2.3 SOLUTIONS

Notes: This section ties together most of the concepts studied thus far, With strong encouragement from an
instructor, most students can use this opportunity to review and reflect upon what they have learned, and form
a solid foundation for future work. Students who fail to do this now usually struggle throughout the rest of the
course. Section 2.3 can be used in at least three different ways.

(1) Stop after Example 1 and assign exercises only from among the Practice Problems and Exercises |
to 28. I do this when teaching “Course 3” described in the text's “Notes to the Instructor. » If you did not
cover Theorem 12 in Section 1.9, omit statements (f) and (i) from the Invertible Matrix Theorem.

(2) Include the subsection “Invertible Linear Transformations™ in Section 2.3, if you covered Section 1.9,
I do this when teaching “Course 1" because our mathematics and computer science majors take this class.
Exercises 2940 support this material.

(3) Skip the linear transformation material here, but discusses the condition number and the Numerical
Notes. Assign exercises from among 1-28 and 41-45, and perhaps add a computer project on the condition
number. (See the projects on our web site.) I do this when teaching “Course 2* for our engineers.

The abbreviation IMT (here and in the Study Guide) denotes the Invertible Matrix Theorem {Theorem 8).

7
J are not multiples, so they are linearly independent. By (e) in the

5
1. The columns of the matrix [

IMT, the matrix is invertible. Also, the matrix is invertible by Theorem 4 in Section 2.2 because the
determinant is nonzero.

-4 6] , _
2. The fact that the columns of [ p 9j are multiples is not so obvious. The fastest check in this case
1 -
may be the determinant, which is easily seen to be zero. By Theorem 4 in Section 2.2, the matrix is
not invertible.
3. Row reduction to echelon form is trivial because there is really no need for arithmetic calculations:
s o o075 0o 0] s o o0
; i P . . .. .
-3 -7 0 ~10 -7 0 imf 0 -7 0] The 3x3 matrix has 3 pivot positions and hence is
L8 5 -1, [0 5 -1] [0 0 -1
invertible, by (c} of the IMT. [Another explanation could be given using the transposed matrix. But see
the note below that folows the sojution of Exercise 14.]
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-7 0 4
| |
4. The matrix f 30 - % obviously has linearly dependent columns (because one column is zero), and
2 0 9]
L.

so the matrix is not invertible (or singular) by (e) in the IMT.

03 =S[00 2 i’; 0o 2] f1 0o 2]
5{ I 0 2~ 0 3 -5~0 3 -5/~0 3 -5
<4 9 7] |4 -9 0 9 15 [0 0 o0

The matrix is not invertible because it is not row equivalent to the identity matrix.

[1 -5 -47 [1 -5 “i lri =5 4]
6./ 0 3 4;~0 3 4~0 3 4
-3 6 0] [0 -9 w12_l 0o 0 o

The matrix is not invertible because it is not row equivalent to the identity matrix.

-1 =3 0 1] [-1 -3 o z} -1 -3 0 1}
S |3 53—3;J0-—4 gojo—a, 8 0
'J-»z -6 3 00 30]@0 0 30{
Lo -1 2 10 -1 21 0 0 o 1

The 4x4 matrix has four pivot positions and so is invertible by (¢} of the IMT.

13 7 4]
o s 9 6l . _ .
8. The 4x4 matrix 0 0 2 = 1s mvertible because it has four pivot positions, by (¢) of the IMT.
Lo 0 0 10|
F4 0 -7 »»7’} -1 2 3 -1] [~ 2 30 -1
0 F-é 1 9 )»«6 1119 0 -11 -7 15
' 7 -5 19! L7 -5 10 190 |0 9 31 12
[1 2 “f 14 0 -7 7)o 8 5 -n
-1 2 3 -] (-1 2 3 w1 H 2 3 -1 "‘l
0 8 5 -1, | 0 8 5 -11 }0 8 5 ~11 [
0 9 31 12 ie 0 25375 24375 | 0 0 25375 24375
0 -1 =7 15] [0 0 -1250 -1250] Lo 0 r ]
-1 23 -1 [-1 2 3 -]
0 8 5 -1 |0 8 5 -11}
0 0 1 Lpo o Y
00 25375 24375 [0 0 0 -l

The 4»4 matrix is invertible because it has four pivot positions, by (¢) of the IMT.
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5 3 1 7 9] 75 3 1 7 9]

6 4 2 8 -8 10 4 8 -4 -I88

10 [M[ (7 5 3 10 9~0 8 16 2 36
9 6 4 -9 -5 0 6 22 -216 =212

35 2 11 45 0 2 4 -2 104

503 1 7 91 15 3 7 9]

0 4 8 -4 -I188] |0 4 8 -—4 -188

~0 0 0 i 34/~10 0 1 =21 7

0.0 1 =21 7010 0 o 1 34

0 0 0 0 -1, 10 0 0 0 -1

The 5x5 matrix is invertible because it has five pivot positions, by (c) of the IMT.

H. a. True, by the IMT. If statement (d) of the IMT is true, then so is statement (b).
. True. If statement (h) of the IMT is frue, then so is statement (e}
False. Statement (g) of the IMT is true only for invertible matrices.

. True, by the IMT, If the equation Ax = 0 has a nontrivial solution, then statement (d) of the IMT is
false. In this case, all the lettered statements in the IMT are false, including statement (¢}, which
means that 4 must have fewer than » pivot positions.

True, by the IMT. If 47 is not invertible, then staternent {1) of the IMT is false, and hence statement
(a) must also be false.

B0 oo

e

12, True. If statement (k) of the IMT is true, then so is statement (1.
. True. If statement (e) of the IMT is true, then so is statement (h}.
True. See the remark immediately following the proof of the IMT.

False. The first part of the statement is not part (i) of the IMT. In fact, if 4 is any nxn matrix, the
linear transformation x - 4x maps %" into ", yet not every such matrix has » pivot positions.

e. True, by the IMT. If there is a b in #” such that the equation Ax = b is inconsistent, then statement (g)
of the IMT is false, and hence statement (f) is also false. That is, the transformation x+— 4x cannot
be one-to-one.

B oo

Note: The solutions below for Exercises 1330 refer mostly to the IMT. In many cases, however, part or all
of an acceptable solution could also be based on various results that were used to establish the TMT.

13. If a square upper triangular » *» matrix has nonzero diagonal entries, then because it is already in echelon
form, the matrix is row equivalent to 7, and hence is invertible, by the IMT. Conversely, if the matrix is
invertible, it has 7 pivots on the diagonal and hence the diagonal entries are nonzero.

14. If 4 is lower triangular with nonzero entries on the diagonal, then these 7 diagonai entries can be used as
pivots o produce zeros below the diagonal. Thus A has pivots and so is invertible, by the IMT. If one
of the diagonal entries in 4 is zero, 4 will have fewer than » pivots and hence be singular.

Notes: For Exercise 14, another correct analysis of the case when 4 has nonzero diagonal entries is o apply
the IMT (or Exercise 13) to A", Then use Theorem 6 in Section 2.2 to conclude that since 47 is invertible so is
its transpose, 4. You might mention this idea in class, but T recommend that you not spend much time
discussing 4" and problems related to it, in order to keep from making this section too lengthy. (The transpose
is treated infrequently in the text until Chapter 6.)

If you do plan to ask a test question that involves 4" and the IMT, then vou should give the students some
extra homework that develops skill using 47, For instance, in Exercise 14 replace “columns” by “rows.”
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Also, you could ask students to explain why an # »» matrix with linearly independent columns must also have
linearly independent rows.

15.

16.
17.

18.

19,

20.

21.

22.

23.

24.

25,

26.

27,

If 4 has two identical columns then its columns are linearly dependent. Part (e) of the IMT shows that
A cannot be mvertible.

Part (h) of the IMT shows that a 53 matrix cannot be invertible when its columns do not s;ﬁan R’

If 4 is invertible, so is 4™, by Theorem 6 in Section 2.2. By (¢) of the IMT applied to A4, the columns of
A" are linearly independent.

By (g) of the IMT, C'is invertible. Hence, each equation Cx = v has a unigue solution, by Theorem 5 in
Section 2.2. This fact was pointed out in the paragraph following the proof of the IMT.

By (e) of the IMT, D is invertible. Thus the equation I’x = b has a solution for each b in R’, by (g) of
the IMT. Even better, the equation Dx = b has a unigue solution for each b in R, by Theorem 3 in
Section 2.2. (See the paragraph following the proof of the IMT.)

By the box following the IMT, £ and F are invertible and are inverses. So FE = [ = EF, and so £ and F
commute,

The matrix G cannot be invertible, by Theorem § in Section 2.2 or by the box following the IMT. So (h)
of the IMT is false and the columns of G do not span R".

Statement (g) of the IMT is false for H, so statement (d) is false, too. That is, the equation Hx =0 has a
nontrivial solution.

Statement (b) of the IMT is faise for K, so statements (¢) and (h) are also false. That is, the columns of &
are linearly dependent and the columns do ror span R”.

No conclusion about the columns of L may be drawn, because no information about L has been given.
The equation Lx = 0 always has the trivial solution.

Suppose that 4 is square and AB = /. Then A is invertible, by the (k) of the IMT. Left-multiplying each
side of the equation 4B = /by A", one has
AAB=4"1, IB=4", andB=4".
By Theorem 6 in Section 2.2, the matrix B (which is 4™') is invertible, and its inverse is (4™')",
which is 4.

If the columns of 4 are linearly independent, then since A is square, A is invertible, by the IMT, So 4%,
which is the product of invertible matrices, is invertible. By the IMT, the columns of 4> span R”.

Let Whe the inverse of 4B. Then ABW = [ and A(BW) = [. Since 4 is square, 4 is invertible, by (k) of the
IMT. .

Note: The Study Guide for Exercise 27 emphasizes here that the equation A(BW) = 1, by itself, does not show
that 4 is invertible. Students are referred to Exercise 38 in Section 2.2 for a counterexample. Although there is
an overall assumption that matrices in this section are square, 1 insist that my students mention this fact when
using the IMT. Even so, at the end of the course, I still sometimes find a student who thinks that an equation
AB = I'implies that 4 is invertibie.

28.

Let W be the inverse of AB. Then WAB = I'and (WA)B = I. By (j) of the IMT applied to £ in place of 4,
the matrix 5 is invertible. ‘ ‘

e L T E T —
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29. Since the transformation X 4x is not one-to-one, statement (f) of the IMT is false. Then (i) is also
false and the transformation x > 4x does not map R” onto R”. Also, 4 is not invertible, which implies
that the transformation x > Ax is not invertible, by Theorem 9.

30. Since the transformation x +— Ax is one-to-one, statement () of the IMT is true. Then (1) is also true and
the transformation x > 4x maps R” onto R". Also, 4 is invertible, which implies that the transformation
X — Ax 18 invertible, by Theorem 9.

31. Since the equation Ax = b has a solution for each b, the matrix 4 has a pivot in each row {Theorem 4 in
Section 1.4). Since A is square, 4 has a pivot in each column, and so there are no free variables in the
equation Ax = b, which shows that the solution is unique.

Note: The preceding argument shows that the (square) shape of 4 plays a crucial role. A less revealing proof
is to use the “pivot in each row” and the IMT to conclude that A4 is invertible. Then Theorem S in Section 2.2
shows that the solution of 4% = b is unique.

32, If Ax =0 has only the trivial solution, then 4 must have a pivot in each of its # columns. Since 4 is
square (and this is the key point), there must be a pivot in each row of A. By Theorem 4 in Section 1.4,
the equation 4x = b has a solution for each b in R”.
Another argument: Statement (d) of the IMT is true, so 4 is invertible. By Theorem § in Section 2.2,
the equation 4x = b has a (unique) solution for each b in R".

-

9
33. (Solution in Study Guide) The standard matrix of Tis 4 ::} 4 7}, which is invertible because

i

det 4 # 0. By Theorem 9, the transformation T is invertible and the standard matrix of 7" is 4. From

19
the formula for a 2x2 inverse, 47 = . So
14 5]
709
T”(xi,xﬁ):, H‘xi}m(’]xi +9x,,4x, +5x,)
i L4 5}{_)(2_] ) )

"6 -8
34, The standard matrix of 7is 4 =L s 7], which is invertible because detA4 =2 # 0. By Theorem 9,

7 8

T'is invertible, and T”i{x) = Bx, where B= 4" m__lj Thus
25 6
7 8] )
Tﬂ%(x;:x?)=—l-] . fl tl‘!: Zx! 4—4;:7,ws~xi +3x, |
C2L3 6w LZ ©2 .

35. (Solution in Study Guide) To show that T is one-to-one, suppose that 7(u) = T{v} for some vectors u and
v in R". Then S(7(u)) = S{(T(v)), where § is the inverse of T. By Equation (1), u = S(7(u)) and S(T(v)} = v,
so u=v. Thus T is one-to-one. To show that 7 is onto, suppose y represents an arbitrary vector in R” and
define x = 5(y). Then, using Equation (2), F(x) = T(5(y)} = v, which shows that T maps R” onto R,
Second proof: By Theorem 9, the standard matrix 4 of Tis invertible. By the IMT, the columnns of 4 are
linearly independent and span R”. By Theorem 12 in Section 1.9, 7" is one-to-one and maps R" onto R”.

36. If T'maps R” onto R, then the columns of its standard matrix 4 span R”, by Theorem 12 in Section 1.9.
By the IMT, A is invertible. Hence, by Theorem 9 in Section 2.3, T'is invertible, and 4™ is the standard
matrix of 7. Since 4 " is also invertible, by the IMT, its columns are linearly independent and span R”.
Applying Theorem 12 in Section 1.9 to the transformation 7™, we conclude that 7~ is a one-to-one
mapping of R” onto R”,
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37. Let 4 and B be the standard matrices of 7 and U, respectively. Then 4B is the standard matrix of the
mapping x - 7(L/(x)), because of the way matrix multiplication is defined (in Section 2.1). By
hypothesis, this mapping is the identity mapping, so 4B = /. Since 4 and B are square, they are invertible,
by the IMT, and B = 4", Thus, B4 = /. This means that the mapping X = U(T(x)) is the identity

mapping. i.e., {T(x)} = x for all x in R".

38. Let A be the standard matrix of 7. By hypothesis, 7 is not a one-to-one mapping. So, by Theorem 12 in
Section 1.9, the standard matrix 4 of 7 has linearly dependent columns. Since A is square, the columns
of 4 do not span R", By Theorem 12, again, T cannot map R” onto R”.

39. Given any v in R”, we may write v = 7{x) for some x, because 7T is an onto mapping. Then, the assumed
properties of S and U show that S(v) = S(T(x)) = x and U(v) = U(T(x)) = x. So S(v) and U(v) are equal for
each v. That is, § and U are the same function from R” into R”.

40. Givenwu, vin 7, let x = S(u) and y = S(v). Then T(x)}=7(S(1)) = u and 7(y) = 7} (S(v}) = v, by
equation (2). Hence
Su+v)=STx)+7Ty)n

=S(T(x+y) Because 7 is linear
=X+y By equation (1)
= 8(u)+ S{v)

So, § preserves sums. For any scalar r,
S(ruy=S(rT(x))=S(T'(rx)) BecauseT islinear

=rx Byequation (1)

=rS(u)
So 8 preserves scalar multiples. Thus S ia a linear transformation.

41. [M] a. The exact solution of (3} is x; = 3.94 and x, = .49, The exact solution of (4) 1s x; = 2,90 and
Xy = 2.00.

b. When the solution of (4) is used as an approximation for the solution in (3), the error in using the
value of 2.90 for x; is about 26%, and the error in using 2.0 for x; is about 308%,

¢. The condition number of the coefficient matrix is 3363. The percentage change in the solution from
(3) to (4} is about 7700 times the percentage change in the right side of the equation. This is the same
order of magnitude as the condition number. The condition number gives a rough measure of how
sensitive the solution of 4x = b can be to changes in b. Further information about the condition
number is given at the end of Chapter 6 and in Chapter 7.

Note: See the Study Guide’s MATLAB box, or a technology appendix, for information on condition number.
Only the Ti-83+ and T1-89 lack a command for this.

42. [M} MATLAB gives cond(4) = 23683, which is approximately 10°. If you make several trials with
MATLAB, which records 16 digits accurately, you should find that x and x. agree to at least 12 or 13
significant digits. So about 4 significant digits are lost. Here is the result of one experiment. The vectors
were all computed to the maximum 16 decimal places but are here displayed with only four decimal

places:
F.9501 E i‘~3.8493”] [.95017
21311 | 5.5795 2311
x = rand(4,1) = b=dx=| """ | The MATLAB solution is x, = A'b = ak
| 6068 | 1207973 6068
4860 | 8467 | | 4860 |
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However, X — x; = | 1% 107" The computed selution x, is accurate to about
|

12 decimal places.

43. [M] MATLAB gives cond(4) = 68,622, Since this has magnitude between 10* and 10°, the estimated
accuracy of a solution of Ax = b should be to about four or five decimal places Jess than the 16 decimal
places that MATLAB usually computes accurately. That is, one should expect the solution to be accurate
to only about 11 or 12 decimal places. Here is the result of one experiment. The vectors were all
computed to the maximum 16 decimal places but are here displayed with only four decimal places:

2190 ] [ 15.08217 12190
0470 8165 0470
x =rand(3,1} = | 6789 |, b= Ax = | 19.0097 |. The MATLAR solution is x,=Ab=16780 1,
6793 ~5.8188 _ 6793
19347 | 14.5557 | .9347 |
3165
~.6743
However, x —x; = | 3343 x107". The computed solution x; is accurate to about 11 decimal places.
D158
| —.0005 |

44. [M] Solve Ax =(0,0,0, 0, 1). MATLAB shows that cond(4) ~ 4.8x10°. Since MATLAB computes

numbers accurately to 16 decimal places, the entries in the computed value of x should be accurate to at
least 11 digits. The exact solution is (630, ~12600, 56700, ~88200, 44100).

45. [M] Some versions of MATLARB issue a warning when asked to invert a Hilbert matrix of order 12 or
larger using floating-point arithmetic. The product 447" should have several off-diagonal entries that are
far from being zero. If not, try a larger matrix.

Note: All matrix programs supported by the Study Guide have data for Exercise 43, but only MATLAB and
Maple have a single command to create a Hilbert matrix. The HP-48G data for Exercise 45 contain a program
that can be edited to create other Hilbert matrices.

Notes: The Study Guide for Section 2.3 organizes the statements of the Invertible Matrix Theorem in a table
that imbeds these ideas in a broader discussion of rectangular matrices. The statements are arranged in three
colummns: statements that are logically equivalent for any m *n matrix and are related to existence concepts,
those that are equivalent only for any » <»n matrix, and those that are equivalent for any nxp matrix and are
related to uniqueness concepts. Four staternents are included that are not in the text’s official list of
statements, to give more Symmetry to the three columns. You may or may not wish to comment on them.

I believe that students cannot fully understand the concepts in the IMT if they do not know the correct
wording of each statement. (Of course, this knowledge is not sufficient for understanding.) The Sredy
Guide’s Section 2.3 has an example of the type of question I often put on an exam at this point in the course.
The section concludes with a discussion of reviewing and reflecting, as important steps to a mastery of linear
algebra.




