1. Solve: $\frac{\sqrt{2}}{3} \sin x+\frac{4}{3}=1$. Give all real solutions in exact form.
2. Solve: $\sqrt{3} \cos x+\frac{1}{2}=2$. Give all solutions in $-3 \pi \leq x \leq 2 \pi$ in exact form. (Hint: after you solve for $\cos x$, multiply the number by $\frac{\sqrt{3}}{\sqrt{3}}$ to make it look more familiar as a "special" value.)
3. Use your calculator to solve: $5 \sin \left[2\left(x+\frac{\pi}{2}\right)\right]+3=7$. Give all solutions in $-10 \leq x \leq 10$ rounded to four significant digits. (Hint: -3 was a typo and has been changed to +3)
4. Use your calculator to solve: $2 \sin x=\cos (2 x)$. Give all solutions in $0 \leq x \leq 2 \pi$ rounded to four decimal places.
5. Use your calculator to solve: $\sin ^{2} x>\sin \left(x^{2}\right)$. Give all solutions in $0 \leq x \leq \pi$ rounded to four significant digits.
