Math 253
Notes

Projection

Suppose you have a vector, \vec{w}

Projection

Suppose you have a vector, \vec{w}, and you want to break it down into two orthogonal (perpendicular) components.

Projection

Suppose you have a vector, \vec{w}, and you want to break it down into two orthogonal (perpendicular) components.
Typically we use horizontal and vertical vectors.

$$
\vec{w}=w_{1} \hat{i}+w_{2} \hat{j}
$$

Projection

Suppose you have a vector, \vec{w}, and you want to break it down into two orthogonal (perpendicular) components.
But there's no rule that says you can't break it down into components based on an arbitrary direction like vector \vec{v}.

Projection

Suppose you have a vector, \vec{w}, and you want to break it down into two orthogonal (perpendicular) components.
But there's no rule that says you can't break it down into components based on an arbitrary direction like vector \vec{v}.
Note θ, the angle between \vec{w} and \vec{v}.

Projection

Suppose you have a vector, \vec{w}, and you want to break it down into two orthogonal (perpendicular) components.
But there's no rule that says you can't break it down into components based on an arbitrary direction like vector \vec{v}.
Then we have a component of \vec{w} parallel to the direction of \vec{v} and a component of \vec{w} perpendicular to the direction of \vec{v}.

$$
\vec{w}=\vec{w}_{\|}+\vec{w}_{\perp}
$$

Projection

Suppose you have a vector, \vec{w}, and you want to break it down into two orthogonal (perpendicular) components.
To find the component of \vec{w} in the direction of \vec{v} (the projection of \vec{w}) we begin with the unit vector of \vec{v}, $\frac{\vec{v}}{\|\vec{v}\|}$ to give us direction.

Projection

Suppose you have a vector, \vec{w}, and you want to break it down into two orthogonal (perpendicular) components.
To find the component of \vec{w} in the direction of \vec{v} (the projection of \vec{w}) we begin with the unit vector of \vec{v}, $\frac{\vec{v}}{\|\vec{v}\|}$ to give us direction.
Then since the magnitude of the vector in the direction of \vec{v} is given by $\|\vec{w}\| \cos \theta$,

Projection

Suppose you have a vector, \vec{w}, and you want to break it down into two orthogonal (perpendicular) components.
To find the component of \vec{w} in the direction of \vec{v} (the projection of \vec{w}) we begin with the unit vector of \vec{v}, $\frac{\vec{v}}{\|\vec{v}\|}$ to give us direction.
Then since the magnitude of the vector in the direction of \vec{v} is given by $\|\vec{w}\| \cos \theta=\vec{w} \cdot \frac{\vec{v}}{\|\vec{v}\|}$, we have a component of \vec{w} parallel to \vec{v} :

$$
\vec{w}_{\|}=\left(\vec{w} \cdot \frac{\vec{v}}{\|\vec{v}\|}\right) \frac{\vec{v}}{\|\vec{v}\|}
$$

Projection

Suppose you have a vector, \vec{w}, and you want to break it down into two orthogonal (perpendicular) components.
To find the component of \vec{w} in the direction of \vec{v} (the projection of \vec{w}) we begin with the unit vector of \vec{v}, $\frac{\vec{v}}{\|\vec{v}\|}$ to give us direction.
It follows the vector orthogonal (perpendicular) to $\vec{w}_{\|}$ is given by

$$
\vec{w}_{\perp}=\vec{w}-\left(\vec{w} \cdot \frac{\vec{v}}{\|\vec{v}\|}\right) \frac{\vec{v}}{\|\vec{v}\|}
$$

Example

Decompose $\vec{w}=2 \hat{i}-3 \hat{j}$ into components parallel and perpendicular to vector $\vec{v}=3 \hat{i}-\hat{j}$.

Solution:

We know $\vec{w}_{\|}=\left(\vec{w} \cdot \frac{\vec{v}}{\|\vec{v}\|}\right) \frac{\vec{v}}{\|\vec{v}\|}=\left(\frac{\vec{w} \cdot \vec{v}}{\|\vec{v}\|^{2}}\right) \vec{v}$
Then $\vec{w} \cdot \vec{v}=6+3=9$
and $\|\vec{v}\|^{2}=\left(\sqrt{3^{2}+(-1)^{2}}\right)^{2}=10$
So $\vec{w}_{\|}=\frac{9}{10}(3 \hat{i}-\hat{j})=2.7 \hat{i}-0.9 \hat{j}$
It follows that since $\vec{w}_{\perp}=\vec{w}-\vec{w}_{\|}$we have $\vec{w}_{\perp}=2 \hat{i}-3 \hat{j}-(2.7 \hat{i}-0.9 \hat{j})=-0.7 \hat{i}-2.1 \hat{j}$

