1. Solve: $\frac{\sqrt{2}}{3}\sin x + \frac{4}{3} = 1$. Give all real solutions in exact form.

2. Solve: $\sqrt{3}\cos x + \frac{1}{2} = 2$. Give all solutions in $-3\pi \le x \le 2\pi$ in exact form. (Hint: after you solve for $\cos x$, multiply the number by $\frac{\sqrt{3}}{\sqrt{3}}$ to make it look more familiar as a "special" value.)

3.	Use your calculator to solve: $5\sin\left[2\left(x+\frac{\pi}{2}\right)\right]+3=7$. Give all solutions in $-10 \le x \le 10$
	rounded to four significant digits. (Hint: -3 was a typo and has been changed to $+3$)

4. Use your calculator to solve: $2\sin x = \cos(2x)$. Give all solutions in $0 \le x \le 2\pi$ rounded to four decimal places.

5. Use your calculator to solve: $\sin^2 x > \sin(x^2)$. Give all solutions in $0 \le x \le \pi$ rounded to four significant digits.