1. Fill in the table:

The Number to Round off and the Level of Rounding	Underline the Digit(s)	The Next Digit	Round Up or Down	Answer
1) 207.845 Round to 3 significant digits	207.845	8	Up, since $8 \geq 5$	208
2) 17.0483 Round to the nearest tenth				
3) 3467.892 Round to the nearest 100				
4) 3467.892 Round to the nearest 100th				
5) 2089.0056 Round to 3 significant digits				
6) 99.9978 Round to the nearest 10th				
7) 18.98 Round to one significant digit				
8) 274.9847 Round to 3 significant digits				
9) 274.9847 Round to the nearest 10				
10) 5,870,384.75 Round to 5 significant digits				
11) 2.05789 Round to the nearest 10				

2. Suppose member 1 has $\$ 47,381.75$ and member 2 has $\$ 158,625.49$.
(a) How much of each bill do member \#1 and member \#2 have together? Record the number of bills in each denomination.

$\$ 100,000$	$\$ 10,000$	$\$ 1000$	$\$ 100$	$\$ 10$	$\$ 1$	dimes	pennies

(b) Keeping the total amount of money the same exchange each denomination if necessary to keep the number of bills in each denomination less than ten. Record the new number of bills in each denomination.

$\$ 100,000$	$\$ 10,000$	$\$ 1000$	$\$ 100$	$\$ 10$	$\$ 1$	dimes	pennies

(c) How much money do they have together?
3. Complete the following addition table:

+	9	2	7	1	10	6	8	4	3	5	0
7											

4. Place commas to separate the periods, then write out the number in words:

4005870384.75

5. Find three different combinations of bills (only $\$ 1$'s, $\$ 10^{\prime}$ s, $\$ 100 ' \mathrm{~s}, \$ 1,000$'s, $\$ 10,000$'s) to make $\$ 42,751$.
(a)
(b)
(c)
