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Numbers and Data Analysis 
 

With thanks to George Goth, Skyline College for portions of this material. 
 
Significant figures 
 
Significant figures (sig figs) are only the first approximation to uncertainty and what is 
called ‘error analysis’.  But what are sig figs?  It depends on the circumstances.  If your 
talking about a homework problem for instance, then it’s the number of digits given 
importance in a figure, usually two to three digits.  If you are talking about data, 
experimental results, a theoretical or ‘known’ value (e.g. gravity) then it is the digits we 
are certain of plus one we are uncertain of. 
 
Here are some rules for counting sig figs: 
 
Zeros within a value are always counted.   
 
Example: 4032 and 50.03 both have four sig fig. 
 
Zeros setting the decimal point are not significant.  
 
Example:   All of these have 2 sig figs    52,000,000    3.7 x 109    0.00074    2.3 x 10-15    
 
Zeros not setting the decimal point are significant. 
 
Example: 0.00025  has five sig figs. 
 
 
Rounding numbers 
 
Now I know that you paid a lot for that fancy scientific calculator that gives you 
something like ten digits or so, and you think “Hey, I paid for them, so I should use 
them!” well not so.  Think of it this way:  I have a friend who has a nice watch that is 
accurate to one second in ten thousand years, but when I ask him the time he tells me 
‘About a quarter to twelve.’  Most times you only need two to four sig figs.  Round your 
results to what is appropriate.  How?  look at the first number you are going eliminate.  If 
it is five or greater increase the next number by one (rounding up) and if it is four or less 
leave that last number alone (rounding off).  Here is an example: 
 
 
rounding up    12.3456789   ⇒   12.35 
 
rounding off     98.7654321  ⇒   98.77 
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Calculations and rounding  
 
You have to be careful when rounding numbers.  If you round too soon, the rounding 
will affect your results.  An Example: 
 
You have two measured values, 12.34 and 2.34.  If you round, then multiply, then round 
your results to two sig figs you get very different outcomes. 
 
Rounded to     Calculation   Result 
 
Left alone   12.34 x 3.14 = 38.7476      39 ⇒
One decimal place  12.3 x 3.1 = 38.1300      38 ⇒
Whole number  12 x 3 = 36.0000       36 ⇒
 
 
But when do you start rounding numbers?  The simple answer is, as your last step.  But 
you need to know what is significant during an intermediate step.  Here are some 
examples of carrying sig figs through calculations. 
 
For addition and subtraction.  Your result has sig figs only to the decimal place that both 
the original numbers had sig figs. 
 
 12.35 cm 4 sig figs Decimal to the hundredths 
 - 3.1 cm 2 sig figs Decimal to the tenths 
 ---------- 
   9.25 cm  calculator answer 
  
The value with the least number of decimal places was 3.1 cm, with a decimal place to 
the tenths, so the result is only be expressed to the tenths as well. 
 
 9.3 cm  Remember,  fives round up. 
 
 
Now for multiplication and division.  The result has same number of sig figs as the factor 
with least number of sig figs. 
 
    12.34 cm x 3.14 cm = 38.7476 cm  calculator answer 
Sig figs      4               3 
 
So this result is expressed to 3 sig figs, which is 38.7 cm 
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Reporting values 
 
First you report all numbers you are certain of and first you are uncertain of: 
 
 12.35 cm 
 c c c u 
 
Where the uncertain number is ± 1 
 
12.35 cm could be as low as 12.34 cm and as high as 12.36 cm 
 
This is called the range of the value. 
 
 
When you report a value, you first state the nominal value then the uncertainty.  Using 
the previous example: 
 
     12.35  ±  0.01 cm 
  Nominal      Uncertainty 
 
 
Uncertainties 
 
At this point you must be wondering were the uncertainties come from and if all values 
have an uncertainty.  There are three types of values: 
 
1) Constants and coefficients.  These have no uncertainty associated with them.  

Examples are π , the natural log e, 1
2

 (e.g. 21 mv
2

), etc.  

 
2) Measured values.  These have an uncertainty that is associated with the device and 
method of taking the measurement (called systematic errors).  Example:  
 
Measuring the length 12.35 ± 0.01 cm with a centimeter rule.  You are certain of the 
measurement of 12 cm, and 3 mm.  You believe the true value of the last digit to lie 
about halfway between 3 mm and 4 mm and are confident in that give-or-take one unit 
(i.e. one tenth of a mm). 
 
Measuring the mass of an object as 503 ± 0.5 gm on a beam balance.  You are certain 
of the mass measurement 503 gm give-or-take half a gram. 
 
3) Populations of measured values.  These have an uncertainty that is associated with 
variations in the measurement (random errors).  An example is you drop a ½ kg mass 
100 times, measuring the final velocity each time.  You now have a population of 100 
data points measuring the velocity with a small (let’s hope!) variation between the 
different measured values. 
 
So the first case is easy to deal with, no uncertainty, the second and third need some 
attention. 
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Absolute and relative (percentage) uncertainties 
 
You measure one mass with a precision of ± 1 mg; you measure another mass with a 
precision of ± 1 kg. Which measurement is more precise value? 
 
It is tempting to say ± 1 mg is the more precise value, it is after all smaller, but that is 
not necessarily true that it is more precise.  Suppose the ± 1 mg measurement was of 
an ant with a mass of 3 mg while the ± 1 kg measurement was of an elephant with a 
mass of 3000 kg. 
 
Now ± 1 mg is 33% of 3 mg while ± 1 kg is 0.033 % of 3000 kg. So which is more 
precise now? It matters how big the uncertainty is compared to what you are measuring. 
 
This illustrates the two types of uncertainty.  Absolute (± 1 mg) and relative (or 
percentage) uncertainty.  Absolute uncertainties (au)have units.  Examples: 
 
 12.35 ± 0.01 cm or  503 ± 0.5 gm  
 
Relative uncertainties (ru) have no units and are usually, though not always, shown as a 
percent (%).   
 
ru = au/nominal value 
 
percent uncertainty = ru x 100% 
 
Example: 
 
 503 ± 0.5 gm 
 
ru = au/ nominal value = 0.5/503 = 0.001 
percent uncertainty = ru x 100 = 0.001 x 100 = 0.1 % 
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Combining uncertainties 
 
When we combine values the uncertainties in the values have to be combined as well.  
This means that uncertainties propagate or grow.  We use the following two rules. 
 
1) Addition and subtraction.  Add the absolute uncertainties.  Examples: 
 
Addition 
 
add 12±2 gm to 97±2 gm 
 
     97 ± 2 
 + 12 ± 2 
  109 ± 4 gm 

 
Subtraction 
 
subtract 12±2 gm from 97±2 gm 
 
 97 ± 2 
 - 12 ± 2 
 85 ± 4 gm 

 
 
2) Multiplication and division.  Use the relative or percent uncertainty to find the 
combined uncertainty.  Example 
 
A desk top is measured to be 97 cm by 12 cm. If the absolute error on each is 2 cm, 
what is the area and the absolute, relative and percentage uncertainties? 
 
Area = L W = 97 x 12 = 1164 cm2

 
Now to find the uncertainties we must calculate the relative uncertainty of the length and 
width. 
 

rulength = 2 / 97 = 0.0206 (carrying a few extra sig figs for the moment) 
ruwidth = 2 / 12 = 0.1666 
ruarea = rulength + ruwidth = 0.0206 + 0.1666 = 0.1873 
auarea = Area x ruarea = 1164 x 0.1873 = 218 cm2

 
 
Generally the absolute uncertainty is expressed to one sig fig (sometimes two sig figs) 
and the calculated value is expressed to the same decimal place as the absolute 
uncertainty 
 

218 cm2 = 200 cm2    (1 sig fig)   in the hundreds 
 or    = 220 cm2   (2 sig figs)  in the tens 

 
 
To the nearest hundred 1164 is 1.2 x 103 cm2   
with an uncertainty to one sig fig shown as       1.2 ± 0.2 x 103 cm2  
 
or
 
To the nearest ten 1164 is 1.16 x 103 cm2  
with an uncertainty to two sig figs shown as      1.16± 0.22 x 103 cm2
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Random uncertainty in a population 
 
As mentioned previously if you take a series of measurements of the same quantity you 
have what is referred to as a populations of measured values.  These will have an 
uncertainty that is due to random variations in the measurement.  The example was 
given of measuring the final velocity of a ½ kg mass dropped 100 times.  You would 
have a population of 100 data points with a small random variation.  You will find that 
these measurements will distribute themselves in a ‘bell’ curve, also known as a normal 
or Gaussian distribution.  We can use some basic statistics to find the nominal value 
and the statistical uncertainty of that value. 
 
The mean (also known as the average) value of the population is used as the nominal 
value and can be found by using the following:  
 

N

i
i 1

x
X

N
==
∑

 

 
Where Xi is a individual measured value, N is the number of measurements in the 
population and X  is the mean.   
 
As an example here is a sample population of measurements in cm: 
 
2.3, 2.5, 3.1, 1.9, 2.2, 2.7 and 2.6.   
 
The mean of our sample population is calculated: 
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We can now estimate the uncertainty by using the standard deviation xσ   
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For our sample population xσ = 0.386 cm. 
 
Putting these together our nominal value and uncertainty are 2.5 ± 0.4 cm. 
 
We know that for such a distribution, 68% of the measurements are predicted to lie in 
the range X + xσ  to X - xσ  (within 1 σ).  So 68% of the measurements in this population 
are between 2.1 cm and 2.9 cm.  If we take another measurement we have a 68% 
chance that it will fall in this range.  A 1.5 σ range gives us 87%, a 2 σ range gives us 
95%,  and a 3 σ range gives us 99.7% of the population. 
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Comparisons 
 
Now that you have a nominal value and an uncertainty the final step in numerical 
analysis is to determine the level of agreement between your experimental result and 
the theoretical or expected value.  This is done in a variety of ways depending on the 
type of data that you have, but all entail comparison with  
 
 
How many sigma? 
 
The number of sigma (σ) the experimental mean is away from a known theoretical or 
expected value is a very useful means of determining your experimental accuracy.  
 

Number of  
Sigmas 

Quality of  
Agreement 

< 1 σ Very Good 
1 σ Good 

2 σ - 3 σ Fair 
> 3 σ Poor 

 
Discrepancy 
 
Discrepancy (also know as the absolute difference) is the positive difference between 
the experimental result that you achieve and the theoretical value.  The following 
formula will allow you to calculate discrepancy: 
 

Discrepancy =  |Experimental Value — Theoretical Value| 
 
The experimental value is the nominal value you determined by one of the previous 
methods.  Very often the worst case discrepancy is used.  This is found by taking either 
the upper or lower bound of the experimental range (which ever is further away from the 
expected or theoretical value) and using that as the experimental value is the above 
formula. 
 
 
Comparison with uncertainty 
 
This is done by comparison of your uncertainty to the discrepancy.   
If the discrepancy is: 
 

≤ uncertainty then you are in Agreement. 
> uncertainty but  ≤ 3 times uncertainty, you are in Marginal Agreement. 
> 3 times uncertainty, then you are in Disagreement. 

 
The idea here is to show if the discrepancy can be accounted for by the uncertainty 
present in the measurement. 
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Fractional error 
 
This comparison is of the discrepancy to the theoretical or known value by finding the 
ratio of the two. 
 
Fractional Error =  |Experimental  — Theoretical| / Theoretical  
 
 
Percent error 
 
The fractional error is often shown as a percent.  
 

 % Error = Fractional Error x 100% 
 

or 
 

% Error = (|Experimental  — Theoretical| / Theoretical) x 100% 
 
 
Percent difference 
 
When you are comparing two experimental values and there is no known value you 
show the percent difference between the two measurements.   
 

% Difference  =   (|Experimental 1  — Experimental 2|  x 100% 
              ½ (Experimental 1 + Experimental 2) 


