4.2 SOLUTIONS_

Notes: This section provides a review of Chapter 1 using the new terminology. Linear tranformations are introduced quickly since students are already comfortable with the idea from 3^n . The key exercises are 17–26, which are straightforward but help to solidify the notions of null spaces and column spaces. Exercises 30–36 deal with the kernel and range of a linear transformation and are progressively more advanced theoretically. The idea in Exercises 7–14 is for the student to use Theorems 1, 2, or 3 to determine whether a given set is a subspace.

1. One calculates that

$$A\mathbf{w} = \begin{bmatrix} 3 & -5 & -3 \\ 6 & -2 & 0 \\ -8 & 4 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ -4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

so w is in Nul A.

2. One calculates that

$$A\mathbf{w} = \begin{bmatrix} 5 & 21 & 19 \\ 13 & 23 & 2 \\ 8 & 14 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ -3 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

so w is in Nul A.

3. First find the general solution of Ax = 0 in terms of the free variables. Since

$$[A \quad \mathbf{0}] \sim \begin{bmatrix} 1 & 0 & -7 & 6 & 0 \\ 0 & 1 & 4 & -2 & 0 \end{bmatrix},$$

the general solution is $x_1 = 7x_3 - 6x_4$, $x_2 = -4x_3 + 2x_4$, with x_3 and x_4 free. So

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} 7 \\ -4 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -6 \\ 2 \\ 0 \\ 1 \end{bmatrix},$$

and a spanning set for Nul A is

$$\left\{ \begin{bmatrix} 7 \\ -4 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -6 \\ 2 \\ 0 \\ 1 \end{bmatrix} \right\}$$

4. First find the general solution of Ax = 0 in terms of the free variables. Since

$$[A \quad \mathbf{0}] \sim \begin{bmatrix} 1 & -6 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix},$$

the general solution is $x_1 = 6x_2$, $x_3 = 0$, with x_2 and x_4 free. So

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_2 \begin{bmatrix} 6 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix},$$

and a spanning set for Nul A is

$$\left\{ \begin{bmatrix} 6 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}.$$

5. First find the general solution of Ax = 0 in terms of the free variables. Since

$$\begin{bmatrix} A & \mathbf{0} \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & 4 & 0 & 0 \\ 0 & 0 & 1 & -9 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix},$$

the general solution is $x_1 = 2x_2 - 4x_4$, $x_3 = 9x_4$, $x_5 = 0$, with x_2 and x_4 free. So

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -4 \\ 0 \\ 9 \\ 1 \\ 0 \end{bmatrix},$$

and a spanning set for Nul A is

$$\left\{ \begin{bmatrix} 2\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} -4\\0\\9\\1\\0 \end{bmatrix} \right\}.$$

6. First find the general solution of Ax = 0 in terms of the free variables. Since

$$\begin{bmatrix} A & \mathbf{0} \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 6 & -8 & 1 & 0 \\ 0 & 1 & -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

the general solution is $x_1 = -6x_3 + 8x_4 - x_5$, $x_2 = 2x_3 - x_4$, with x_3 , x_4 , and x_5 free. So

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = x_3 \begin{bmatrix} -6 \\ 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 8 \\ -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix},$$

and a spanning set for Nul A is

$$\left\{ \begin{bmatrix} -6 \\ 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 8 \\ -1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right\}.$$

- 7. The set W is a subset of \mathbb{R}^3 . If W were a vector space (under the standard operations in \mathbb{R}^3), then it would be a subspace of \mathbb{R}^3 . But W is not a subspace of \mathbb{R}^3 since the zero vector is not in W. Thus W is not a vector space.
- 8. The set W is a subset of \mathbb{R}^3 . If W were a vector space (under the standard operations in \mathbb{R}^3), then it would be a subspace of \mathbb{R}^3 . But W is not a subspace of \mathbb{R}^3 since the zero vector is not in W. Thus W is not a vector space.
- 9. The set W is the set of all solutions to the homogeneous system of equations a 2b 4c = 0, 2a c 3d = 0. Thus W = Nul A, where $A = \begin{bmatrix} 1 & -2 & -4 & 0 \\ 2 & 0 & -1 & -3 \end{bmatrix}$. Thus W is a subspace of \mathbb{R}^4 by Theorem 2, and is a vector space.
- 10. The set W is the set of all solutions to the homogeneous system of equations a+3b-c=0, a+b+c-d=0. Thus W = Nul A, where $A = \begin{bmatrix} 1 & 3 & -1 & 0 \\ 1 & 1 & 1 & -1 \end{bmatrix}$. Thus W is a subspace of \mathbb{R}^4 by Theorem 2, and is a vector space.
- 11. The set W is a subset of \mathbb{R}^4 . If W were a vector space (under the standard operations in \mathbb{R}^4), then it would be a subspace of \mathbb{R}^4 . But W is not a subspace of \mathbb{R}^4 since the zero vector is not in W. Thus W is not a vector space.
- 12. The set W is a subset of \mathbb{R}^4 . If W were a vector space (under the standard operations in \mathbb{R}^4), then it would be a subspace of \mathbb{R}^4 . But W is not a subspace of \mathbb{R}^4 since the zero vector is not in W. Thus W is not a vector space.
- 13. An element w on W may be written as

$$\mathbf{w} = c \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + d \begin{bmatrix} -6 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & -6 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix}$$

where c and d are any real numbers. So W = Col A where $A = \begin{bmatrix} 1 & -6 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$. Thus W is a subspace of \mathbb{R}^3 by

Theorem 3, and is a vector space.

14. An element \mathbf{w} on W may be written as

$$\mathbf{w} = a \begin{bmatrix} -1\\1\\3 \end{bmatrix} + b \begin{bmatrix} 2\\-2\\-6 \end{bmatrix} = \begin{bmatrix} -1&2\\1&-2\\3&-6 \end{bmatrix} \begin{bmatrix} a\\b \end{bmatrix}$$

where a and b are any real numbers. So W = Col A where $A = \begin{bmatrix} -1 & 2 \\ 1 & -2 \\ 3 & -6 \end{bmatrix}$. Thus W is a subspace of \mathbb{R}^3 by

Theorem 3, and is a vector space.

15. An element in this set may be written as

$$r \begin{bmatrix} 0 \\ 1 \\ 4 \\ 3 \end{bmatrix} + s \begin{bmatrix} 2 \\ 1 \\ 1 \\ -1 \end{bmatrix} + t \begin{bmatrix} 3 \\ -2 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 3 \\ 1 & 1 & -2 \\ 4 & 1 & 0 \\ 3 & -1 & -1 \end{bmatrix} \begin{bmatrix} r \\ s \\ t \end{bmatrix}$$

where r, s and t are any real numbers. So the set is Col A where $A = \begin{bmatrix} 0 & 2 & 3 \\ 1 & 1 & -2 \\ 4 & 1 & 0 \\ 3 & -1 & -1 \end{bmatrix}$.

16. An element in this set may be written as

$$b \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix} + c \begin{bmatrix} -1 \\ 1 \\ 5 \\ 0 \end{bmatrix} + d \begin{bmatrix} 0 \\ 1 \\ -4 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 1 \\ 0 & 5 & -4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} b \\ c \\ d \end{bmatrix}$$

where b, c and d are any real numbers. So the set is Col A where $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 1 \\ 0 & 5 & -4 \\ 0 & 0 & 1 \end{bmatrix}$.

17. The matrix A is a 4×2 matrix. Thus

- (a) Nul A is a subspace of \mathbb{R}^2 , and
- (b) Col A is a subspace of \mathbb{R}^4 .

18. The matrix A is a 4×3 matrix. Thus

- (a) Nul A is a subspace of \mathbb{R}^3 , and
- (b) Col A is a subspace of \mathbb{R}^4 .

19. The matrix A is a 2×5 matrix. Thus

- (a) Nul A is a subspace of \mathbb{A}^5 , and
- (b) Col A is a subspace of \mathbb{R}^2 .

20. The matrix A is a 1×5 matrix. Thus

- (a) Nul A is a subspace of \mathbb{R}^5 , and
- (b) Col A is a subspace of $\mathbb{R}^1 = \mathbb{R}$.

21. Either column of A is a nonzero vector in Col A. To find a nonzero vector in Nul A, find the general solution of $A\mathbf{x} = \mathbf{0}$ in terms of the free variables. Since

the general solution is $x_1 = 3x_2$, with x_2 free. Letting x_2 be a nonzero value (say $x_2 = 1$) gives the nonzero vector

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

which is in Nul A.

22. Any column of A is a nonzero vector in Col A. To find a nonzero vector in Nul A, find the general solution of $A\mathbf{x} = \mathbf{0}$ in terms of the free variables. Since

$$[A \quad \mathbf{0}] \sim \begin{bmatrix} 1 & 0 & -7 & 6 & 0 \\ 0 & 1 & 4 & -2 & 0 \end{bmatrix},$$

the general solution is $x_1 = 7x_3 - 6x_4$, $x_2 = -4x_3 + 2x_4$, with x_3 and x_4 free. Letting x_3 and x_4 be nonzero values (say $x_3 = x_4 = 1$) gives the nonzero vector

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \\ 1 \end{bmatrix}$$

which is in Nul A.

23. Consider the system with augmented matrix $\begin{bmatrix} A & \mathbf{w} \end{bmatrix}$. Since

$$\begin{bmatrix} A & \mathbf{w} \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & -1/3 \\ 0 & 0 & 0 \end{bmatrix},$$

the system is consistent and w is in Col A. Also, since

$$A\mathbf{w} = \begin{bmatrix} -6 & 12 \\ -3 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

w is in Nul A.

24. Consider the system with augmented matrix $\begin{bmatrix} A & \mathbf{w} \end{bmatrix}$. Since

$$\begin{bmatrix} A & \mathbf{w} \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & -1/2 \\ 0 & 1 & 1/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

the system is consistent and w is in Col A. Also, since

$$A\mathbf{w} = \begin{bmatrix} -8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

w is in Nul A.

- 25. a. True. See the definition before Example 1.
 - **b**. False. See Theorem 2.
 - c. True. See the remark just before Example 4.
 - **d**. False. The equation $A\mathbf{x} = \mathbf{b}$ must be consistent for every **b**. See #7 in the table on page 226.
 - e. True. See Figure 2.
 - f. True. See the remark after Theorem 3.

- 26. a. True. See Theorem 2.
 - **b**. True. See Theorem 3.
 - c. False. See the box after Theorem 3.
 - d. True. See the paragraph after the definition of a linear transformation.
 - e. True. See Figure 2.
 - f. True. See the paragraph before Example 8.
- 27. Let A be the coefficient matrix of the given homogeneous system of equations. Since $A\mathbf{x} = \mathbf{0}$ for

$$\mathbf{x} = \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix}$$
, \mathbf{x} is in NulA. Since NulA is a subspace of \mathbb{R}^3 , it is closed under scalar multiplication. Thus

$$10\mathbf{x} = \begin{bmatrix} 30 \\ 20 \\ -10 \end{bmatrix}$$
 is also in Nul A, and $x_1 = 30$, $x_2 = 20$, $x_3 = -10$ is also a solution to the system of

equations.

28. Let A be the coefficient matrix of the given systems of equations. Since the first system has a solution,

the constant vector
$$\mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 9 \end{bmatrix}$$
 is in ColA. Since Col A is a subspace of \mathbb{R}^3 , it is closed under scalar

multiplication. Thus
$$5\mathbf{b} = \begin{bmatrix} 0 \\ 5 \\ 45 \end{bmatrix}$$
 is also in Col A, and the second system of equations must thus have a

solution.

- 29. a. Since A0 = 0, the zero vector is in Col A.
 - **b.** Since $A\mathbf{x} + A\mathbf{w} = A(\mathbf{x} + \mathbf{w})$, $A\mathbf{x} + A\mathbf{w}$ is in Col A.
 - c. Since $c(A\mathbf{x}) = A(c\mathbf{x}), cA\mathbf{x}$ is in Col A.
- 30. Since $T(\mathbf{0}_V) = \mathbf{0}_W$, the zero vector $\mathbf{0}_W$ of W is in the range of T. Let $T(\mathbf{x})$ and $T(\mathbf{w})$ be typical elements in the range of T. Then since $T(\mathbf{x}) + T(\mathbf{w}) = T(\mathbf{x} + \mathbf{w}), T(\mathbf{x}) + T(\mathbf{w})$ is in the range of T and the range of T is closed under vector addition. Let C be any scalar. Then since $CT(\mathbf{x}) = T(C\mathbf{x}), CT(\mathbf{x})$ is in the range of T and the range of T is closed under scalar multiplication. Hence the range of T is a subspace of T.
- 31. a. Let **p** and **q** be arbitary polynomials in \mathbb{F}_2 , and let c be any scalar. Then

$$T(\mathbf{p}+\mathbf{q}) = \begin{bmatrix} (\mathbf{p}+\mathbf{q})(0) \\ (\mathbf{p}+\mathbf{q})(1) \end{bmatrix} = \begin{bmatrix} \mathbf{p}(0)+\mathbf{q}(0) \\ \mathbf{p}(1)+\mathbf{q}(1) \end{bmatrix} = \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}(1) \end{bmatrix} + \begin{bmatrix} \mathbf{q}(0) \\ \mathbf{q}(1) \end{bmatrix} = T(\mathbf{p}) + T(\mathbf{q})$$

and

$$T(c\mathbf{p}) = \begin{bmatrix} (c\mathbf{p})(0) \\ (c\mathbf{p})(1) \end{bmatrix} = c \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}(1) \end{bmatrix} = cT(\mathbf{p})$$

so T is a linear transformation.

- **b.** Any quadratic polynomial **q** for which $\mathbf{q}(0) = 0$ and $\mathbf{q}(1) = 0$ will be in the kernel of T. The polynomial **q** must then be a multiple of $\mathbf{p}(t) = t(t-1)$. Given any vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ in \mathbb{R}^2 , the polynomial $\mathbf{p} = x_1 + (x_2 x_1)t$ has $\mathbf{p}(0) = x_1$ and $\mathbf{p}(1) = x_2$. Thus the range of T is all of \mathbb{R}^2 .
- 32. Any quadratic polynomial \mathbf{q} for which $\mathbf{q}(0) = 0$ will be in the kernel of T. The polynomial \mathbf{q} must then be $\mathbf{q} = at + bt^2$. Thus the polynomials $\mathbf{p}_1(t) = t$ and $\mathbf{p}_2(t) = t^2$ span the kernel of T. If a vector is in the range of T, it must be of the form $\begin{bmatrix} a \\ a \end{bmatrix}$. If a vector is of this form, it is the image of the polynomial $\mathbf{p}(t) = a$ in a = a. Thus the range of T is a = a.
- **33.** a. For any A and B in $M_{2\times 2}$ and for any scalar c,

$$T(A+B) = (A+B) + (A+B)^{T} = A+B+A^{T}+B^{T} = (A+A^{T}) + (B+B^{T}) = T(A) + T(B)$$

and

$$T(cA) = (cA)^{T} = c(A^{T}) = cT(A)$$

so T is a linear transformation.

b. Let B be an element of $M_{2\times 2}$ with $B^T = B$, and let $A = \frac{1}{2}B$. Then

$$T(A) = A + A^{T} = \frac{1}{2}B + (\frac{1}{2}B)^{T} = \frac{1}{2}B + \frac{1}{2}B^{T} = \frac{1}{2}B + \frac{1}{2}B = B$$

c. Part b. showed that the range of T contains the set of all B in $M_{2\times 2}$ with $B^T = B$. It must also be shown that any B in the range of T has this property. Let B be in the range of T. Then B = T(A) for some A in $M_{2\times 2}$. Then $B = A + A^T$, and

$$B^{T} = (A + A^{T})^{T} = A^{T} + (A^{T})^{T} = A^{T} + A = A + A^{T} = B$$

so B has the property that $B^T = B$.

d. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be in the kernel of T. Then $T(A) = A + A^T = 0$, so

$$A + A^{T} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} 2a & c+b \\ b+c & 2d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Solving it is found that a = d = 0 and c = -b. Thus the kernel of T is

$$\left\{ \begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix} : b \text{ real} \right\}.$$

34. Let **f** and **g** be any elements in C[0, 1] and let c be any scalar. Then $T(\mathbf{f})$ is the antiderivative **F** of **f** with $\mathbf{F}(0) = 0$ and $T(\mathbf{g})$ is the antiderivative **G** of **g** with $\mathbf{G}(0) = 0$. By the rules for antidifferentiation $\mathbf{F} + \mathbf{G}$ will be an antiderivative of $\mathbf{f} + \mathbf{g}$, and $(\mathbf{F} + \mathbf{G})(0) = \mathbf{F}(0) + \mathbf{G}(0) = 0 + 0 = 0$. Thus $T(\mathbf{f} + \mathbf{g}) = T(\mathbf{f}) + T(\mathbf{g})$. Likewise $c\mathbf{F}$ will be an antiderivative of $c\mathbf{f}$, and $(c\mathbf{F})(0) = c\mathbf{F}(0) = c0 = 0$. Thus $T(c\mathbf{f}) = cT(\mathbf{f})$, and T is a linear transformation. To find the kernel of T, we must find all functions f in C[0,1] with antiderivative equal to the zero function. The only function with this property is the zero function $\mathbf{0}$, so the kernel of T is $\{\mathbf{0}\}$.

- 35. Since U is a subspace of V, $\mathbf{0}_V$ is in U. Since T is linear, $T(\mathbf{0}_V) = \mathbf{0}_W$. So $\mathbf{0}_W$ is in T(U). Let $T(\mathbf{x})$ and $T(\mathbf{y})$ be typical elements in T(U). Then \mathbf{x} and \mathbf{y} are in U, and since U is a subspace of V, $\mathbf{x} + \mathbf{y}$ is also in U. Since T is linear, $T(\mathbf{x}) + T(\mathbf{y}) = T(\mathbf{x} + \mathbf{y})$. So $T(\mathbf{x}) + T(\mathbf{y})$ is in T(U), and T(U) is closed under vector addition. Let C be any scalar. Then since C is in C and C is a subspace of C and C is in C in C in C in C in C and C is in C in C
- 36. Since Z is a subspace of W, $\mathbf{0}_W$ is in Z. Since T is linear, $T(\mathbf{0}_V) = \mathbf{0}_W$. So $\mathbf{0}_V$ is in U. Let x and y be typical elements in U. Then $T(\mathbf{x})$ and $T(\mathbf{y})$ are in Z, and since Z is a subspace of W, $T(\mathbf{x}) + T(\mathbf{y})$ is also in Z. Since T is linear, $T(\mathbf{x}) + T(\mathbf{y}) = T(\mathbf{x} + \mathbf{y})$. So $T(\mathbf{x} + \mathbf{y})$ is in Z, and $\mathbf{x} + \mathbf{y}$ is in U. Thus U is closed under vector addition. Let c be any scalar. Then since x is in U, $T(\mathbf{x})$ is in Z. Since Z is a subspace of W, $cT(\mathbf{x})$ is also in Z. Since T is linear, $cT(\mathbf{x}) = T(c\mathbf{x})$ and $T(c\mathbf{x})$ is in T(U). Thus $C\mathbf{x}$ is in U and U is closed under scalar multiplication. Hence U is a subspace of V.
- 37. [M] Consider the system with augmented matrix $\begin{bmatrix} A & \mathbf{w} \end{bmatrix}$. Since

$$[A \quad \mathbf{w}] \sim \begin{bmatrix} 1 & 0 & 0 & -1/95 & 1/95 \\ 0 & 1 & 0 & 39/19 & -20/19 \\ 0 & 0 & 1 & 267/95 & -172/95 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

the system is consistent and w is in ColA. Also, since

$$A\mathbf{w} = \begin{bmatrix} 7 & 6 & -4 & 1 \\ -5 & -1 & 0 & -2 \\ 9 & -11 & 7 & -3 \\ 19 & -9 & 7 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \\ -3 \end{bmatrix} = \begin{bmatrix} 14 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

w is not in NulA.

38. [M] Consider the system with augmented matrix $\begin{bmatrix} A & \mathbf{w} \end{bmatrix}$. Since

$$[A \quad \mathbf{w}] \sim \begin{bmatrix} 1 & 0 & -1 & 0 & -2 \\ 0 & 1 & -2 & 0 & -3 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

the system is consistent and \mathbf{w} is in ColA. Also, since

$$A\mathbf{w} = \begin{bmatrix} -8 & 5 & -2 & 0 \\ -5 & 2 & 1 & -2 \\ 10 & -8 & 6 & -3 \\ 3 & -2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

w is in NulA.

39. [M]

a. To show that \mathbf{a}_3 and \mathbf{a}_5 are in the column space of B, we can row reduce the matrices $\begin{bmatrix} B & \mathbf{a}_3 \end{bmatrix}$ and $\begin{bmatrix} B & \mathbf{a}_3 \end{bmatrix}$:

$$\begin{bmatrix} B & \mathbf{a}_3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1/3 \\ 0 & 1 & 0 & 1/3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} B & \mathbf{a}_5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 10/3 \\ 0 & 1 & 0 & -26/3 \\ 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since both these systems are consistent, \mathbf{a}_3 and \mathbf{a}_5 are in the column space of B. Notice that the same conclusions can be drawn by observing the reduced row echelon form for A:

$$A \sim \begin{bmatrix} 1 & 0 & 1/3 & 0 & 10/3 \\ 0 & 1 & 1/3 & 0 & -26/3 \\ 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

b. We find the general solution of $A\mathbf{x} = \mathbf{0}$ in terms of the free variables by using the reduced row echelon form of A given above: $x_1 = (-1/3)x_3 - (10/3)x_5$, $x_2 = (-1/3)x_3 + (26/3)x_5$, $x_4 = 4x_5$ with x_3 and x_5 free. So

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = x_3 \begin{bmatrix} -1/3 \\ -1/3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -10/3 \\ 26/3 \\ 0 \\ 4 \\ 1 \end{bmatrix},$$

and a spanning set for Nul A is

$$\left\{ \begin{bmatrix} -1/3 \\ -1/3 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -10/3 \\ 26/3 \\ 0 \\ 4 \\ 1 \end{bmatrix} \right\}.$$

c. The reduced row echelon form of A shows that the columns of A are linearly dependent and do not span 24. Thus by Theorem 12 in Section 1.9, T is neither one-to-one nor onto.

40. [M] Since the line lies both in $H = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ and in $K = \operatorname{Span}\{\mathbf{v}_3, \mathbf{v}_4\}$, w can be written both as $c_1\mathbf{v}_1 + c_2\mathbf{v}_2$ and $c_3\mathbf{v}_3 + c_4\mathbf{v}_4$. To find w we must find the c_j 's which solve $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 - c_3\mathbf{v}_3 - c_4\mathbf{v}_4 = \mathbf{0}$. Row reduction of $\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & -\mathbf{v}_3 & -\mathbf{v}_4 & \mathbf{0} \end{bmatrix}$ yields

$$\begin{bmatrix} 5 & 1 & -2 & 0 & 0 \\ 3 & 3 & 1 & 12 & 0 \\ 8 & 4 & -5 & 28 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -10/3 & 0 \\ 0 & 1 & 0 & 26/3 & 0 \\ 0 & 0 & 1 & -4 & 0 \end{bmatrix},$$

so the vector of c_j 's must be a multiple of (10/3, -26/3, 4, 1). One simple choice is (10, -26, 12, 3), which gives $\mathbf{w} = 10\mathbf{v}_1 - 26\mathbf{v}_2 = 12\mathbf{v}_3 + 3\mathbf{v}_4 = (24, -48, -24)$. Another choice for \mathbf{w} is (1, -2, -1).