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5.3 SOLUTIONS

> 7 2 0] 3 -7 6 0
' P:{ T’D:;r %*A=PDP—I,and A*=PD*P™'. We compute P! = W,D“z :
2 3J 0 1] 2 5] 0 1
r r _ 5 _2na]
nd 4t =] 7%16 ol 3 7L[ 26 525
2 30 12 5] 90 -209

_ 2 3 __P 0 _ -1 4 _ 4 p1
2. P= ,D-L ,A=PDP™, and 4" = PD"P~". We compute

3 s 0 12
503 L0 2 3Tt o5 3 151 90
3 2 0 116 3 5|0 116)|3 2| 16]-225 -134
ek T 1
A P 1 Oja 0 1 O | a Og
3. 4 =pptp= ! - 40
3o b3 1 34 -3 b

4, A =pD'p' =

342 off[-1 4] [4-32° 122612
porfo L 3T -2 sz |

S. By the Diagonalization Theorem, eigenvectors form the columns of the left factor, and they correspond
respectively to the eigenvalues on the diagonal of the middle factor.

1 1] 2
A=5:011A=1: 0O}, ~1
1 -1 0
6. As in Exercise 5, inspection of the factorization gives:
1] —21 0
A=4: 2LA=5: 04,1
o Ll
7. Since 4 is triangular, its eigenvalues are obviously *1.
0 0
ForA=1: 4-1 :{6 J. The equation (4—1/)x=0 amounts to 6x, —2x, =0, so x, =(1/3)x, with
]

/3] 1]
x, free. The general solution is x, ;L J, and a nice basis vector for the eigenspace is v, = [3J

2 0]
ForA=-1: A+1l=| 6 0 § The equation (4+1/)x =0 amounts to 2x, =0, so x, =0 with x, free.
L §
T . . ‘ 707
The general solution is x,| : I, and a basis vector for the eigenspace is v, =Z at
L] L
r L[ 0] BRI : .
From v, and v, construct P= v, vzj:[ 3 |- Then set D-—-; 0 -1 |, where the eigenvalues in D
L d LY -

correspond to v, and v, respectively.
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8. Since 4 is triangular, its only eigenvalue is obviously 5.

j The equation (4~5/)x =0 amounts to x, =0, so x, =0 with x, free. The

. Since we cannot generate an eigenvector basis for *, 4 is not diagonalizable.

9. To find the eigenvalues of 4, compute its characteristic polynomial:

[3—-% -1 , )
det(A-Wl)= det| 1 B=M5=-1) = (=I)(D)=1" -8 +16=(h—4)°
L 1 5 "_/"J
Thus the only eigenvalue of 4 is 4.
-1 ~1]
Forh=4: 4-4] = .. The equation (4~4/)x=0 amounts to x, +x, =0, s0 x; =—x, with x,
L 4

T . o
free. The general solution is xz( 1 . Since we cannot generate an eigenvector basis for = %, 4 is not
L
diagonalizable.

10. To find the eigenvalues of 4, compute its characteristic polynomial:
4 7

3& {i:(z—x)a—m—(s)m):x?—3k-10:(k-5)(k+2)

det(4 —A\)=det
L
Thus the eigenvalues of 4 are 5 and —

-3 3]

ForA=5. A-5] :[ 4 4| g The equation (4~5/)x=0 amounts to x; —x, =0, so x; =x, with x,
1 1]
x I
J 1

i

N | |
free. The general solution is xm( |, and a basis vector for the eigenspace is v, =

axLI

r
4 3
ForA=-2: A+27 :E . The equation (4+1/)x =0 amounts to 4x; +3x, =0, s0 x; =(-3/4)x,
L

[-3/4] =3
with x, free. The general solution is x, E 1_{‘ and a nice basis vector for the eigenspace is v, = § 4J_
L L
1 —3“5 [ 5 0] . :
From v, and v, construct P= v, v, ;:EU n Then set D =| 0y ; where the eigenvalues in
) J L J

D correspond to v, and v, respectively.

11. The eigenvalues of 4 are given to be 1, 2, and 3.

E -4 4 —2;5 ‘10 -4 o"g
Fora=3: 4-3]= -3 1 0, and row reducing {A 37 0] yields EEO I -3/4 0 i% The
31 0] 00 0 0
sf 4] R
general solution is x, ; 3/4 ; and a nice basis vector for the eigenspace is v, :f 3 §
BNl 4]
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12.

-3 4 =2 (10 -2/3 0]
ForA=2: 4-2/=|-3 2 0|, and row reducing [4~2/ 0] yields 0 1 -1 0] The
31 } 00 00
2/3 2]
general solution is x;| 1|, and a nice basis vector for the eigenspace is v, =| 3 |.
1 4 3
-2 4 =2 1 0 -1 o]
ForA=1: A4-/=-3 3 0|, and row reducing [4~1/ 0] yields |0 1 -1 0/ The general
-3 1 2] 0 0 0 O

1} 1
solution is x; {1 I, and a basis vector for the eigenspace is v; =| 1.

il

[,

1 21 30 0]
From v,,v, and v, construct P=[v} v, V3}= 3 3 1|. Thenset D=0 2 OJ, where the
4 3 1 0 0 1
eigenvalues in D correspond to v,,v, and v, respectively.
The eigenvalues of 4 are given to be 2 and 8.
-4 2 2 1 0 -1 0
ForA=8: A-8/=| 2 -4 2|, and row reducing [A—-8I 0] yields |0 1 -1 0/ The
2 2 4 0 0 0 0
1 '
general solution is x;| 1 |, and a basis vector for the eigenspace is v, ={1].
1 1
2 2 2 I 1.1 0
ForA=2: 4-2/=/2 2 2/, and row reducing [4—2/ 0] yields |0 0 0 0/ The general
2 2 2 0 0 0 O
-1 -1 J { —1] 1]
solution is xz( I}er3 0|, and a basis for the eigenspace is {v,,v,}= ! [ 1J, 0 i
L 0] 1 Lo 1 J
-1 - 8 0 0
From v;,v, and v, construct P-—{vI v, v3:§=g1 1 0| Thenset D=|0 2 O}, where the
1o 1 00 2

eigenvalues in D correspond to v,,v, and v, respectively.
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13. The eigenvalues of 4 are given to be 5 and 1.

14.

{ -3 2 —1';; [ 10 1 (ﬂg
ForA=35: 4-5] ::; I -2 - ;, and row reducing [ 4 -5/ 0 yxelds i 1 1 0. The general
-1 -2 -3 0 0 0 Oﬂ
-1 1]
solution is x~§ -1 %i, and a basis for the eigenspace is v, |} -1 }
Ll L l_j
12 -l 12 -1 0]
ForA=1: A-1/ :t I 2 -1}, androwreducing [4—7 0] yields |0 0 0 0 { The general
1 -2 1] 00 0 0]
[~ 21 ( r-z] [ 1}
solution is x,| 1 f+ }, and a basis for the eigenspace is {v,,v,} =i 1 §’{ 0
o] o] |1
[-1 =2 1 5 0 O}
From v,,v, and v, construct P=€vi v, v3j=§ -1 1 0}. Then set D:{O 1 0, where the
[ 10 1] 0 0 1 J
eigenvalues in D correspond to v,,v, and v, respectively.
The eigenvalues of 4 are given to be 5 and 4.
(4 0 -2 0 2 0
ForA=5: 4-5I= 2 0 4|, androw reducing [4~5] 0] yields [O 0 0 0 I The general
00 0 0
2] (27707
solution is x, ] +x3 . and a basis for the eigenspace is {v,,v,}= OJ,I 1 {f}
L1 {OJ
FO 0 -2 I V2 0 0
ForA=4: A-4] =§ 2 1 , and row reducing [ 4 -4/ 0] yields |0 0 1 0/ The general
(00 1] 0 0 0 0
[~1/2] ]
solution is x;| 1 g} and a nice basis vector for the eigenspace is v, =§ 2.
o o)
-2 0 —1’}% 5 0 0]
From v,,v, and v, construct Pzivi v, VJEZE 0 1 2| Thenset D=£ 0 5 0}, where the
L1 0 o 0 0 4

eigenvalues in D correspond to v,,v, and v, respectiyely.
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15. The eigenvalues of 4 are given to be 3 and 1.

( 4
ForA=3: 4-3/= 2 2 8
solution is x, |
ForA=1: 4-I=
solution is x,

From v;,v, and v; construct P =

E
i
|
|
°
Lo

L

~1

4 16] {1 1 4 0}
|, and row reducing [4—3/ 0] yields |0 0 0 0| The general
L 2 -2 -8 Lo 0 0 OJ
(4] EF-{‘{ -47]
+ rJ{ 0 ; and a basis for the eigenspace is {v,,v,} = { 1 ;,{ 0 { j
L o] | 1]
[ 6 4 16] 10 2 0)
' 2 4 8, androwreducing [A—7 0]yields {0 1 1 0] The general
!_—2 -2 -6 0 0 0 0 }
—2} (-2
—1, and a basis for the eigenspace is vy =| —1|.
J B
(—1 -4 =2 3 0 0
1 0 -1| Thenset D={0 3 0|, where

vy, V3J§=['

0 1 1 0 0 1

the eigenvalues in D correspond to v,,v, and v; respectively.

16.

B&L:Q:A~ZI=}—

solution is x,

ForA=1:

solution is x,

From v,.v, and v; construct P= v,

the eigenvalues in D correspond to v,,v, and v, respectively.

The eigenvalues of 4 are given to be 2 and 1.

r
|
!
°
!
]

A-1=

r
|
:
|
|
i
i

-2 4 6] [1 2 3 0]
-2 =3, and row reducing [4—2/ 0] yields | 0 0 0 0| The general
12 3J 00 0 oJ
=21 -3 23]
1 +x3§ 01, and a basis for the eigenspace is {v,,v,}= 1,l 0}
o | 1] 0| 1
-1 -4 —6} 10 2 0]
-1 -1 -3 f, and row reducing [4—/ 0] yields 0 1 1 0| The general
L2 4 [O 0 0 OJ
~2] ~2]
-1 E, and a basis for the eigenspace is v, =| —1 ;
1] L 1J
-2 =3 -2] 2.0 0]
v, v= 1 0 -1, Thenset D=0 2 0/, where
L0 0 0 1




17.

18.

19.

)
-3
<

5.3 « Solutions

Since A is triangular, its eigenvalues are obviously 4 and 5.

0 0 0 0 0 0
ForhA=4: A-4I='1 0 0 ', and row reducing [4-47 0] yields z 0 0 1 0 § The general
0 0 1] 0 0 0 0
5 0] iﬁ()';
solution is n% 1 %, and a basis for the eigenspace is v, = ; 1 E
L0 o]

Since % =35 must have only a one-dimensional eigenspace, we can find at most 2 linearly independent
eigenvectors for 4, so 4 is not diagonalizable.
o

An eigenvalue of 4 is given to be 5; an eigenvector v, is also given. To find the eigenvalue

1
2
-7 -6 4 f’-—z} ( 6
}% 1|=| -3 |=-3v,. Thus the eigenvalue in
L2l

corresponding to v, compute Av, = 6 13 -2
12 16 1) 2]
question is —3.
[-12 -16 4] 1 43 -13 0}
Forh=5:. A-5I= 6 g -2 E, and row reducing [4—5/ 0] yields |0 0 0 0}
12 16 -4 0 0 0 OJ

J
~4/3 {1/3’?
The general solution is x, 1+ x;] OJ, and a nice basis for the eigenspace is

Dol L
(4111
{VZvV.z}:i 3’O}L

-2 -4 1] (-3 0 0
From v,,v, and v, construct P=|v, v, v3}= 1 3 0 { Thenset D=| 0 5 0/, where the
2 0 3 L0 0 s

eigenvalues inD correspond to v,,v, and v; respectively. Note that this answer differs from the text.
There, P = V v, v,  and the entries in D are rearranged to match the new order of the eigenvectors.

According to the Dlagonahzatlon Theorem, both answers are correct.

Since 4 is triangular, its eigenvalues are obviously 2, 3, and 5.

3 30 97 o 1 10
01 -2 , . 011 20
Fori=2: A-2I= ‘, and row reducing | 427 0] yields . The
- 0 00 o{ el Iy 000 00
0o 0 0 o0 00 0 0 0
1l 17 (r_117-1]
2 0]
5”‘"1% 2 P - . |
general solution is sz 1§+xé§ Gf and a nice basis for the eigenspace is {v,,v, }:{ii I;‘,i .
|7 R ,
. i
o 1] Lol
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)
{o
ForA=3: 4-3[=
fO
Y

The general solution is x,

ForA=35: A-5]=

general solution is x,

[ T o S o SN o S s B e B s}

=[ -
From v,,v,,v; and v, construct P=[v, v, v, V=

where the eigenvalues in D correspond to v,, v, and v; respectively. Note that this answer differs from

Eigenvalues and Eigenvectors

-3 0 9] 1 =32
O ducing [4-37 0] yields |° ©
, and row redu - ields
0 -1 o0 reducing y 0 0
0 0 -1 0 0
(3/2} { 3
1
ol and a nice basis for the eigenspace is v, =| ol
0 [OJ
-3 0 9 0 1 0
-2 1 =2 ) . 0 0 1
, and row reducing [4 -5/ 0] yields
0 -3 0 0 0 0
0 0 -3 0 0 0
B
: . . 0
» and a basis for the eigenspace is v, = ol
0
-1 -1 3 1 2
-1 2 2 0 0
. Thenset D=
1 0 0 0 0
0 1 0 0 0

b L ]

O O

0

D e O

S o o ©

0
0
3

0

the text. There, P=[v, v, v, v, | and the entries in D are rearranged to match the new order of the

eigenvectors. According

20. Since 4 is triangular, its eigenvalues are obviously 4 and 2.
0 0 o 0? 1 0 0
00 0 o i ) 0 0 1
ForA=4: A-41= f, and row reducing [A—41 0] yields
0 0 -2 o0 0 0 0
11 0 0 =2 0 0 0
0 2 0]2]
1o 1o
general solution is x, 0|t ob and a basis for the eigenspace is {v,,v,}= 0 ,! o ?
| §
o) L Lol
20 0 0] §" 1 000
0 2 0 0 01 0 0
ForA=2: 4-21 =; f}, and row reducing [A—ZI O} yields §
) 100 0 0] ‘ ff 0 0 0 0
| H
(10 0 0] (00 0 0
- a7l 7 T
MK o1/
0] o) - : , 00|
general solution is x; | | [+ X, 0 I, and a basis for the eigenspace is Vo v, =< } : I ()f} (
1 10 .
L P P
o) Ly Mm

to the Diagonalization Theorem, both answers are correct.

S O O

[ e A« B o

. The

Lo S e B s

. The

2

0
0
0

5
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-

[0 2 0 0] 4 0 0 0}

: 10 0 o 0 4 0 0

From v,.v,. vy and v, construct P=v, v, v, Vi =] 0 0 1 0 . Thenset D= 0 0 2 ol
| | 5

01 0 1 0 0 0 2]

where the eigenvalues in D correspond to v,, v, and v, respectively.

21. a. False. The symbol D does not automatically denote a diagonal matrix.
b. True. See the remark after the statement of the Diagonalization Theorem.
¢. False. The 3x3 matrix in Example 4 has 3 eigenvalues, counting multiplicities, but it is not
diagonalizable.

d. False. Invertibility depends on 0 not being an eigenvalue. (See the Invertible Matrix Theorem.)
A diagonalizable matrix may or may not have 0 as an eigenvalue. See Examples 3 and 5 for both
possibilities.

22. a. False. The n eigenvectors must be linearly independent. See the Diagonalization Theorem.

b. False. The matrix in Example 3 is diagonalizable, but it has only 2 distinct eigenvalues. (The
statement given is the converse of Theorem 6.)

¢. True. This follows from AP = PD and formulas (1) and (2) in the proof of the Diagonalization
Theorem.

d. False. See Example 4. The matrix there is invertible because 0 is not an eigenvalue, but the matrix is
not diagonalizable.

23. A is diagonalizable because you know that five linearly independent eigenvectors exist: three in the
three-dimensional eigenspace and two in the two-dimensional eigenspace. Theorem 7 guarantees that the
set of all five eigenvectors is linearly independent.

24. No, by Theorem 7(b). Here is an explanation that does not appeal to Theorem 7: Let v, and v, be

eigenvectors that span the two one-dimensional ei genspaces. If v is any other eigenvector, then it belongs
to one of the eigenspaces and hence is a multiple of either Vv, or v,. So there cannot exist three linearly

independent eigenvectors. By the Diagonalization Theorem, 4 cannot be diagonalizable.

25. Let {v,} be a basis for the one-dimensional eigenspace, let v, and v; form a basis for the two-
dimensional eigenspace, and let v, be any eigenvector in the remaining eigenspace. By Theorem 7,
{Vi, V5, vy, v, is linearly independent. Since 4 is 4x 4, the Diagonalization Theorem shows that
A is diagonalizable.

26. Yes, if the third eigenspace is only one-dimensional. In this case, the sum of the dimensions of the
eigenspaces will be six, whereas the matrix is 7x 7. See Theorem 7(b). An argument similar to that for

Exercise 24 can also be given.

27. If 4 is diagonalizable, then 4= PDP"" for some invertible P and diagonal D. Since 4 is invertible, 0 is
not an eigenvalue of 4. So the diagonal entries in D (which are eigenvalues of 4) are not zero, and D is
invertible. By the theorem on the inverse of a product,

A =(PDP Yy =Py D P = ppl P

-1

Since D' is obviously diagonal, 47 is diagonalizable.
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28. If A has # linearly independent eigenvectors, then by the Diagonalization Theorem, 4= PDP™" for some
invertible P and diagonal D. Using properties of transposes,

ya =(PDP—1)T :(P—})TDTPT
=(PT) DPT = QDQ"!

where O =(P")™". Thus A" is diagonalizable. By the Diagonalization Theorem, the columns of Q are n

linearly independent eigenvectors of A"

29. The diagonal entries in D, are reversed from those in D. So interchange the (eigenvector) columns of
P to make them correspond properly to the eigenvalues in D,. In this case,

P {-1 ﬂanle {3 o]

2 1] 0 s
Although the first column of P must be an eigenvector corresponding to the eigenvalue 3, there is

1 -3 -3 1
nothing to prevent us from selecting some multiple of [ 7}, say { 6} and letting P, ={ 6 1]. We

now have three different factorizations or “diagonalizations” of 4:
A=PDP'=PDP " =P,D P’

30. A nonzero multiple of an eigenvector is another eigenvector. To produce P,, simply multiply one or
both columns of P by a nonzero scalar unequal to 1.

31. Fora 2x2 matrix 4 to be invertible, its eigenvalues must be nonzero. A first attempt at a construction

2 3
might be something such as 1:0 4:;, whose eigenvalues are 2 and 4. Unfortunately, a2x 2 matrix with
e o . . . 2 3 :
two distinct eigenvalues is diagonalizable (Theorem 6). So, adjust the construction to o ol which

b
works. In fact, any matrix of the form {g } has the desired properties when a and b are nonzero. The
a

eigenspace for the eigenvalue a is one-dimensional, as a simple calculation shows, and there is no other
eigenvalue to produce a second eigenvector.

32. Any 2x2 matrix with two distinct eigenvalues is diagonalizable, by Theorem 6. If one of those

a b
eigenvalues is zero, then the matrix will not be invertible. Any matrix of the form (0 O} has the

L 4
desired properties when a and b are nonzero. The number @ must be nonzero to make the matrix
, . . . . [0 0]
diagonalizable; b must be nonzero to make the matrix not diagonal. Other solutions are E b j
a
-
H avz
and g %
0 b




6 4 0 9?
-3 0 1 6]
33. Azg 6;,
| -1 -2 1 0
-4 4 0 7J
ev=elg(A)=(5,1,-2,-2)
[ 1.0000]
0.5000
nulbasis(A-ev (1) *eye(4))=
—0.5000 |
| 1.0000
| 2]
1
A basis for the eigenspace of A =5 is I
|2
" 1.0000 ]
lbasis (A (2)% (4)) -0.5000
nulbasis (A-ev( eye =
Y ~3.5000
. l.OOOOJ
[ 2]
A basis for the eigenspace of A =1is _7

h

|
L
i
2]

00007 [ 1.5000
.0000

~0.7500 I

i1b ) (A- 3) % 4 - ,
nulbasis (A-ev(3) *eye (4)) 1.0000{? 0
0] | 1.0000J
HIB
. . =3
A basis for the eigenspace of A =-2 is l}’ O!'
o] 4
221 6] s 0 o o]
| 1 I -3 o1 o ol
Thus we construct sz Lo O;and Dz;o 0 2 o
T - |
2 20 4 00 0 -2
{o 13 8 4?
4 9 8 4
34. 4=| L,
8 12 85
0 5 0 —4

ev=elig(A)=(-4,24,1,-4)

53

Solutions

281
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;"-z‘[ 1]
ol o)
nulbasis(A—ev(l)*eye{é)}=E lg’ N
LoJ 1)
[-27 ;’—15
. . ) 0] Of
A basis for the eigenspace of A =—4 is | ool
L. O._ L 1_}
;’5.60001
lbasis (A-ev(2) *eye(4)) = | 00
-ev eye =
nulbasis v 72000
[ 1.0000 |
{28}
. . R . 128
A basis for the eigenspace of A =24 is 16 I
306
|
L5
!f 1.0000
1basis (A-ev(3) *eye (4)) = | L0000
nulbasis (A-ev eye(4)) =
i | ~2.0000 |
j_ 1.0000 |

A basis for the eigenspace of A=1is

E_Z.
L1
-2 -1 28 1'; (-4 0 0 0]
0 28 1 fo -4 0 0
Thus we construct P = {and D-—-;
! 36 -2 | 0 0 24 o;
iLO 1 5 1j Lo 0 0 1]
I -6 4 -10 -4
-3 5 =2 4 }
35. A={-8 12 -3 12 4|
1 6 -2 3»—12§
|
L8 ~18 8 -4 -1

T 2.00007 [ 1.0000]
~0.3333 | | -0.3333 |
nulbasis(A-ev(l)*eye(5)) = ~1.0000 |, —1.0000
1.0000 0
0] | 1.0000 |

1. —d
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A basis for the eigenspace of A=51is | =3,/ -3 .

[ 0.80007 [ 0.60007
~0.6000 : | -0.2000
nulbasis{A-ev(2)*eye (5)) = | ~0.4000 |,| —0.8000

0| 1.0000

A basis for the eigenspace of A=11is | -2 |,| -4 |.

nulbasis (A-ev(3) *eye (5)) = -1.0000

A basis for the eigenspace of A=3is | -4 |.

A 4_-
[ 6 3 4 3 2] 5 0 0 0 0]
-1 -1 -3 -1 -1 0 5 0 0 0
Thus we construct P=/ -3 -3 -2 -4 -4 and D=0 0 1 0 0.
3 0 5 6 ~1 0 6 0 1 0
0 3 0 5 4 0 0 0 0 3]
i 4 2 3 =27
-2 =2 2

36. A= 2 11 2 -4,
20 10 10 -6

15 28 14 5 -3

o N O

o

eV =eigiA}={3;517r513}

[N
Tt
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" 2.00007 [~1.0000]
~1.5000 | | 0.5000
nulbasis(A-ev (1) *eye(5))={ 0.5000/, 0.5000

1.0000 0
. 0]| 10000
M 47727
-3 1
A basis for the eigenspace of A=31is| 1],| 1.
“ 211 0
L O] 2]
01 [-1.00007
-0.5000 1.0000
nulbasis (A-ev(2) *eye (5)) = 1.0000 |, 0
01 -1.0000
| 0] 1.0000 |
F o] [-1

A basis for the eigenspace of A=5is| 2|,/ 0.

0)1-1
L OJL 1
[0.3333
0.0000
nulbasis (A-ev (3)*eye(5)) = | 0.0000
1.0000
_1.0000 |
M
0
A basis for the eigenspace of A=71is | 0 |.
3
...3..1
4 =2 0 -1 1 30 0 0 07
-3 I -1 0 0 3 0 0 0
Thus we construct P=| | I 2 0 O0/and D={0 0 5 0 0
2 0 0 -1 3 6 0 0 5 0
0 2 0 1 3 0 0 0 0 7]

Notes: For your use, here is another matrix with five distinct real eigenvalues. To four decimal places, they
are 11.0654, 9.8785, 3.8238, ~3.7332, and —6.0345.
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i -8 5 -3 0
-7 -5 3 0
-3 -7 5 -3 5

0 -4 1 -7 5
-5 -3 -2 0 8

The MATLAB box in the Study Guide encourages students to use eig (A) and nulbasis to practice
the diagonalization procedure in this section. It also remarks that in later work, a student may automate the
process, using the command [P D]= eig (A).You may wish to permit students to use the full power of
eig in some problems in Sections 5.5 and 5.7.




