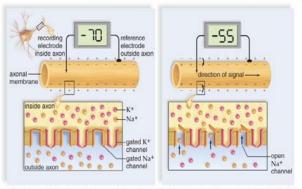
Neural Topics

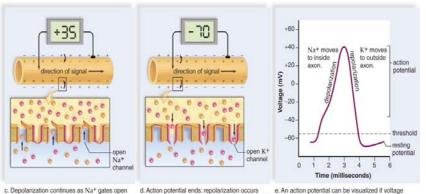
- 1. neural cells & signals
- 2. CNS
- 3. PNS
- 4. drugs
- 5. diseases

Neural Cells

- 1) neurons (20%) function: transmit neural signals
- sensory neuron send environment info to CNS
- interneuron process & act on environ. info
- motor neuron send CNS info to muscles
- 2) neuroglial cells (80%)
 - function: support & protect neurons
 - Schwann cells (myelin) protect signals


Neuron & Neuroglia

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. a. Sensory neuron sensory cell body receptor axon 3 neurons: direction of conduction sheath sensory, Schwann interneuron, b. Interneuron motor 400 nm dendrite c. Motor neuron cell body neuroglia: myelin = node of Ranvier insulates 2.7 µm neural signal axon terminal direction of conduction

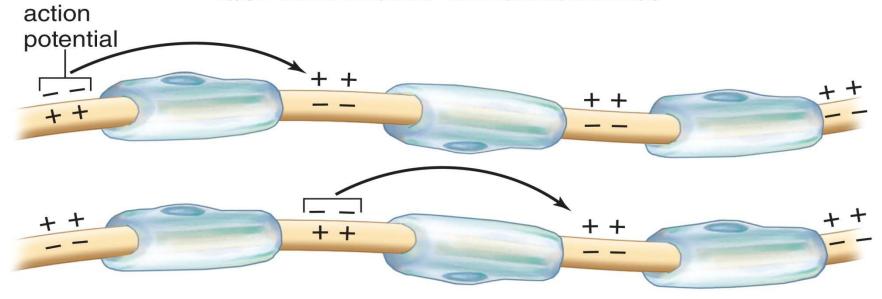

(myelin): © 2013/M.B. Bunge/Biological Photo Service; (cell body): © doc-stock/Visuals Unlimited

Neural Signal (Action Potential)

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

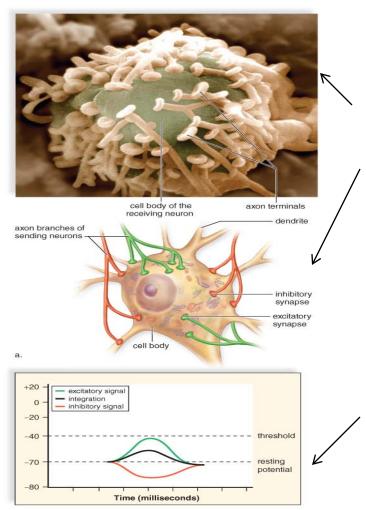
- a. Resting potential: Na+ outside the axon, K+ and large
 b. Stimulus causes the axon to reach its threshold; anions inside the axon. Separation of charges polarizes the axon potential increases from -70 to -55. the cell and causes the resting potential.
 - The action potential has begun.

- and Na+ moves inside the axon.
- when K+ gates open and K+ moves to outside the axon. The sodium-potassium pump returns the ions to their resting positions.
- e. An action potential can be visualized if voltage changes are graphed over time.


4 steps:

- 1) resting potential (-70 mV)
 - at rest
- 2) threshold (-55mV)
- neuron ready to fire depolarize (+35 mV)
 - neuron fires
- 3) repolarize (-70 mV)
 - neuron resets

Neural Signals Travel


- 2 types:
- 1) unmyelinated axon: slow, 1 m/s
- 2) myelinated axon: fast, 100 m/s

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

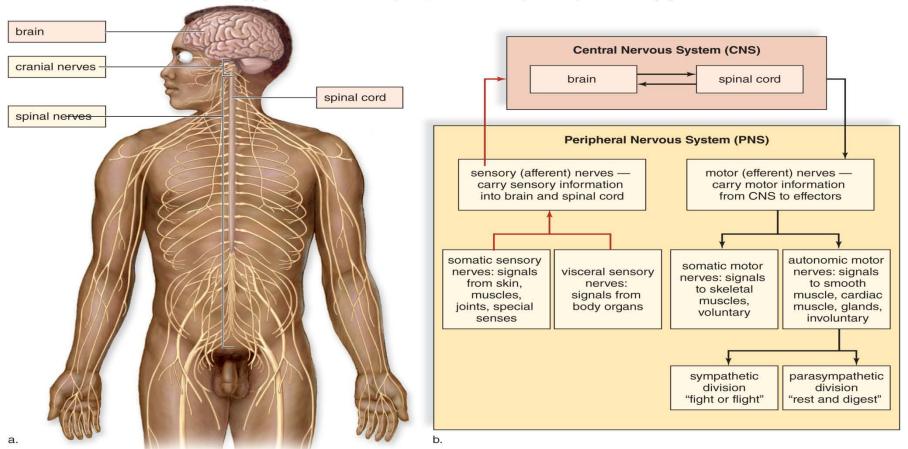
Neural Signals Integrate

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

at each moment, each neuron receive many simult. signals

- a) inhibitory stop action
- b) excitatory start action

at each moment, each neuron "decides" to respond or not

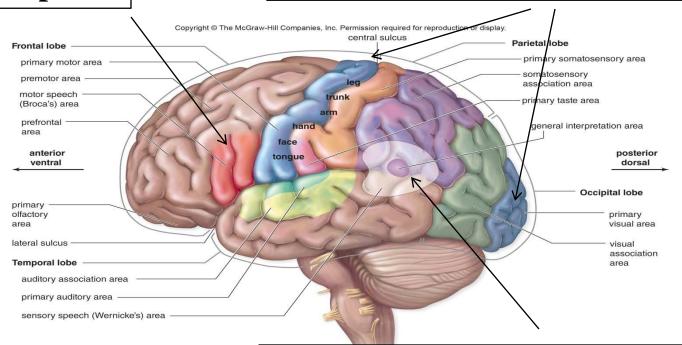

- signals are integrated
- net sum = net action

a: © Science VU/Lewis-Everhart-Zeevi/Visuals Unlimited

Neural System Org.

2 div: CNS & PNS

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



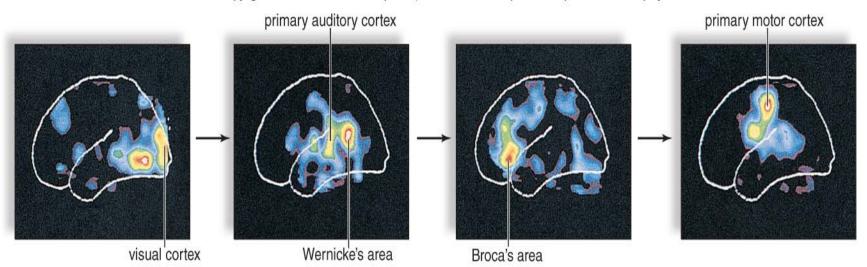
Cerebrum

function: coordinate brain functions, eg reading

Broca's (red)
- motor speech

motor cortex (blue) - speak visual cortez (blue) - see word

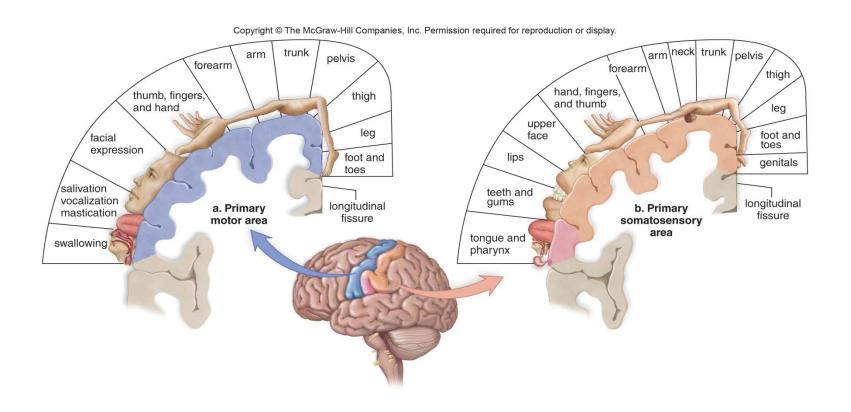
Wernicke's (beige) - interpret


Reading

visual cortez see word Wernicke's interpret

Broca's form words

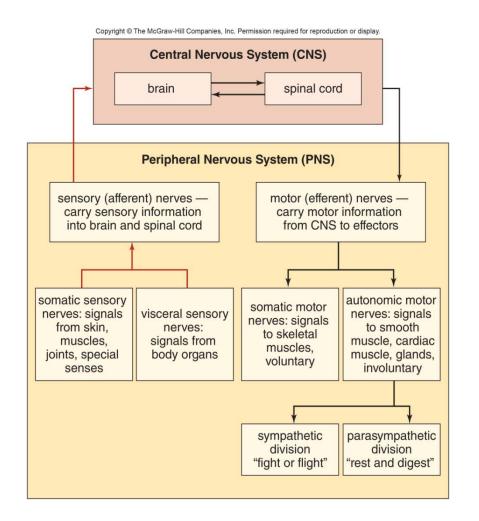
motor cortex use tongue


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- The word is seen in the visual cortex.
- Information concerning the word is interpreted in Wernicke's area.
- word **3.** Information from Wernicke's area area. is transferred to Broca's area. (all): © Marcus Raichle
- **4.** Information is transferred from Broca's area to the primary motor area.

CNS - Homunculus

sensory area: interprets each sensation motor area: implements each muscle movement


Limbic System Functions

- 1) memory & learning
- remember vs use past memories
- -review memory types: long, short, skill
- 2) language & speech
- semantic memory
- review Wernicke's & Broca's areas
- review left & right hemi-spheres

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Left Hemisphere	Right Hemisphere
Verbal	Nonverbal, visuospatial
Logical, analytical	Intuitive
Rational	Creative

PNS

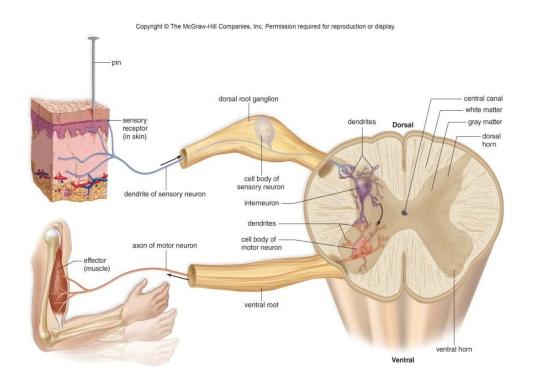
2 divisions:

- 1) sensory sense environment (touch, smell, taste, hear, see)
- 2) motor move in environment
- a) SNS (skeletal muscles)
- b) ANS
 - (smooth & cardiac muscles)
 - 1) sympathetic
 - 2) parasympathetic

SNS

SNS = somatic nervous system

function: reg. body movements (skeletal muscles)


features:

- 1) voluntary movements
 - reg. by brain eg pick up pencil
- 2) involuntary movements
 - reg. by spinal cord eg spinal reflexes
 - move away from sharp objects

Reflex

function: fast protective response (inherited)

- prick -> pull away

steps:

- 1) skin prick
- 2) sensory neuron
 - send signal to brain and cord
- 3) interneuron
 - process signal
 - decide action
- 4) motor neuron
 - send signal to muscle
- 5) muscle
 - effect action, pull away

ANS (2)

ANS = autonomic nervous system

function: reg. organ activities (smooth & cardiac muscles)

features:

- 1) arousal activities (sympathetic div.) eg faster heart rate to fight or run
- 2) relaxation activities (para-sympathetic div.) eg slower heart rate to relax

note: same organ; opposite effects)

Organ Actions (1)

Describe the effect of the parasympathetic and sympathetic actions on the following organs:

- 1) pupil
- 2) salivation
- 3) resp. rate
- 4) heart rate
- 5) blood vessel
- 6) digestion
- 7) bladder
- 8) orgasm

Sympathetic

function: tension and resource usage

- prepares body for immediate response to danger eg faster heart beat, slower digestion

features:

- 1) prod. mental & body alertness
- 2) fast body movements & resource usage
- 3) uses adrenaline (epinephrine)
- 4) increase: HR, BP, BR, pupil dilation decrease: blood flow for digestion, salivation
- 5) wears down with continual stress

Para-sympathetic

function: relaxation & resource buildup
- prepares body for present & future needs
eg slower heart beat, faster digestion

features:

- 1) prod. mental & body relaxation
- 2) slow body repair and buildup of resources
- 3) uses acetylcholine (ACh)
- 4) decrease: HR, BP, BR, pupil constriction increase: blood flow for digestion, salivation
- 5) needs the stimulation of stress

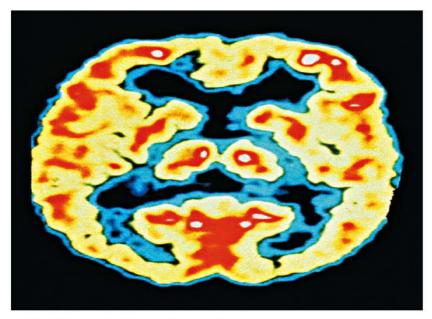
Drugs

depressant: alcohol, heroin

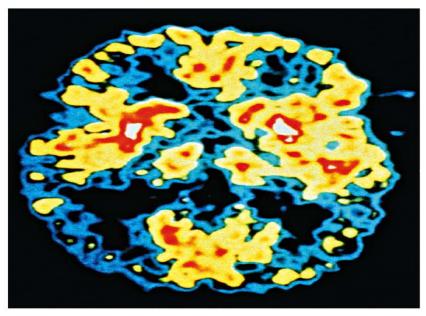
stimulant: nicotine, cocaine, ecstasy

psychoactive: marijuana

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


Table 13.2 Drug Influence on CNS and Route		
Substance	Effect	Mode of Transmission
Alcohol	Depressant	Drink
Nicotine	Stimulant	Smoked or smokeless tobacco
Cocaine	Stimulant	Sniffed/snorted, injected, or smoked
Methamphetami Ecstasy	ne/ Stimulant	Smoked or pill form
Heroin	Depressant	Sniffed/snorted, injected, or smoked
Marijuana/K2	Psychoactive	Smoked or consumed

Alzheimer


ACh (acetylcholine): mental & physical coord.

Alzheimer: \downarrow ACh \rightarrow impaired mental function (no memory)

Parkinson: \downarrow ACh \rightarrow impaired physical function (not coord.)

a) Healthy brain

b) Brain with Alzheimer's

Copyright © 2009 Pearson Education, Inc.

Neural Diseases

Describe the effects of:

- 1) alcohol
- 2) nicotine
- 3) cocaine
- 4) methamphetamine/ecstasy
- 5) heroin
- 6) marijuana

Describe the cause & effects of:

- 1) Alzheimer's
- 2) MS
- 3) stroke
- 4) amnesia