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4.2 SOLUTIONS

Notes: This section provides a review of Chapter 1 using the new terminology. Linear tranformations are
introduced quickly since students are already comfortable with the idea from ", The key exercises are
17-26, which are straightforward but help to solidify the notions of null spaces and column spaces. Exercises
30-36 deal with the kernel and range of a Imear transformation and are progressively more advanced
theoretically. The idea in Exercises 714 is for the student to use Theorems 1, 2, or 3 to determine whether
a given set is a subspace.

1. One calculates that

[3 -5 =300 1] g‘ﬂ

Aw=l 6 =2 0 35:%93,

s 4 14 o)
so wis in Nul 4.
2. One calculates that

5 21 19“;;" s“j 0!

Aw=113 23 2§—3§: OL

8 14 1 2, |0

$0 W is in Nul 4.
3. First find the general solution of Ax = 0 in terms of the free variables. Since
10 =7 6 0]
[4 0] ~
' 01 4 -2 0

the general solution is x, = 7x; —6x,;, x, =—4x, +2x,, with x; and x, free. So

=] (7 [
!x')g s g 2
X=l T =X + Xy l,
L X | 15 % 0!
) Lop LY
and a spanning set for Nul 4 1s
(771 [-6]]
'H? 2!
L
IRk
(Lojl o

4. First find the general solution of 4x = 0 in terms of the free variables. Since

1 =6 0 0 0]
6 0 1 0 0

the general solution is x, =6x,, x; =0, with x, and x, free. So
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and a spanning set for Nul 4 is

(61107
1o

{
i

‘,Oi’SOE
EOé

i
S b #

5. First find the general solution of 4x = & in terms of the free variables. Since
ir b -2 0 4 00
[4 0]~§0 0 1 -9 0 0],
0 0 0 0 1 0]

L

the general solution is x; =2x, ~4x,, x, =9x,, x; =0, with x, and x, free. So

X 2 ~4
X, t 0
X=lx |=x0+x] 9,
X4 0 I
x5 | 0 0]

and a spanning set for Nui 4 is

[[2]]
ji 0
0L 9
io 1
01 04

6. First find the general solution of Ax = § in terms of the free variables. Since
10 6 -8 1 0
[4 0j~j0 1 =2 1 0 0!,

00 0 0 0 0]

the general solution is x; = —6x, +8x; — x5, x, =2x; —x,, with x;, x,, and x, free. So

- 9 - - - - - -

x -6 8 -1
X, 2 =1 0

X=ix =x) Fl+x Oi+x O,
X 4 1 0
X ] 0] 0] L1

and a spanning set for Nul 4 is

(7671 8 =17

L2l o

ot o

ol o
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. The set W is a subset of *°. If W were a vector space (under the standard operations in i %), then it

would be a subspace of = °. But W is not a subspace of ** since the zero vector is not in W. Thus i is
not a vector space.

- The set ¥ is a subset of “’. If W were a vector space (under the standard operations in %), then it

would be a subspace of 7. But W is not a subspace of % since the zero vector is not in W, Thus W is
not a vector space.

- The set W is the set of all solutions to the homogeneous system of equations @ — 2b ~ 4¢ = 0,

_ (1 =2 -4 0]
2a—c¢~3d=10. Thus W= Nul 4, where A4 =! 5 o | _3 f Thus W is a subspace of :* by

E. il

Theorem 2, and is a vector space.

The set W is the set of all solutions to the homogeneous system of equations @ +3b - ¢ =,

3 -1 0]

B !
a+b+c—d=0. Thus W= Nul 4, where Az] L1 |- Thus Wis a subspace of ¥ by
L S

Theorem 2, and is a vector space.

The set Wis a subset of °. If ¥ were a vector space (under the standard operations in 7 %), then it
would be a subspace of %, But Wisnota subspace of * since the zero vector is not in W. Thus W is not

a vector space.

The set # is a subset of 7, If W were a vector space (under the standard operations in %), then it would
be a subspace of . But Wis not a subspace of 7" since the zero vector is not in W, Thus # is not a

vector space.

An element w on /¥ may be written as

L

°
Tk

Ry i
1 w(ﬁl
where ¢ and J are any real numbers. So W = Col 4 where A=| 0 ] E . Thus W is a subspace of »* by
Theorem 3, and is a vector space.
An element w on # may be written as
| ¥ i :zf (a 2§I_aﬁ§
w=al 1|+b|-2/=| 1 29
3 |-s] | b
L3 6] L3 -6l
[ ,ﬂg
where a and 4 are any real numbers. So W= Col 4 where A ::! 1 -2 |. Thus Wis a subspace of " * by
3 -6
L Y]

Theorem 3, and is a vector space.
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An element in this set may be written as

o] 2 Fsfo 20 3.
DER S S id
R N R R 2 I S G A
FiiEs et = 5[5!
40 b 01 14 1 0y
N - K
BRI TR T
02 3]
_ o1 2
where r, 5 and ¢ are any real numbers. So the set is Col A where Ami i 1 ol
13«1 -1
An element in this set may be written as
15 0 0 1 A VO R V¥ P
o IR
bl " e ]+dl =1 e
LIRS 40 5 4 4
ol Lo) [aplo oo f
M -1 0]
. 2 i
where b, ¢ and d are any real numbers. So the set is Col 4 where A =| 4

!

0

The matrix 4 is a 4 % 2 matrix. Thus
{a) Nul A is a subspace of %, and
(b) Col 4 is a subspace of *,

The matrix A4 is a 4 x 3 matrix. Thus
{a) Nuid s asubspace of 23, and
(b) Col 4 is a subspace of =7,

The matrix 4 is a 2 X 3 matrix. Thus
{a) Nul A4 is a subspace of © *, and
(by Col A4 is a subspace of 2

The matrix 4 1s a | x 3 matrix. Thus

(a) Nuld4 is a subspace of >, and

{(b) Cotl 4 is a subspace of SR

Either column of 4 is a nonzero vector in Col 4. To find a nonzero vector in Nul 4, find the general
solution of Ax = 0 in terms of the free variables. Since

\ 1 -3 0
i !
) 00 G
l‘4 91 Ng i':
00 0

00 0

e —d
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the general solution is x, =3x,, with x, free. Letting x, be a nonzero value (say x, =1) gives the
RORZEro vector

lx 3]
x= *];:311
Lr2d LY

which is in Nul 4.

Any column of 4 is a nonzero vector in Col 4. To find a nonzero vector in Nul A, find the general
solution of 4x = @ in terms of the free variables. Since
I 0 -7 6 0]
[4 0] -~ ] B
01 4 2 0 |
the general solution is x, = 7x; - 6x,, Xy =—4xy +2x,, with x; and x, free. Letting X, and x; be
nonzero values (say x; =x, =1) gives the nonzero vector

irx]_l Ir 1?

Ex2; |2 ]
X = [=!

| X | 1

L*rté [ 1

which is in Nul 4.

Consider the system with augmented matrix [4 w] . Since

1 -2 -1/3
[A W] "“; .!z-
Lo 0 0]
the system is consistent and w is in Col 4. Also, since
(-6 1272 Ero'!
av=] 2110
-3 6ll1] [o]

w is in Nul A.

Consider the system with augmented matrix [4 w]. Since

10 1 -12]
[4 wl~0 1 12 1,
00 0 0

the system is consistent and w is in Col 4. Also, since
-8 =2 w97§§r 2] T0]

Aw=| 6 4 8 |

4 0 =2

i
|
o
wis in Nul 4.

. True. See the definition before Example 1.

. False. See Theorem 2.

- True. See the remark just before Examiple 4.

False. The equation Ax = b must be consistent for every b. See #7 in the table on page 226,
. True. See Figure 2. '

True. See the remark after Theorem 3.
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26. a. True. See Theorem 2.

. True. See Theorem 3,

. False, See the box after Theorem 3.

. True. See the paragraph after the definition of a linear transformation.
. True. See Figure 2.

. True. See the paragraph before Example 8,

[T T = T S~ S ]

27. Let A be the coefficient matrix of the given homogeneous system of equations. Since Ax = 0 for

ﬂ

equations.

28. Let A be the coefficient matrix of the given systems of eguations. Since the first system has a solution,

-
OT
the constant vector b w«| i § is in ColA. Since Col 4 is a subspace of -7, it is closed under scalar
9.
ol
multiplication. Thus 5b =§ 5 E is also in Col 4, and the second system of equations must thus have a
[
45
L

solution.

29, a. Since A0=0, the zero vector is in Col 4.
b. Since Ax+ Aw = A(x+w), Ax+ Aw isin Col 4.
¢. Since c{dx) = A(ex).cdx 1sin Col 4.

30. Since 7(0,)=40, , the zero vector 0, of Wis in the range of 7. Let 7(x) and T(w) be typical elements in
the range of 7. Then since T{x}+T(w)=T(x+w),7(x)+7T{w) is in the range of T and the range of T'is
closed under vector addition. Let ¢ be any scalar. Then since ¢T{x)=T7{cx), cT(x) isin the range of T
and the range of 7 is closed under scalar multiplication. Hence the range of T is a subspace of #.

31, a. Letpand q be arbitary polynomials in 5, and let ¢ be any scalar. Then

. \ (P +q}(0) i P(G)+q(0) (O) | q( }
Hex +7
T (p*q;()ﬁ3 Lpﬂ)+qﬁ} '?ULE q) =T{p)+T(q)

and
Hepd0y_ fpyl
T(ep)=| = =cT(p)
T e YO

s¢ 77 is a linear transformation,




4.2« Solutions 197

b. Any quadratic polynomial q for which ¢(0)=0 and q(1)=0 will be in the kemel of 7. The

fxl.
polynomial ¢ must then be a multiple of p(s)=1(r-1). Given any vector | ’ g in 7, the polynomial
L

p=x +{x; ~x ) has p(0)=x and p(I)= x,. Thus the range of Tis afl of

H

o L.

3

32. Any quadratic polynomiai q for which q(0) =0 will be in the kernel of 7. The polynomial quﬁ}us‘c then
be g =at+hb1”, Thus the polynomials p;(t)=1¢ and p,(7) = r* span the kerne! of 7. If a vector is in the

al

range of 7, it must be of the form { . If a vector is of this form, it is the image of the polynomial
4]

|

a—I |
irareal}.
a.

LA

!
i

p(7y=a in: 'y Thus the range of T'is {

33. a. Forany 4 and Bin M, and for any scalar c,
T(A+BY=(A+B)+{A+B) =A+B+4 +B =(4+ A" )+(B+ B )=T(4)+T(B)
and
T(cdy=(cAY =c(A"y=cT(4)
so T is a linear transformation.

b. Let B be an element of M,,, with B” =B, and let 4=18. Then

T(A)y=A+A4" :lB+(lB)?‘ el lpilpap
2 2 2 2 2 2
c. Part b. showed that the range of T contains the set of all Bin A,,, with B” = B. It must also be
shown that any B in the range of T has this property. Let & be in the range of 7. Then B = T{4) for

some 4in M,,,. Then B=A+ 4", and

B =(A+ A = A" +(A"V =4 + 4=4+ 4" =B
so B has the property that B” = B.

b
| be in the kernel of 7. Then T (A)=A+ 4" =0, s0

~a
d. Let A=

+§a cg:!_la c-émb"%:%—(} 0"5

b d)Tlbre 24 Tlo o)
Solving it is found that ¢ =d =0 and c=~b. Thus the kernel of Tis
Lo
B

[

‘i

34. Let fand g be any elements in C[0, 1] and let ¢ be any scalar. Then T(f) is the antiderivative F of f with
F(0} = 0 and 7(g) is the antiderivative G of g with G(0) = 0. By the rules for antidifferentiation F + G
will be an antidenivative of f+g, and (F+GY0j=F(0)+G(0)=0+0=0.Thus T(f +g)=T(f) + T(g).
Likewise cF will be an antiderivative of ¢f. and (cF)Y0)=cF(0)=c0=0. Thus T(cf)=cT{f), and Tis a
linear transformation. To find the kerel of 7, we must find all functions £in C[0,1] with antiderivative
equal to the zero function. The only function with this property is the zero function 9, so the kernel of T
is {07,

!
[hreal .
d J

D S S
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Since U/ is a subspace of ¥, 8, is in U. Since T'is linear, 7(0, ) =0,. So 0, isin 7(L). Let 7(x) and
T(y) be typical elements in 7{U). Then x and y are in U, and since U is a subspace of ¥, x+y is also

in U, Since 7'is linear, T(x)+7(y)=T(x+y). So T(x)+T(y) is in T(U), and T{L} is closed under
vector addition. Let ¢ be any scalar. Then since x is in U and U/ is a subspace of ¥, ex is in {/. Since T is
tinear, T{ex)=c7T(x) and c7(x) is in T(T }. Thus T(U) is closed under scalar multiplication, and T{U) is

a subspace of /.

Since Z is a subspace of W, Oy isin Z. Since T'is linear, 7(0,)=0,. So 0, isin /. Letx and y be
typical elements in U. Then 7(x) and T{y) are in Z, and since Zis a subspace of W, T(x)+T(y) is also in
Z. Since T'is linear, T(x)+T(y)=T{(x+y). So T(x+y) is in Z, and x+y isin U, Thus Uis closed
under vector addition. Let ¢ be any scalar. Then since x is in I/, 7(x) is in Z. Since Z is a subspace of W,
cT(x) is also in Z. Since 7 is hinear, ¢7T(x)=T{(cx) and T(cx) is in 7({)). Thus cx is in U and U/ is closed
under scalar multiplication. Hence U is a subspace of V.

[M] Consider the system with augmented matrix | A w}. Since

{1 0 0 -—1/95 1/95]
101 0 39/19  -20/19
0 0 1 267/95 -172/95
0 0 0 0 {)J

3

the system is consistent and w is in Cold. Also, since
C7 6 -4 1}’ 1] 47
le -] 0 =2

W=
[ 9 -11 7 »«»3}
1

A

w is not in NulA4.

[M] Consider the system with augmented matrix [4  w]. Since

o -1 0 -2]
, fo 1 =2 0 -3
[4 w]~| s
0 0 1 I
00 0 0 o0

the system is consistent and w is in Col4. Also, since
(-8 5 =2 o] 7o
ol

i I}

wis in NulA.
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39. IM]
a. To show that a, and a, are in the column space of B, we can row reduce the matrices [B a;] and
(B a]:
fﬁ 0 0 1/3]
101 0 1/3]
[B 33]”1! |
jO 01 0 !f
00 0 0 1
Lo o I0f3}
60 1 0 -26/31
& ag-| |
{0 0 1 —4{
0 0 0 0]

Since both these systems are consistent, a, and a, are in the column space of B. Notice that the same
conclusions can be drawn by observing the reduced row echelon form for A4;
10 13 ¢ 10x31
Aw!O I 1’3 0 -26/3|
} 00 0 i 4|
100 0 0 0 J

b. We find the general solution of 4x = 0 in terms of the free variables by using the reduced row echelon
form of 4 given above: x5 =(~1/3)x, ~{10/3)x,, x, =(~1/3)x, +(26/3)x;, x, = 4xs with x, and X5

free. So
(,rﬂf [~1/3]  [-10/3]
EYRNEEY [ 26/3 |
xz%xﬁ:xﬂ i+ x Oj,
fxﬁ ; 0 4!
f_xsj E O_E L1

(;’4/3“’5 -10/3

i 'f
g.—m}} 26/3] |
j% ol
o
tLooj 1)

¢. The reduced row echelon form of 4 shows that the columns of 4 are linearly dependent and do not
span =% Thus by Theorem 12 in Section 1.9, T'is neither one-to-one nor onto.

40. [M] Since the line lies both in # = Span{v . v,} andin K = Span{v;,v,}, w can be written both ag
GV +6Vy and vy +o,v,. To find w we must find the ¢;'s which solve ¢v, +¢,v; ~¢,v, TV, =0,

Row reduction of [v, v, v, -V, 0] vields

s 1 -2 0 0] 10 0 -10/3 o
33 1 12 00 1 0 263 o),
8 4 -5 28 0 0 0o 1 ~4 9]
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s0 the vector of ¢;’s must be a multiple of (10/3, -26/3, 4, 1). One simple choice is (10, =26, 12, 3), which
gives w =10v, - 26v, =12v, +3v, =(24,~48,-24) . Another choice for w is (1, -2, -1).




