu2 − hu2

2)

��h
(4)

= 2xu1 − 2yu2 (5)

Evaluated at (3, 2) we have f~u(3, 2) = 6

(
2√
5

)
+−4

(
1√
5

)
=

8√
5



f~u(x, y) = 6

(
2√
5

)
+−4

(
1√
5

)
=

8√
5

Two things worth noting from the previous example are,

(1) The result of the derivative f~u(x, y) = 2xu1 − 2yu2 is equivalent to
∂f (x, y)

∂x
u1 +

∂f (x, y)

∂y
u2

which is suggestive of a significant consequence of the definition.

(2) The significance of the unit vector becomes clearer if we consider units for this example.
Suppose f (x, y) gives temperature (in degrees) at each location (x, y) and we’re

interested in how quickly the temperature changes in a particular direction. If we

are measuring distance in meters then the units of our rate of change are degrees

per meter.

If we left ~Y in the previous example then our rate would be 8 but measured in

units ||~Y || =
√

5 m long.



A convenient consequence of the Mean Value Theorem (or equivalently of the linear property of the

derivative we’ve defined) is the relationship alluded to in the previous example:

f~u( ~X) = lim
h→0

f ( ~X + h~u)− f ( ~X)

h
=

n∑
k=1

∂f ( ~X)

∂xk
uk

Where ~X = (x1, x2, . . . , xn) and ~u = (u1, u2, . . . , un).

For a function with its domain in R2 we typically write

f~u(x, y) = lim
h→0

f (x + hu1, y + hu2)− f (x, y)

h
=
∂f (x, y)

∂x
u1 +

∂f (x, y)

∂y
u2

= fx(x, y)u1 + fy(x, y)u2

and for f : R3 → R

f~u(x, y, z) = lim
h→0

f (x + hu1, y + hu2, z + hu3)− f (x, y, z)

h
=
∂f (x, y, z)

∂x
u1 +

∂f (x, y, z)

∂y
u2 +

∂f (x, y, z)

∂z
u3

= fx(x, y, z)u1 + fy(x, y, z)u2 + fz(x, y, z)

We’ll return to the proof of this when we discuss the chain rule.



Gradient

f~u(x, y, z) =
∂f (x, y, z)

∂x
u1 +

∂f (x, y, z)

∂y
u2 +

∂f (x, y, z)

∂z
u3

=

(
∂f (x, y, z)

∂x
,
∂f (x, y, z)

∂y
,
∂f (x, y, z)

∂z

)
· (u1, u2, u3)

This relationship reflects the result of a dot product between the vector ~u = (u1, u2, u3) and the vector

of the partial derivatives of f . For this and many other reasons of convenience and insight we

introduce the Gradient :

Definition: The Gradient of a real valued function, f , at a point
~X is denoted ∇f ( ~X) and represents a vector field whose value at
~X is given by:

∇f ( ~X) =

(
∂f ( ~X)

∂x1
,
∂f ( ~X)

∂x2
, . . . ,

∂f ( ~X)

∂xn

)
u
→

→
X

f
→

(X)▽

θ
u
→f

→
(X) is the component

of         alongf
→

(X)▽ u
→

In the case of f : R3 → R we write

∇f (x, y, z) =

(
∂f (x, y, z)

∂x
,
∂f (x, y, z)

∂y
,
∂f (x, y, z)

∂z

)
=
∂f (x, y, z)

∂x
~i +

∂f (x, y, z)

∂y
~j +

∂f (x, y, z)

∂z
~k
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This relationship reflects the result of a dot product between the vector ~u = (u1, u2, u3) and the vector

of the partial derivatives of f . For this and many other reasons of convenience and insight we

introduce the Gradient :

Definition: The Gradient of a real valued function, f , at a point
~X is denoted ∇f ( ~X) and represents a vector field whose value at
~X is given by:

∇f ( ~X) =

(
∂f ( ~X)

∂x1
,
∂f ( ~X)

∂x2
, . . . ,

∂f ( ~X)

∂xn

)
u
→

→
X

f
→

(X)▽

θ
u
→f

→
(X) is the component

of         alongf
→

(X)▽ u
→

In the case of f : R3 → R we write

∇f (x, y, z) =

(
∂f (x, y, z)

∂x
,
∂f (x, y, z)

∂y
,
∂f (x, y, z)

∂z

)
=
∂f (x, y, z)

∂x
~i +

∂f (x, y, z)

∂y
~j +

∂f (x, y, z)

∂z
~k

It follows that f~u( ~X) = ∇f ( ~X) · ~u



Gradient

From the geometric interpretation of the dot product we have

f~u( ~X) = ∇f ( ~X) · ~u
= ||∇f ( ~X)||||~u|| cos θ

= ||∇f ( ~X)|| cos θ

Meaning that the directional derivative is the component of the

gradient vector in the direction of the unit vector ~u.
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Gradient

From the geometric interpretation of the dot product we have

f~u( ~X) = ∇f ( ~X) · ~u
= ||∇f ( ~X)||||~u|| cos θ
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Some consequences . . .

(1) The directional derivative f~u( ~X) is at its maximum when θ = 0 (so when ~u is in the direction

of ∇f ). That is, at a given point ~X , the function f undergoes its greatest rate of change in the

direction of the gradient vector.



Gradient

From the geometric interpretation of the dot product we have
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of ∇f ). That is, at a given point ~X , the function f undergoes its greatest rate of change in the

direction of the gradient vector.

(2) At its maximum the directional derivative takes on the value of ||∇f ||
(and at its minimum its value is −||∇f ||.)



Gradient

From the geometric interpretation of the dot product we have

f~u( ~X) = ∇f ( ~X) · ~u
= ||∇f ( ~X)||||~u|| cos θ

= ||∇f ( ~X)|| cos θ

Meaning that the directional derivative is the component of the
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→
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→
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Some consequences . . .

(1) The directional derivative f~u( ~X) is at its maximum when θ = 0 (so when ~u is in the direction

of ∇f ). That is, at a given point ~X , the function f undergoes its greatest rate of change in the

direction of the gradient vector.

(2) At its maximum the directional derivative takes on the value of ||∇f ||
(and at its minimum its value is −||∇f ||.)

(3) When ~u is perpendicular to ∇f the directional derivative f~u( ~X) = 0.



Example:

In what direction from (3, 2) does f (x, y) = x2 − y2 increase

the fastest?
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Figure 8: f(x, y) = x2− y2 in the first octant.



Example:

In what direction from (3, 2) does f (x, y) = x2 − y2 increase

the fastest?
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Figure 9: f(x, y) = x2− y2 in the first octant.

Solution: The gradient ∇f (x, y) = 2x~i− 2y~j at (3, 2) is ∇f = 6~i− 4~j which points in the direction

of the greatest rate of climb.

Note the translation of the vector to the surface of the saddle.



Example:
1. Discuss the sign (+), (–) or 0 of the directional

derivative for f (x, y) = x2 − y2 at the various points

indicated.

(1) A in the direction ~i

(2) A in the direction ~j

(3) A in the direction ~i +~j

(4) B in the direction ~i

(4) B in the direction ~−i
(5) B in the direction ~j

(6) C in the direction ~j
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Figure 10: Level curves of f(x, y) = x2 − y2.

2. Estimate the gradients at each point.
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Figure 11: f(x, y) = x2 − y2.



Chain Rule (Special case in R3):

Let v : R→ R3 be a differentiable path and f : R3 → R a real valued function. Suppose

h(t) = f (v(t)) = f (x(t), y(t), z(t)) where v(t) = (x(t), y(t), z(t)). Then

dh

dt
=
∂f (x, y, z)

∂x

dx

dt
+
∂f (x, y, z)

∂y

dy

dt
+
∂f (x, y, z)

∂z

dz

dt

= ∇f (v(t)) · v′(t)

Where v′(t) = (x′(t), y′(t), z′(t))

Proof:

h′(t0) = lim
t→t0

h(t)− h(t0)

t− t0

h(t)− h(t0)

t− t0
=
f (x(t), y(t), z(t))− f (x(t0), y(t0), z(t0))

t− t0

=
f (x(t), y(t), z(t))− f (x(t0), y(t), z(t))

t− t0

+
f (x(t0), y(t), z(t))− f (x(t0), y(t0), z(t))

t− t0

+
f (x(t0), y(t0), z(t))− f (x(t0), y(t0), z(t0))

t− t0



h(t)− h(t0)

t− t0
=
f (x(t), y(t), z(t))− f (x(t0), y(t0), z(t0))

t− t0

=
f (x(t), y(t), z(t))− f (x(t0), y(t), z(t))

t− t0

+
f (x(t0), y(t), z(t))− f (x(t0), y(t0), z(t))

t− t0

+
f (x(t0), y(t0), z(t))− f (x(t0), y(t0), z(t0))

t− t0
From the Mean Value Theorem it follows that there is some c ∈ (x, x0) such that

f (x, y, z)− f (x0, y, z)

x− x0
=
∂f (c, y, z)

∂x
−→ f (x, y, z)− f (x0, y, z) =

∂f (c, y, z)

∂x
(x− x0)



h(t)− h(t0)

t− t0
=
f (x(t), y(t), z(t))− f (x(t0), y(t0), z(t0))

t− t0

=
f (x(t), y(t), z(t))− f (x(t0), y(t), z(t))

t− t0

+
f (x(t0), y(t), z(t))− f (x(t0), y(t0), z(t))

t− t0

+
f (x(t0), y(t0), z(t))− f (x(t0), y(t0), z(t0))

t− t0
From the Mean Value Theorem it follows that there is some c ∈ (x, x0) such that

f (x, y, z)− f (x0, y, z)

x− x0
=
∂f (c, y, z)

∂x
−→ f (x, y, z)− f (x0, y, z) =

∂f (c, y, z)

∂x
(x− x0)

Then similarly for c ∈ (x(t), x(t0)), d ∈ (y(t), y(t0)) and e ∈ (z(t), z(t0))

It follows that

h(t)− h(t0)

t− t0
=

(
∂f(c, y(t), z(t))

∂x

)
x(t)− x(t0)

t− t0
+

(
∂f(x(t0), d, z(t))

∂y

)
y(t)− y(t0)

t− t0
+

(
∂f(x(t0), y(t0), e)

∂z

)
z(t)− z(t0)

t− t0



h(t)− h(t0)

t− t0
=
f (x(t), y(t), z(t))− f (x(t0), y(t0), z(t0))

t− t0

=
f (x(t), y(t), z(t))− f (x(t0), y(t), z(t))

t− t0

+
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f (x(t0), y(t0), z(t))− f (x(t0), y(t0), z(t0))

t− t0
From the Mean Value Theorem it follows that there is some c ∈ (x, x0) such that

f (x, y, z)− f (x0, y, z)

x− x0
=
∂f (c, y, z)

∂x
−→ f (x, y, z)− f (x0, y, z) =

∂f (c, y, z)

∂x
(x− x0)

Then similarly for c ∈ (x(t), x(t0)), d ∈ (y(t), y(t0)) and e ∈ (z(t), z(t0))

It follows that

h(t)− h(t0)

t− t0
=

(
∂f(c, y(t), z(t))

∂x

)
x(t)− x(t0)

t− t0
+

(
∂f(x(t0), d, z(t))

∂y

)
y(t)− y(t0)

t− t0
+

(
∂f(x(t0), y(t0), e)

∂z

)
z(t)− z(t0)

t− t0

As t→ t0, =

(
∂f(c, y(t), z(t))

∂x

)
dx

dt
+

(
∂f(x(t0), d, z(t))

∂y

)
dy

dt
+

(
∂f(x(t0), y(t0), e)

∂z

)
dz

dt



h(t)− h(t0)

t− t0
=
f (x(t), y(t), z(t))− f (x(t0), y(t0), z(t0))

t− t0

=
f (x(t), y(t), z(t))− f (x(t0), y(t), z(t))

t− t0

+
f (x(t0), y(t), z(t))− f (x(t0), y(t0), z(t))

t− t0

+
f (x(t0), y(t0), z(t))− f (x(t0), y(t0), z(t0))

t− t0
From the Mean Value Theorem it follows that there is some c ∈ (x, x0) such that

f (x, y, z)− f (x0, y, z)

x− x0
=
∂f (c, y, z)

∂x
−→ f (x, y, z)− f (x0, y, z) =

∂f (c, y, z)

∂x
(x− x0)

Then similarly for c ∈ (x(t), x(t0)), d ∈ (y(t), y(t0)) and e ∈ (z(t), z(t0))

It follows that

h(t)− h(t0)

t− t0
=

(
∂f(c, y(t), z(t))

∂x

)
x(t)− x(t0)

t− t0
+

(
∂f(x(t0), d, z(t))

∂y

)
y(t)− y(t0)

t− t0
+

(
∂f(x(t0), y(t0), e)

∂z

)
z(t)− z(t0)

t− t0

As t→ t0, =

(
∂f(c, y(t), z(t))

∂x

)
dx

dt
+

(
∂f(x(t0), d, z(t))

∂y

)
dy

dt
+

(
∂f(x(t0), y(t0), e)

∂z

)
dz

dt

And as t→ t0, we have c→ x(to), d→ y(t0), e→ z(t0) we have

dh

dt
=
∂f (x, y, z)

∂x

dx

dt
+
∂f (x, y, z)

∂y

dy

dt
+
∂f (x, y, z)

∂z

dz

dt



Directional Derivative (again)

In the case where f : R3 → R we let ~X = (x, y, z) and claim that

f~u(x, y, z) = ∇f (x, y, z) · ~u

=
∂f (x, y, z)

∂x
u1 +

∂f (x, y, z)

∂y
u2 +

∂f (x, y, z)

∂z
u3
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Recall The Directional Derivative of f at ~X with respect to unit vector ~u is defined by
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Directional Derivative (again)

In the case where f : R3 → R we let ~X = (x, y, z) and claim that

f~u(x, y, z) = ∇f (x, y, z) · ~u

=
∂f (x, y, z)

∂x
u1 +

∂f (x, y, z)

∂y
u2 +

∂f (x, y, z)
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u3

Proof:

Recall The Directional Derivative of f at ~X with respect to unit vector ~u is defined by

f~u( ~X) = f ′( ~X ;~u) = lim
h→0

f ( ~X + h~u)− f ( ~X)

h

Equivalently we can write f~u( ~X) =
d

dt
f ( ~X + t~u)

∣∣∣∣
t=0

Let v(t) = ~X + t~u then f ( ~X + t~u) = f (v(t))

From the chain rule
d

dt
f (v(t)) = ∇f (v(t)) · v′(t).

Since v(0) = ~X and v′(0) = ~u we have f~u(x, y, z) =
∂f (x, y, z)

∂x
u1 +

∂f (x, y, z)

∂y
u2 +

∂f (x, y, z)

∂z
u3 �



f~u(x, y, z) =
∂f (x, y, z)

∂x
u1 +

∂f (x, y, z)

∂y
u2 +

∂f (x, y, z)

∂z
u3

Example: Let f (x, y, z) = x2e−yz. Find the rate of change in f in the direction of

~u =
1√
3
~i− 1√

3
~j +

1√
3
~k at the point (1, 0, 0).



f~u(x, y, z) =
∂f (x, y, z)

∂x
u1 +

∂f (x, y, z)

∂y
u2 +

∂f (x, y, z)

∂z
u3

Example: Let f (x, y, z) = x2e−yz. Find the rate of change in f in the direction of

~u =
1√
3
~i− 1√

3
~j +

1√
3
~k at the point (1, 0, 0).

Solution: ∇f (x, y, z) = (2xe−yz,−x2ze−yz,−x2ye−yz) −→ (2, 0, 0)

So f~u(x, y, z) = ∇f · ~u = (2xe−yz,−x2ze−yz,−x2ye−yz) ·
(

1√
3
,− 1√

3
,

1√
3

)
And f~u(1, 0, 0) = (2, 0, 0) ·

(
1√
3
,− 1√

3
,

1√
3

)
=

2√
3

�



The Gradient is Perpendicular to Level Curves

First let’s agree that there is reasonable cause to support this

assertion. We define perpendicular to mean that the gradient is

perpendicular to the line tangent to a curve at a specified point.

Recall from geometry that the shortest distance from a point P

to a line, `, lies on the line through P perpendicular to `. Then

the shortest distance between two level curves (and therefore the

greatest rate of increase) should lie along the line that is in some

sense perpendicular to one of the curves.
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Figure 12: Level curves of f(x, y) = x2 − y2



The Gradient is Perpendicular to Level Curves

From the definition each level curve of a real valued function

f (x, y) has the form f (x, y) = k.

Let c(t) be a differentiable curve in the plane with an arbitrary

level curve, L.

Let v be the vector tangent to c at t = 0 (so at the point

c(0) = (x0, y0)). Therefore c′(0) = v.

Then as we approach a level curve of f along c(t) we have

f (c(t)) = k and therefore d
dtf (c(t)) = 0.
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Figure 13: Level curves of f(x, y) = x2 − y2



The Gradient is Perpendicular to Level Curves

From the definition each level curve of a real valued function

f (x, y) has the form f (x, y) = k.

Let c(t) be a differentiable curve in the plane with an arbitrary

level curve, L.

Let v be the vector tangent to c at t = 0 (so at the point

c(0) = (x0, y0)). Therefore c′(0) = v.

Then as we approach a level curve of f along c(t) we have

f (c(t)) = k and therefore d
dtf (c(t)) = 0.
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Figure 14: Level curves of f(x, y) = x2 − y2

Applying the chain rule we also have
d
dtf (c(t)) = ∇f (c(t)) · c′(t).
Evaluating at t = 0 this gives us ∇f (c(0)) · c′(0) = ∇f (c(0)) · v.

Equating the two halves gives us: ∇f (c(0)) · v = 0

So we conclude that the gradient ∇f at a point is perpendicular

to the level curve of f at that point.
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Figure 15: Gradient field of f(x, y) = x2 − y2

Note that since ∇f (c(0)) · v = ∇f (x0, y0) · v = 0 we can construct the set of all points in the plane of

the level curve that lie on the line tangent to the curve at (x0, y0):

∇f (x0, y0) · (x− x0, y − y0) = 0



Gradient Field Example
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Figure 16: f(x, y) = −(cos2 x + cos2 y)2
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Figure 17: Contours and Gradient field
f(x, y) = −(cos2 x + cos2 y)2



Example:

1. Do the level curves of f (x, y) = x + y cross the level curves of g(x, y) = x− y at right angles?



Example:
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2. Do the level curves of f (x, y) = x2− y cross the level curves of g(x, y) = 2y + ln |x| at right angles?



Example:

1. Do the level curves of f (x, y) = x + y cross the level curves of g(x, y) = x− y at right angles?

2. Do the level curves of f (x, y) = x2− y cross the level curves of g(x, y) = 2y + ln |x| at right angles?

Solution:

If the level curve of f is perpendicular to a level curve of g then what must be true about their

gradients at the point of intersection?



The Gradient is Normal to Level Surfaces

The argument in three variables is identical to that in two and we derive the conclusion that for a level

surface, S, composed of points (x, y, z) where f (x, y, z) = k, (k ∈ R), the tangent plane of S at a

point (x0, y0, z0) of S is given by

∇f (x0, y0, z0) · (x− x0, y − y0, z − z0) = 0

Equivalently,

∂f (x0, y0, z0)

∂x
(x− x0) +

∂f (x0, y0, z0)

∂y
(y − y0) +

∂f (x0, y0, z0)

∂z
(z − z0) = 0

OR,

∂f (x0, y0, z0)

∂x
x +

∂f (x0, y0, z0)

∂y
y +

∂f (x0, y0, z0)

∂z
z + d = 0

Where d = −
(
∂f (x0, y0, z0)

∂x
x0 +

∂f (x0, y0, z0)

∂y
y0 +

∂f (x0, y0, z0)

∂z
z0

)



∇f (x0, y0, z0) · (x− x0, y − y0, z − z0) = 0

Example:

Find the equation of the plane tangent to the surface defined by 3xy + z2 = 4 at (1, 1, 1).



∇f (x0, y0, z0) · (x− x0, y − y0, z − z0) = 0

Example:

Find the equation of the plane tangent to the surface defined by 3xy + z2 = 4 at (1, 1, 1).

Solution:

∇f (x, y, z) = (3y, 3x, 2z) −→ ∇f (1, 1, 1) = (3, 3, 2)

Then (3, 3, 2) · (x− 1, y − 1, z − 1) = 3x + 3y + 2z − 8

So we have 3x + 3y + 2z = 8 �



BEWARE

For a function f : R2 → R, typically seen as z = f (x, y)

∇f (x0, y0) gives the vector in the direction

• perpendicular to the level curve containing (x0, y0)

• of the greatest rate of change along the surface of z = f (x, y) at (x0, y0).

∇f (x0, y0) · (x− x0, y − y0) = 0 gives the equation of the line tangent to the level curve f (x, y) = k

at (x0, y0).
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NOT the equation of the plane tangent to the surface (x0, y0, f (x0, y0)).
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Example:

Find the equation of the plane tangent to the curve z = x2 − y2

at (3, 2).

Solution:

We know that the equation of the plane perpendicular to S at

(x0, y0, z0) is given by ∇f (x0, y0, z0) · (x− x0, y− y0, z− z0) = 0.

So we begin by writing f (x, y, z) = z − x2 + y2

(the curve z = x2 − y2 is the case where f (x, y, z) = 0)

∇f (x, y, z) = (−2x, 2y, 1) −→ (−6, 4, 1)

0

0

z

y

x

Figure 18: Normal vector to f(x, y) = x2− y2

at (3,2,5)

So the equation of the tangent plane at (3, 2, 5) is (−6, 4, 1) · (x− x0, y − y0, z − z0) = 0

Or −6x + 4y + z = −5


