
Math 253

Notes

Lagrange Multipliers: Finding the high and low points of path on a surface.

Finding the maximum (or minimum) value of an unrestricted

function is often a study in the infinte. The extreme values

of that function restricted to a curve, however, will produce

more finite if not more interesting results.

While we can see the answer, actually finding it requires some

insight.



Lagrange Multipliers: Another form of constraint.

We begin with a related if well travelled problem.

A rider leaves point A on his beast of burden and heads for

point B. However, he needs to get water for the animal so he

detours to the nearby river on his way to B. Where along the

river should the rider stop to get water in order to minimize

the total distance of the trip?
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river should the rider stop to get water in order to minimize

the total distance of the trip?

The solution offered by Archimedes, among others, was based

on the idea of an ellipse.

An ellipse is defined by two points, called foci.

Each point on the ellipse lies a combined distance d = d1 + d2
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Lagrange Multipliers: Another form of constraint.

We begin with a related if well travelled problem.

A rider leaves point A on his beast of burden and heads

for point B. However, he needs to get water for the animal

so he detours to the nearby river on his way to B. Where

along the river should the rider stop to get water in order to

minimize the total distance of the trip?

The solution offered by Archimedes, among others, was based

on the idea of an ellipse.

An ellipse is defined by two points, called foci.

Each point on the ellipse lies a combined distance d = d1 + d2
from the foci. And this distance is constant for all points on

the ellipse.
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Lagrange Multipliers: Another form of constraint.

Then every point on the river bank lies on some

ellipse centered on points A and B. If we can find

the ellipse that intersects the river with the smallest

value, d = d1 + d2 then the point (or points) where

the ellipse intersects the river is the point where the

rider should stop.
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If we begin with one ellipse and expand it . . .
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Lagrange Multipliers: Another form of constraint.

If we begin with one ellipse and expand it . . .

Eventually we get to the river.

Note that this point occurs where an ellipse is tangent to the

river.
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Lagrange Multipliers: Another form of constraint.

If we begin with one ellipse and expand it . . .

Eventually we get to the river.

Note that this point occurs where an ellipse is tangent to the

river.

Also note that since the two curves share a common tangent

at this point, the gradient vectors for the functions to which

these are level curves are parallel.
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Lagrange Multipliers: Another form of constraint.

So what does the river problem have to do with the path on the surface?
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We have an elliptic paraboloid, f (x, y). Imagine the path is the projection of a level curve of some

function, g(x, y) = c up onto the surface.

Then the river represents the level curve g(x, y) = c and the ellipses are the level curves of f (x, y).



Lagrange Multipliers: Another form of constraint.

So what does the river problem have to do with the path on the surface?
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We have an elliptic paraboloid, f (x, y). Imagine the path is the projection of a level curve of some

function, g(x, y) = c up onto the surface.

Then the river represents the level curve g(x, y) = c and the ellipses are the level curves of f (x, y).

The point of tangency between the level curves of f and the level curve g(x, y) = c represents an

extreme value of f restricted to the (projected) curve g(x, y) = c.



Lagrange Multipliers: Another form of constraint.

But first and example . . .

Example:

Let f (x, y) = x2 − y2 and let S be the circle of

radius 1 about the origin: g(x, y) = x2 + y2 = 1.

Find the extrema of f constrained to S.
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Lagrange Multipliers: Another form of constraint.

Example:

Let f (x, y) = x2 − y2 and let S be the circle of

radius 1 about the origin: g(x, y) = x2 + y2 = 1.

Find the extrema of f constrained to S.

Geometrically we can find the solution by match-

ing the level set of f to the level curve x2+y2 = 1.

Therefore the extreme values of f constrained to

S occur at (0,±1) and (±1, 0).
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Lagrange Multipliers: Another form of constraint.

But why?
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fLevel curves of x y(  ,  )

g x y(  ,  ) = c

x y(   ,  )0 0

We want a general approach for minimizing or maximizing a function f (x, y) when (x, y) is restricted

to a level curve g(x, y) = c.

Suppose f and g are differentiable and since we are guaranteed a global minimum and a global

maximum (the projection of g(x, y) = c provides a boundary on which f is defined), let’s call M the

minimum value of f restricted to the level curve g(x, y) = c.
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Suppose f and g are differentiable and since we are guaranteed a global minimum and a global

maximum (the projection of g(x, y) = c provides a boundary on which f is defined), let’s call M the

minimum value of f restricted to the level curve g(x, y) = c.

Then we consider the two curves, f (x, y) = M and

g(x, y) = c. The two curves intersect. Let’s call

the point of intersection (x0, y0). If we decrease M

even slightly, then g(x, y) = c does not intersect the

level curve f (x, y) = M . Then at (x0, y0) we have

a minimum, M , and the tangents to f (x, y) = M

and g(x, y) = c are parallel (tangent curves).
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minimum value of f restricted to the level curve g(x, y) = c.

Then we consider the two curves, f (x, y) = M and

g(x, y) = c. The two curves intersect. Let’s call

the point of intersection (x0, y0). If we decrease M

even slightly, then g(x, y) = c does not intersect the

level curve f (x, y) = M . Then at (x0, y0) we have

a minimum, M , and the tangents to f (x, y) = M

and g(x, y) = c are parallel (tangent curves).

If they were not parallel then moving in one

direction along g(x, y) = c would cross lower level

curves of f and moving in the opposite direction

would cross higher level curves (so there would be
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If M is a local minimum then ∇f (x0, y0) = 0.

If the tangents are parallel then so are the vectors normal to them so ∇f (x0, y0) = λ∇g(x0, y0) for

some constant λ ∈ R.



Lagrange Multipliers: Another form of constraint.

If M is a local minimum then ∇f (x0, y0) = 0.

If the tangents are parallel then so are the vectors normal to them so ∇f (x0, y0) = λ∇g(x0, y0) for

some constant λ ∈ R.

The case where ∇f (x0, y0) = 0 is covered by λ = 0

so in order to determine the points of extrema it is

a matter of solving a system of equations in three

unknowns (x, y, λ).

∂f

∂x
= λ

∂g

∂x

∂f

∂y
= λ

∂g

∂y

g(x, y) = c
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Lagrange Multipliers: Another form of constraint.

Another Example:

Let f (x, y) = x2y − y3 and let S be the circle of

radius 1 about the origin: g(x, y) = x2 + y2 = 1.

Find the extrema of f constrained to S.
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Lagrange Multipliers: Another form of constraint.

Another Example:

Let f (x, y) = x2y − y3 and let S be the circle of

radius 1 about the origin: g(x, y) = x2 + y2 = 1.

Find the extrema of f constrained to S.

One Solution: -1
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2xy = λ2x

x2 − 3y2 = λ2y

x2 + y2 = 1

−→

y = λ or x = 0

x2 = 5y2

(x = 0)→ y = ±1 or y = ±
√

1

6
→
(
x = ±

√
5

6

)

It follows that the six critical points are (0,±1); (
√

5/6,±
√

1/6) and (−
√

5/6,±
√

1/6). The global

maximum occurs at f (0,−1) = 1 and the global minimum occurs at f (0, 1) = −1. �



Lagrange Multipliers: Another form of constraint.

Theorem (Lagrange Multipliers):

Suppose f : Rn → R and g : Rn → R are continuously differentiable.

Let ~X0 ∈ Rn with g( ~X0) = c and let S be the level set for g( ~X) = c (the

set of points ~X ∈ Rn satisfying g( ~X) = c). Assume ∇g 6= 0.

If f restricted to S has a local maximum or minimum on S at ~X0 then

there is a λ ∈ R such that ∇f ( ~X) = λ∇g( ~X).



Lagrange Multipliers: Another form of constraint.

Theorem (Lagrange Multipliers):

Suppose f : Rn → R and g : Rn → R are continuously differentiable.

Let ~X0 ∈ Rn with g( ~X0) = c and let S be the level set for g( ~X) = c (the

set of points ~X ∈ Rn satisfying g( ~X) = c). Assume ∇g 6= 0.

If f restricted to S has a local maximum or minimum on S at ~X0 then

there is a λ ∈ R such that ∇f ( ~X) = λ∇g( ~X).

Proof Outline Recall in R3 we have seen the plane tangent to a surface, S, at (x0, y0) is orthogonal

to ∇g(x0, y0). We can generalize this property to tangent spaces in Rn. Observe that paths, c(t) that

lie in S will have tangent vectors c′(t). But since g(c(t)) = c it follows that
d

dt
g(c(t)) = 0. But

assuming c(0) = ~X0 we also have
d

dt
g(c(t))|t=0 = ∇g( ~X0) · c′(0).

Combining the two results we have ∇g( ~X0) · c′(0) = 0 and therefore c′(0) is orthogonal to ∇g( ~X0).

If f restricted to S has a maximum at ~X0 then f ′( ~X0) = 0 =
d

dt
f (c(t))|t=0 = ∇f ( ~X0) · c′(0).

So again we have ∇f ( ~X0) · c′(0) = 0 and therefore c′(0) is orthogonal to ∇f ( ~X0).

Since ∇f ( ~X0) is perpendicular to the tangent of every curve in S it is perpendicular to the entire

tangent space of S. Because the the space perpendicular to this tangent space is a line, ∇f ( ~X0) and

∇g( ~X0) are parallel.



Lagrange Multipliers: Another form of constraint.

A direct consequence of the previous theorem is:

Theorem

If f ( ~X) when constrained to a surface, S, has a maximum or

minimum at ~X0, then ∇f ( ~X0) is perpendicular to S at ~X0. Surface S

Plane tangent to S

f▽



Lagrange Multipliers: Another form of constraint.

Yet Another Example:

Assume that among all rectangular boxes with fixed surface area of 10 square meters there is a box of

largest possible volume. Find its dimensions.
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Yet Another Example:

Assume that among all rectangular boxes with fixed surface area of 10 square meters there is a box of

largest possible volume. Find its dimensions.

Solution:

If `, w, and h are the dimensions of the box, then the function we wish to maximize is V = `wh

subject to the constraint that 2(`w + `h + wh) = 10 or equivalently `w + `h + wh = 5.

Then we have the system of equations:

`w = λ(` + w)

`h = λ(` + h)

wh = λ(w + h)

`w + `h + wh = 5

We can see ` 6= 0 since that would eliminate one dimension and we wouldn’t have a box (moreover,

V = 0). Likewise for w and h.

Solving for λ in the first two equations gives us
`w

` + w
=

`h

` + h
−→ w` = h` −→ w = h.

Similarly, from the second and third equations we get
wh

w + h
=

`h

` + h
−→ wh = `h −→ w = `.

Substituting into the constraint equations gives w2 + w2 + w2 = 5 so w = h = ` =
√

5/3.

Note that this proves the cube is the only possible candidate for the largest volume – but does not

prove it is the box of greatest volume.


