Math 253

Notes

Projection

Suppose you have a vector, \vec{w}

Suppose you have a vector, \vec{w} , and you want to break it down into two orthogonal (perpendicular) components.

Suppose you have a vector, \vec{w} ,

and you want to break it down into two orthogonal (perpendicular) components.

Typically we use horizontal and vertical vectors.

 $ec{w} = w_1 \hat{i} + w_2 \hat{j}$

Suppose you have a vector, \vec{w} ,

and you want to break it down into two orthogonal (perpendicular) components.

But there's no rule that says you can't break it down into components based on an arbitrary direction – like vector \vec{v} .

Suppose you have a vector, \vec{w} ,

and you want to break it down into two orthogonal (perpendicular) components.

But there's no rule that says you can't break it down into components based on an arbitrary direction – like vector \vec{v} .

Note θ , the angle between \vec{w} and \vec{v} .

Suppose you have a vector, \vec{w} ,

and you want to break it down into two orthogonal (perpendicular) components.

But there's no rule that says you can't break it down into components based on an arbitrary direction – like vector \vec{v} .

Then we have a component of \vec{w} parallel to the direction of \vec{v} and a component of \vec{w} perpendicular to the direction of \vec{v} .

$$\vec{w} = \vec{w}_{\parallel} + \vec{w}_{\perp}$$

Suppose you have a vector, \vec{w} ,

and you want to break it down into two orthogonal (perpendicular) components.

To find the component of \vec{w} in the direction of \vec{v} (the projection of \vec{w}) we begin with the unit vector of \vec{v} , $\frac{\vec{v}}{||\vec{v}||}$ to give us direction.

Suppose you have a vector, \vec{w} ,

and you want to break it down into two orthogonal (perpendicular) components.

To find the component of \vec{w} in the direction of \vec{v} (the projection of \vec{w}) we begin with the unit vector of \vec{v} , $\frac{\vec{v}}{||\vec{v}||}$ to give us direction.

Then since the magnitude of the vector in the direction of \vec{v} is given by $||\vec{w}|| \cos \theta$,

Suppose you have a vector, \vec{w} ,

and you want to break it down into two orthogonal (perpendicular) components.

To find the component of \vec{w} in the direction of \vec{v} (the projection of \vec{w}) we begin with the unit vector of \vec{v} , $\frac{\vec{v}}{||\vec{v}||}$ to give us direction.

Then since the magnitude of the vector in the direction of \vec{v} is given by $||\vec{w}||\cos\theta = \vec{w} \cdot \frac{\vec{v}}{||\vec{v}||}$, we have a component of \vec{w} parallel to \vec{v} :

$$\vec{w}_{\parallel} = \left(\vec{w} \cdot \frac{\vec{v}}{||\vec{v}||}\right) \frac{\vec{v}}{||\vec{v}||}$$

Suppose you have a vector, \vec{w} ,

and you want to break it down into two orthogonal (perpendicular) components.

To find the component of \vec{w} in the direction of \vec{v} (the projection of \vec{w}) we begin with the unit vector of \vec{v} , \vec{v} $\frac{1}{||\vec{v}||}$ to give us direction.

It follows the vector orthogonal (perpendicular) to \vec{w}_{\parallel} is given by

$$\vec{w}_{\perp} = \vec{w} - \left(\vec{w} \cdot \frac{\vec{v}}{||\vec{v}||}\right) \frac{\vec{v}}{||\vec{v}||}$$

Example

Decompose $\vec{w} = 2\hat{i} - 3\hat{j}$ into components parallel and perpendicular to the vector $\vec{v} = 3\hat{i} - \hat{j}$.

Solution:

We know
$$\vec{w}_{\parallel} = \left(\vec{w} \cdot \frac{\vec{v}}{||\vec{v}||}\right) \frac{\vec{v}}{||\vec{v}||} = \left(\frac{\vec{w} \cdot \vec{v}}{||\vec{v}||^2}\right) \vec{v}$$

Then $\vec{w} \cdot \vec{v} = 6 + 3 = 9$ and $||\vec{v}||^2 = \left(\sqrt{3^2 + (-1)^2}\right)^2 = 10$

So $\vec{w_{\parallel}} = \frac{9}{10}(3\hat{i} - \hat{j}) = 2.7\hat{i} - 0.9\hat{j}$

It follows that since $\vec{w}_{\perp} = \vec{w} - \vec{w}_{\parallel}$ we have $\vec{w}_{\perp} = 2\hat{i} - 3\hat{j} - (2.7\hat{i} - 0.9\hat{j}) = -0.7\hat{i} - 2.1\hat{j}$