
Math 253
Notes

Determinants

Leibniz seems to have introduced the idea of de-

terminants (though not in name) before the end

of the 17th century.

He used them much as we do in algebra to solve

systems of equations.∣∣∣∣ a b

c d

∣∣∣∣ = ad− bc



Determinants

Mclaurin and Cramer made more thor-

ough work of determinants - all long

before matrices were first defined.

The larger the determinant, however, the

more intimidating the task of evaluating

it . . .
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Equivalently:

a1 a2 a3
b1 b2 b3
c1 c2 c3

=

a1 a2 a3 a1 a2

b1 b2 b3 b1 b2
c1 c2 c3 c1 c2

– – – + + +

Example:

5 −4 3
2 1 6
8 3 9

=
5 −4 3 5 −4

2 1 6 2 1

8 3 9 8 3

-24 -90+72 +45 -192 +18

= -171



A Little History . . .

William Rowan Hamilton
(1805 – 1865)
Dublin



Complex Numbers (a + bi), i =
√
−1
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Complex Numbers (a + bi)

(a + bi)(c + di)

= (ac− bd) + (ad + bc)i

Hamilton: C = R2

so a + bi⇒ (a, b)

and (a + bi)(c + di)⇒ (a, b)(c, d) = (ac− bd, ad + bc)



What about multiplication in R3?



What about multiplication in R3?

Good question.
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What about multiplication in R3?

What are properties we’ve come to expect of multiplication?

• Commutativity: ab = ba

• Associativity: (ab)c = a(bc)

• Distributes over addition: a(b + c) = ab + ac

• and . . .



Unfortunately . . .

Creating a rule for multiplication in R3 that retained the properties and consequences of

multiplication found in R and R2 proved elusive.

Eventually (16 years after he began his pursuit), Hamilton had an epiphany . . .



Quaternions

If R3 won’t comply, why not consider R4?

Hamilton described numbers of the form a + bi + cj + dk where a was called the real or scalar part

and bi + cj + dk the vector or imaginary part.

His epiphany?



Quaternions

If R3 won’t comply, why not consider R4?

Hamilton described numbers of the form a + bi + cj + dk where a was called the real or scalar part

and bi + cj + dk the vector or imaginary part.

His epiphany?

i2 = j2 = k2 = ijk = −1

. . . of course.



Quaternions

Hamilton’s rules for quaternion multiplication are involved:

• ij = k = −ji

• ki = j = −ik

• jk = i = −kj

• i2 = j2 = k2 = ijk = −1

. . and while not commutative, skew symmetry was apparently close enough.

The set R4 with Hamilton’s quaternion multiplication is usually denoted H.



Quaternions

Hamilton’s rules for quaternion multiplication are involved:

• ij = k = −ji

• ki = j = −ik

• jk = i = −kj

• i2 = j2 = k2 = ijk = −1

Consider the length of time Hamilton spent puzzling about this question and ask yourself how long

you’d be willing to pursue the answer . . .



As luck would have it quaternions proved too cumbersome for most

(which may explain why Gauss, who had discovered many of the same results in 1819, never published

his observations) and it wasn’t until one of Hamilton’s students, Peter Tait, found himself playing with

the numbers that vector multiplication found its way into the math books.



Tait considered the product of ~v = v1i + v2j + v3k and ~w = w1i + w2j + w3k

(note the absence of the fourth dimension).

His results were

(~v)(~w) = −(v1w1 + v2w2 + v3w3) + (v2w3 − v3w2)i + (v1w3 − v3w1)j + (v1w2 − v2w1)k

. . . and following Hamilton’s lead, Tait proposed that vector multiplication in R3 could be separated

into two components . . .
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Tait considered the product of ~v = v1i + v2j + v3k and ~w = w1i + w2j + w3k

(note the absence of the fourth dimension).

His results were

(~v)(~w) = −(v1w1 + v2w2 + v3w3) + (v2w3 − v3w2)i + (v1w3 − v3w1)j + (v1w2 − v2w1)k

. . . and following Hamilton’s lead, Tait proposed that vector multiplication in R3 could be separated

into two components . . .

The scalar product: ~v · ~w = v1w1 + v2w2 + v3w3

and the vector product: ~v × ~w = (v2w3 − v3w2)i + (v1w3 − v3w1)j + (v1w2 − v2w1)k



Dot Product

For ~v = (v1, v2, ..., vn), ~w = (w1, w2, ..., wn), ~v · ~w =

n∑
k=1

vkwk

And equivalently ~v · ~w = ||~v||||~w|| cos θ

The geometric definition is often used to determine the angle between two vectors:

θ = arccos

(
~v · ~w
||~v||||~w||

)

. . . and to determine the

work done in applying a force in

the direction an object moves.

W = ~F · d
θ

F

F cos
θ



Cross Product

For ~v = v1i + v2j + v3k and ~w = w1i + w2j + w3k

~v × ~w =

∣∣∣∣∣∣
i j k

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣
And equivalently ~v × ~w = (||~v||||~w|| sinφ)n, where n is the

unit vector normal to ~v and ~w and obeying the “right hand” rule.

v w sin (φ)|| |||| ||

φ
v

w

)( n

x

v
w

y

φ

A = bh

= v w sin (φ)|| |||| ||

The magnitude in the geometric definition is the area of a

parallelogram with sides ~v and ~w.



Cross Product

A few remarks about the relationship between the analytical definition and the geometric.

Consider ~v × ~w in R2 (since ~v and ~w occur in a common plane this is a reasonable simplification).

We want to show that for ~v = (v1, v2) and ~w = (w1, w2)

||~v × ~w|| =
∣∣∣∣ v1 v2
w1 w2

∣∣∣∣ = ||~v||||~w|| sinφ

We already see that the area

of the parallelogram with sides ~v

and ~w is given by ||~v||||~w|| sinφ.

x

v
w

y

φ

A = bh

= v w sin (φ)|| |||| ||



Cross Product

Now consider the coordinate form of the

vectors.

x

v
w

y

v
w

+

(w1 w2)

(v1 v2)

,

,

(v1 + w1 v2 + w2),



Cross Product

The area of the enclosing rectangle

is given by (v1 + w1)(v2 + w2) =

v1v2 + v1w2 + v2w1 + w1w2.

x

y

(w1 w2)

(v1 v2)

,

,

(v1 + w1 v2 + w2),

(w1 w2)

(v1 v

,

,v

Area: (v1 + w1)(v2 + w2) = v1v2 + v1w2 + v2w1 + w1w2



Cross Product

The areas of the surrounding triangles:
1

2
w1w2 and

1

2
v1v2.

x

y

(w1 w2)
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,

,

(v1 + w1 v2 + w2),

1
2w1w2

1
2v1v2



Cross Product

The areas of the surrounding triangles:
1

2
w1w2 and

1

2
v1v2.

And the surrounding trapezoids:

v2 ·
1

2
(w1+w1+v1) and w1 ·

1

2
(v2+v2+w2)

x

y
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Cross Product

The areas of the surrounding triangles:
1

2
w1w2 and

1

2
v1v2.

And the surrounding trapezoids:

v2 ·
1

2
(w1+w1+v1) and w1 ·

1

2
(v2+v2+w2)

Which totals to w1w2 + v1v2 + 2w1v2.
Total: 1

2w1w2 + 1
2v1v2 + v2 · 1

2(w1 + w1 + v1) + w1 · 1
2(v2 + v2 + w2)

= 1
2w1w2 + 1

2v1v2 + w1v2 + w1v2 + 1
2v1v2 + 1

2w1w2

= w1w2 + v1v2 + 2w1v2
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,
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(v1 v,v
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Cross Product

It follows that the area of the parallelo-

gram is given by

A = v1v2 + v1w2 + v2w1 + w1w2 −
(w1w2 + v1v2 + 2w1v2)

= v1w2 − v2w1
x

y

w1w2 + v1v2 + 2w1v2

x

y

v1v2 + v1w2 + v2w1 + w1w2

x

y

Parallelogram Area: v1v2 + v1w2 + v2w1 + w1w2 − (w1w2 + v1v2 + 2w1v2)

= v1w2 − v2w1



Cross Product

It follows that the area of the parallelo-

gram is given by

A = v1v2 + v1w2 + v2w1 + w1w2 −
(w1w2 + v1v2 + 2w1v2)

= v1w2 − v2w1

=

∣∣∣∣ v1 v2
w1 w2
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Parallelogram Area: v1v2 + v1w2 + v2w1 + w1w2 − (w1w2 + v1v2 + 2w1v2)

= v1w2 − v2w1

=
v1 v2

w1 w2



Cross Product

We conclude that

||~v × ~w|| =
∣∣∣∣ v1 v2
w1 w2

∣∣∣∣ = ||~v||||~w|| sinφ

x

v
w

y

= v w sin (φ)|| |||| ||
Area

=
v1 v2

w1 w2

φ



The Scalar Triple Product

The volume of a parallelepiped with edge vectors ~u, ~v,

and ~w is given by the Scalar Triple Product where the

angle φ is less than π (so ~u lies in the same vertical

direction as ~v × ~w.)

V = |(~v × ~w) · ~u|
v

w
φ

v w×

u



Cross Product

~v = ~r × ~s

Consider a rigid spinning body with its center of mass at the

origin. The vector ~r represents its spin which lies on the axis

of rotation and emanates from the origin. We assume the

spin is counterclockwise (as seen from ~r looking toward the

origin. The magnitude ||~r|| represents the angular velocity (in

radians/sec e.g.) – the faster the spin the longer the vector.

Let ~s be the displacement vector from the origin to any point

on the body and let θ be the angle between ~r and ~s. As

point s moves around the axis it has (linear) velocity ~v. The

magnitude ||~v|| is ||~r|| times the distance s is from the axis.

In other words ||~v|| = ||~r||||~s|| sin θ. Since ~v is tangent to the

surface at s it is perpendicular to the plane containing ~r and

~s so it meets the definition of ~v = ~r × ~s.

θ

r

vs



Example

Find the vector parallel to the line of intersection of

the planes 2x + 3y + z = 4 and 3x− 4y − 3z = 5.

2i + 3j + k

2  +
 3  

+   =
 4

x
y

z

3i – 4j – 3k

3   – 4  – 3  = 5

x
y

z



Example

Find the vector parallel to the line of intersection of

the planes 2x + 3y + z = 4 and 3x− 4y − 3z = 5.

Solution: Since the line of intersection lies in both

planes it is perpendicular to both the defining normal

vectors. That is, it lies in the direction of the vector

given by (2i + 3j + k)× (3i− 4j− 3k)

=

∣∣∣∣∣∣
i j k

2 3 1

3 −4 −3

∣∣∣∣∣∣ = −5i + 9j− 17k.

2i + 3j + k

2  +
 3  

+   =
 4

x
y

z

3i – 4j – 3k

3   – 4  – 3  = 5

x
y

z

Since the line is also parallel to (3i− 4j− 3k)× (2i + 3j + k) (vector pointed in the opposite
direction) we can also have 5i− 9j + 17k as a solution.



Distance from a point to a plane

Consider the plane A(x−x0)+B(y−y0)+C(z−z0) = 0

(equivalently Ax + By + Cz − D = 0). The unit

normal vector to this plane is given by

n =
Ai + Bj + Ck√
A2 + B2 + C2

The distance we want is ||−→PQ|| which is the magnitude

of the projection of ~v =
−→
RP on n.

It follows that

|~v · n| = |[(x1 − x0)i + (y1 − y0)j + (z1 − z0)k] · n|

=
|A(x1 − x0) + B(y1 − y0) + C(z1 − z0)|√

A2 + B2 + C2
x

y

z x y z(  ,   ,   )1 1 1

x y z(  ,   ,   )0 0 0

P

Q

R

n

v

Or equivalently d =
|Ax1 + By1 + Cz1 + D|√

A2 + B2 + C2
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Consider the plane A(x−x0)+B(y−y0)+C(z−z0) = 0
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A2 + B2 + C2

Example Find the distance from P = (2, 0,−1) to the plane 3x− 2y + 8z + 1 = 0.



Distance from a point to a plane

Consider the plane A(x−x0)+B(y−y0)+C(z−z0) = 0

(equivalently Ax + By + Cz − D = 0). The unit

normal vector to this plane is given by

n =
Ai + Bj + Ck√
A2 + B2 + C2

The distance we want is ||−→PQ|| which is the magnitude

of the projection of ~v =
−→
RP on n.

It follows that

|~v · n| = |[(x1 − x0)i + (y1 − y0)j + (z1 − z0)k] · n|

=
|A(x1 − x0) + B(y1 − y0) + C(z1 − z0)|√

A2 + B2 + C2
x

y

z x y z(  ,   ,   )1 1 1

x y z(  ,   ,   )0 0 0

P

Q

R

n

v

Or equivalently d =
|Ax1 + By1 + Cz1 + D|√

A2 + B2 + C2

Example Find the distance from P = (2, 0,−1) to the plane 3x− 2y + 8z + 1 = 0.

Solution: d =
|3(2)− 2(0) + 8(−1) + 1|√

32 + (−2)2 + 82
=
| − 1|√

77
=

1√
77


