Often yo are given two sets of outputs for the same inputs, and you want to find linear models for each. For example, suppose you have the following table:

x	-2	-1	0	1	2	3
y_{1}	5	6	2	1	-3	-5
y_{2}	-3	-1	0	3	4	7

After putting the x-values in L_{1}, the y_{1}-values in L_{2}, and the y_{2}-values in L_{3}, we are ready to find the equations.

Press STAT, then arrow the cursor to the right so that it's in the CALC column and press 4 for the linear regression option. Notice that it gives the formula in $a x+b$ form, when we are used to $m x+b$ form. No problem, the a that it calculates will be the slope. The default for the $\operatorname{LinReg}(\mathrm{ax}+\mathrm{b})$ command is to take the input values from L_{1} and the output values from L_{2}. This will work for the formula for y_{1}, so press ENTER and you should see the following on the home screen:

The calculator is saying that the best fit line for this data (with the slope and " b " rounded to 2 decimal places) is $y_{1}=-2.23 x+2.11$. To get the second equation, this time press STAT, then arrow the cursor to the right so that it's in the CALC column and press 4 for the linear regression option. Before pressing ENTER, press 2ND $L_{1}, 2 \mathrm{ND}-L_{3}$. This time, the screen should show:

```
LiヶREヨ
```



```
    \(9=1.94285745\)
    \(\mathrm{b}=695266952\)
```


This gives the best fit line for y_{2} as $y_{2}=1.94 x+0.70$. Put both equations into the $y=$ screen and press ZOOM-6 to see the graph. The intersection can be obtained by pressing 2ND, CALC-5, then by pressing ENTER three times. The graph after the calculator has found the intersection looks like the picture below:

If you want to see the scattergram of the data for each line plotted as well, we should set up the statplots. Press 2ND STAT PLOT 1 to see the details of the first plot. To plot L_{1} v.s. L_{2} using little squares for the points, make sure the first statplot screen looks like the following:

The second statplot to plot L_{1} v.s. L_{3} using little pluses for the points, make sure the second statplot screen looks like the following:

Press graph to see the following:

