5.3 SOLUTIONS

- 1. $P = \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix}, D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}, A = PDP^{-1}, \text{ and } A^4 = PD^4P^{-1}. \text{ We compute } P^{-1} = \begin{bmatrix} 3 & -7 \\ -2 & 5 \end{bmatrix}, D^4 = \begin{bmatrix} 16 & 0 \\ 0 & 1 \end{bmatrix},$ and $A^4 = \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 16 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & -7 \\ -2 & 5 \end{bmatrix} = \begin{bmatrix} 226 & -525 \\ 90 & -209 \end{bmatrix}$
- 2. $P = \begin{bmatrix} 2 & -3 \\ -3 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 \\ 0 & 1/2 \end{bmatrix}, A = PDP^{-1}, \text{ and } A^4 = PD^4P^{-1}. \text{ We compute}$ $P^{-1} = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix}, D^4 = \begin{bmatrix} 1 & 0 \\ 0 & 1/16 \end{bmatrix}, \text{ and } A^4 = \begin{bmatrix} 2 & -3 \\ -3 & 5 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1/16 \end{bmatrix} \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix} = \frac{1}{16} \begin{bmatrix} 151 & 90 \\ -225 & -134 \end{bmatrix}$
- 3. $A^k = PD^kP^{-1} = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} a^k & 0 \\ 0 & b^k \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} a^k & 0 \\ 3a^k 3b^k & b^k \end{bmatrix}$.
- **4.** $A^k = PD^k P^{-1} = \begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2^k & 0 \\ 0 & 1^k \end{bmatrix} \begin{bmatrix} -1 & 4 \\ 1 & -3 \end{bmatrix} = \begin{bmatrix} 4 3 \cdot 2^k & 12 \cdot 2^k 12 \\ 1 2^k & 4 \cdot 2^k 3 \end{bmatrix}.$
- 5. By the Diagonalization Theorem, eigenvectors form the columns of the left factor, and they correspond respectively to the eigenvalues on the diagonal of the middle factor.

$$\lambda = 5 : \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}; \lambda = 1 : \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$

6. As in Exercise 5, inspection of the factorization gives:

$$\lambda = 4 : \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}; \lambda = 5 : \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

7. Since A is triangular, its eigenvalues are obviously ± 1 .

For $\lambda = 1$: $A - 1I = \begin{bmatrix} 0 & 0 \\ 6 & -2 \end{bmatrix}$. The equation $(A - 1I)\mathbf{x} = \mathbf{0}$ amounts to $6x_1 - 2x_2 = 0$, so $x_1 = (1/3)x_2$ with

 x_2 free. The general solution is $x_2 \begin{bmatrix} 1/3 \\ 1 \end{bmatrix}$, and a nice basis vector for the eigenspace is $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.

For $\lambda = -1$: $A + 1I = \begin{bmatrix} 2 & 0 \\ 6 & 0 \end{bmatrix}$. The equation $(A + 1I)\mathbf{x} = \mathbf{0}$ amounts to $2x_1 = 0$, so $x_1 = 0$ with x_2 free.

The general solution is $x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and a basis vector for the eigenspace is $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

From \mathbf{v}_1 and \mathbf{v}_2 construct $P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$. Then set $D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, where the eigenvalues in D correspond to \mathbf{v}_1 and \mathbf{v}_2 respectively.

273

For
$$\lambda = 5$$
: $A - 5I = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. The equation $(A - 5I)\mathbf{x} = \mathbf{0}$ amounts to $x_2 = 0$, so $x_2 = 0$ with x_1 free. The general solution is $x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Since we cannot generate an eigenvector basis for \mathbb{R}^2 , A is not diagonalizable.

9. To find the eigenvalues of A, compute its characteristic polynomial:

$$\det(A - \lambda I) = \det\begin{bmatrix} 3 - \lambda & -1 \\ 1 & 5 - \lambda \end{bmatrix} = (3 - \lambda)(5 - \lambda) - (-1)(1) = \lambda^2 - 8\lambda + 16 = (\lambda - 4)^2$$

Thus the only eigenvalue of A is 4.

For
$$\lambda = 4$$
: $A - 4I = \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix}$. The equation $(A - 4I)\mathbf{x} = \mathbf{0}$ amounts to $x_1 + x_2 = 0$, so $x_1 = -x_2$ with x_2 free. The general solution is $x_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Since we cannot generate an eigenvector basis for \mathbb{R}^2 , A is not diagonalizable.

10. To find the eigenvalues of A, compute its characteristic polynomial:

$$\det(A - \lambda I) = \det\begin{bmatrix} 2 - \lambda & 3 \\ 4 & 1 - \lambda \end{bmatrix} = (2 - \lambda)(1 - \lambda) - (3)(4) = \lambda^2 - 3\lambda - 10 = (\lambda - 5)(\lambda + 2)$$

Thus the eigenvalues of A are 5 and -2.

For
$$\lambda = 5$$
: $A - 5I = \begin{bmatrix} -3 & 3 \\ 4 & -4 \end{bmatrix}$. The equation $(A - 5I)\mathbf{x} = \mathbf{0}$ amounts to $x_1 - x_2 = 0$, so $x_1 = x_2$ with $x_2 = 0$

free. The general solution is $x_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, and a basis vector for the eigenspace is $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

For
$$\lambda = -2$$
: $A + 2I = \begin{bmatrix} 4 & 3 \\ 4 & 3 \end{bmatrix}$. The equation $(A + 1I)\mathbf{x} = \mathbf{0}$ amounts to $4x_1 + 3x_2 = 0$, so $x_1 = (-3/4)x_2$

with x_2 free. The general solution is $x_2 \begin{bmatrix} -3/4 \\ 1 \end{bmatrix}$, and a nice basis vector for the eigenspace is $\mathbf{v}_2 = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$.

From
$$\mathbf{v}_1$$
 and \mathbf{v}_2 construct $P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ 1 & 4 \end{bmatrix}$. Then set $D = \begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix}$, where the eigenvalues in D correspond to \mathbf{v}_1 and \mathbf{v}_2 respectively.

11. The eigenvalues of A are given to be 1, 2, and 3.

For
$$\lambda = 3$$
: $A - 3I = \begin{bmatrix} -4 & 4 & -2 \\ -3 & 1 & 0 \\ -3 & 1 & 0 \end{bmatrix}$, and row reducing $\begin{bmatrix} A - 3I & \mathbf{0} \end{bmatrix}$ yields $\begin{bmatrix} 1 & 0 & -1/4 & 0 \\ 0 & 1 & -3/4 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. The

general solution is
$$x_3 \begin{bmatrix} 1/4 \\ 3/4 \\ 1 \end{bmatrix}$$
, and a nice basis vector for the eigenspace is $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$.

For
$$\lambda = 2$$
: $A - 2I = \begin{bmatrix} -3 & 4 & -2 \\ -3 & 2 & 0 \\ -3 & 1 & 1 \end{bmatrix}$, and row reducing $\begin{bmatrix} A - 2I & 0 \end{bmatrix}$ yields $\begin{bmatrix} 1 & 0 & -2/3 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. The

general solution is $x_3\begin{bmatrix} 2/3\\1\\1\end{bmatrix}$, and a nice basis vector for the eigenspace is $\mathbf{v}_2 = \begin{bmatrix} 2\\3\\2\end{bmatrix}$.

For
$$\lambda = 1$$
: $A - I = \begin{bmatrix} -2 & 4 & -2 \\ -3 & 3 & 0 \\ -3 & 1 & 2 \end{bmatrix}$, and row reducing $\begin{bmatrix} A - 1I & \mathbf{0} \end{bmatrix}$ yields $\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. The general solution is $x_3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, and a basis vector for the eigenspace is $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

From $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 construct $P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 3 & 1 \\ 4 & 3 & 1 \end{bmatrix}$. Then set $D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, where the eigenvalues in D correspond to $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 respectively.

12. The eigenvalues of A are given to be 2 and 8.

For
$$\lambda = 8$$
: $A - 8I = \begin{bmatrix} -4 & 2 & 2 \\ 2 & -4 & 2 \\ 2 & 2 & -4 \end{bmatrix}$, and row reducing $\begin{bmatrix} A - 8I & \mathbf{0} \end{bmatrix}$ yields $\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. The

general solution is $x_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, and a basis vector for the eigenspace is $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

For
$$\lambda = 2$$
: $A - 2I = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$, and row reducing $\begin{bmatrix} A - 2I & \mathbf{0} \end{bmatrix}$ yields $\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. The general

solution is
$$x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$
, and a basis for the eigenspace is $\{\mathbf{v}_2, \mathbf{v}_3\} = \left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}$.

From
$$\mathbf{v}_1, \mathbf{v}_2$$
 and \mathbf{v}_3 construct $P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$. Then set $D = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, where the

eigenvalues in D correspond to $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 respectively.

13. The eigenvalues of A are given to be 5 and 1.

For
$$\lambda = 5$$
: $A - 5I = \begin{bmatrix} -3 & 2 & -1 \\ 1 & -2 & -1 \\ -1 & -2 & -3 \end{bmatrix}$, and row reducing $\begin{bmatrix} A - 5I & \mathbf{0} \end{bmatrix}$ yields $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. The general

solution is
$$x_3 \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$
, and a basis for the eigenspace is $\mathbf{v}_1 = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$.

For
$$\lambda = 1$$
: $A - 1I = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 2 & -1 \\ -1 & -2 & 1 \end{bmatrix}$, and row reducing $\begin{bmatrix} A - I & \mathbf{0} \end{bmatrix}$ yields $\begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. The general

solution is
$$x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, and a basis for the eigenspace is $\{\mathbf{v}_2, \mathbf{v}_3\} = \left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$.

From
$$\mathbf{v}_1, \mathbf{v}_2$$
 and \mathbf{v}_3 construct $P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$. Then set $D = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, where the eigenvalues in D correspond to $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 respectively.

14. The eigenvalues of A are given to be 5 and 4.

For
$$\lambda = 5$$
: $A - 5I = \begin{bmatrix} -1 & 0 & -2 \\ 2 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix}$, and row reducing $\begin{bmatrix} A - 5I & \mathbf{0} \end{bmatrix}$ yields $\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. The general

solution is
$$x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$$
, and a basis for the eigenspace is $\{\mathbf{v}_1, \mathbf{v}_2\} = \left\{ \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$.

For
$$\lambda = 4$$
: $A - 4I = \begin{bmatrix} 0 & 0 & -2 \\ 2 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$, and row reducing $\begin{bmatrix} A - 4I & \mathbf{0} \end{bmatrix}$ yields $\begin{bmatrix} 1 & 1/2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. The general

solution is
$$x_3 \begin{bmatrix} -1/2 \\ 1 \\ 0 \end{bmatrix}$$
, and a nice basis vector for the eigenspace is $\mathbf{v}_3 = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}$.

From
$$\mathbf{v}_1, \mathbf{v}_2$$
 and \mathbf{v}_3 construct $P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} -2 & 0 & -1 \\ 0 & 1 & 2 \\ 1 & 0 & 0 \end{bmatrix}$. Then set $D = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 4 \end{bmatrix}$, where the eigenvalues in D correspond to $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 respectively.

15. The eigenvalues of A are given to be 3 and 1.

$$\underline{\text{For } \lambda = 3} \colon A - 3I = \begin{bmatrix} 4 & 4 & 16 \\ 2 & 2 & 8 \\ -2 & -2 & -8 \end{bmatrix}, \text{ and row reducing } \begin{bmatrix} A - 3I & \mathbf{0} \end{bmatrix} \text{ yields } \begin{bmatrix} 1 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}. \text{ The general } \mathbf{0}$$

solution is
$$x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -4 \\ 0 \\ 1 \end{bmatrix}$$
, and a basis for the eigenspace is $\{\mathbf{v}_1, \mathbf{v}_2\} = \left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -4 \\ 0 \\ 1 \end{bmatrix} \right\}$

For
$$\lambda = 1$$
: $A - I = \begin{bmatrix} 6 & 4 & 16 \\ 2 & 4 & 8 \\ -2 & -2 & -6 \end{bmatrix}$, and row reducing $\begin{bmatrix} A - I & \mathbf{0} \end{bmatrix}$ yields $\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. The general

solution is
$$x_3 \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}$$
, and a basis for the eigenspace is $\mathbf{v}_3 = \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}$.

From
$$\mathbf{v}_1, \mathbf{v}_2$$
 and \mathbf{v}_3 construct $P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} -1 & -4 & -2 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$. Then set $D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, where

the eigenvalues in D correspond to $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 respectively.

16. The eigenvalues of A are given to be 2 and 1.

For
$$\lambda = 2$$
: $A - 2I = \begin{bmatrix} -2 & -4 & -6 \\ -1 & -2 & -3 \\ 1 & 2 & 3 \end{bmatrix}$, and row reducing $\begin{bmatrix} A - 2I & \mathbf{0} \end{bmatrix}$ yields $\begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. The general

solution is
$$x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$$
, and a basis for the eigenspace is $\{\mathbf{v}_1, \mathbf{v}_2\} = \left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} \right\}$.

For
$$\lambda = 1$$
: $A - I = \begin{bmatrix} -1 & -4 & -6 \\ -1 & -1 & -3 \\ 1 & 2 & 4 \end{bmatrix}$, and row reducing $\begin{bmatrix} A - I & \mathbf{0} \end{bmatrix}$ yields $\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. The general

solution is
$$x_3 \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}$$
, and a basis for the eigenspace is $\mathbf{v}_3 = \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}$.

From
$$\mathbf{v}_1, \mathbf{v}_2$$
 and \mathbf{v}_3 construct $P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} -2 & -3 & -2 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$. Then set $D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, where

the eigenvalues in D correspond to $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 respectively.

17. Since A is triangular, its eigenvalues are obviously 4 and 5.

Since A is triangular, its eigenvalues are obviously 4 and 5.

For
$$\lambda = 4$$
: $A - 4I = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, and row reducing $\begin{bmatrix} A - 4I & \mathbf{0} \end{bmatrix}$ yields $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. The general solution is $x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, and a basis for the eigenspace is $\mathbf{v}_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

Since $\lambda = 5$ must have only a one-dimensional eigenspace, we can find at most 2 linearly independent eigenvectors for A, so A is not diagonalizable.

18. An eigenvalue of A is given to be 5; an eigenvector $\mathbf{v}_1 = \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}$ is also given. To find the eigenvalue

corresponding to \mathbf{v}_1 , compute $A\mathbf{v}_1 = \begin{bmatrix} -7 & -16 & 4 \\ 6 & 13 & -2 \\ 12 & 16 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ -3 \\ 6 \end{bmatrix} = -3\mathbf{v}_1$. Thus the eigenvalue in

question is -3.

For $\lambda = 5$: $A - 5I = \begin{bmatrix} -12 & -16 & 4 \\ 6 & 8 & -2 \\ 12 & 16 & -4 \end{bmatrix}$, and row reducing $\begin{bmatrix} A - 5I & \mathbf{0} \end{bmatrix}$ yields $\begin{bmatrix} 1 & 4/3 & -1/3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. The general solution is $x_2 \begin{bmatrix} -4/3 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 1/3 \\ 0 \\ 1 \end{bmatrix}$, and a nice basis for the eigenspace is

$$\left\{\mathbf{v}_{2},\mathbf{v}_{3}\right\} = \left\{ \begin{bmatrix} -4\\3\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\3 \end{bmatrix} \right\}.$$

From $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 construct $P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} -2 & -4 & 1 \\ 1 & 3 & 0 \\ 2 & 0 & 3 \end{bmatrix}$. Then set $D = \begin{bmatrix} -3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$, where the

eigenvalues in D correspond to $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 respectively. Note that this answer differs from the text. There, $P = [\mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{v}_1]$ and the entries in D are rearranged to match the new order of the eigenvectors. According to the Diagonalization Theorem, both answers are correct.

19. Since A is triangular, its eigenvalues are obviously 2, 3, and 5.

general solution is $x_3\begin{bmatrix} -1\\-1\\1\\1 \end{bmatrix} + x_4\begin{bmatrix} -1\\2\\0\\1 \end{bmatrix}$, and a nice basis for the eigenspace is $\{\mathbf{v}_1, \mathbf{v}_2\} = \left\{ \begin{bmatrix} -1\\-1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} -1\\2\\0\\1 \end{bmatrix} \right\}$.

$$\underline{\text{For } \lambda = 3} \colon A - 3I = \begin{bmatrix} 2 & -3 & 0 & 9 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}, \text{ and row reducing } \begin{bmatrix} A - 3I & \mathbf{0} \end{bmatrix} \text{ yields } \begin{bmatrix} 1 & -3/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

The general solution is $x_2 \begin{bmatrix} 3/2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, and a nice basis for the eigenspace is $\mathbf{v}_3 = \begin{bmatrix} 3 \\ 2 \\ 0 \\ 0 \end{bmatrix}$.

$$\underline{\text{For } \lambda = 5}: \quad A - 5I = \begin{bmatrix} 0 & -3 & 0 & 9 \\ 0 & -2 & 1 & -2 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix}, \text{ and row reducing } \begin{bmatrix} A - 5I & \mathbf{0} \end{bmatrix} \text{ yields } \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}. \text{ The }$$

general solution is $x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, and a basis for the eigenspace is $\mathbf{v}_4 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$.

From
$$\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$$
 and \mathbf{v}_4 construct $P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 3 & 1 \\ -1 & 2 & 2 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$. Then set $D = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix}$,

where the eigenvalues in D correspond to $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 respectively. Note that this answer differs from the text. There, $P = [\mathbf{v}_4 \ \mathbf{v}_3 \ \mathbf{v}_1 \ \mathbf{v}_2]$ and the entries in D are rearranged to match the new order of the eigenvectors. According to the Diagonalization Theorem, both answers are correct.

20. Since *A* is triangular, its eigenvalues are obviously 4 and 2.

general solution is $x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 2 \\ 0 \\ 0 \\ 1 \end{bmatrix}$, and a basis for the eigenspace is $\{\mathbf{v}_1, \mathbf{v}_2\} = \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$.

general solution is
$$x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
, and a basis for the eigenspace is $\{\mathbf{v}_3, \mathbf{v}_4\} = \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$.

From
$$\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$$
 and \mathbf{v}_4 construct $P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$. Then set $D = \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$,

where the eigenvalues in D correspond to $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 respectively.

- **21**. **a**. False. The symbol D does not automatically denote a diagonal matrix.
 - b. True. See the remark after the statement of the Diagonalization Theorem.
 - c. False. The 3×3 matrix in Example 4 has 3 eigenvalues, counting multiplicities, but it is not diagonalizable.
 - **d**. False. Invertibility depends on 0 not being an eigenvalue. (See the Invertible Matrix Theorem.) A diagonalizable matrix may or may not have 0 as an eigenvalue. See Examples 3 and 5 for both possibilities.
- 22. a. False. The *n* eigenvectors must be linearly independent. See the Diagonalization Theorem.
 - **b**. False. The matrix in Example 3 is diagonalizable, but it has only 2 distinct eigenvalues. (The statement given is the *converse* of Theorem 6.)
 - c. True. This follows from AP = PD and formulas (1) and (2) in the proof of the Diagonalization Theorem.
 - **d**. False. See Example 4. The matrix there is invertible because 0 is not an eigenvalue, but the matrix is not diagonalizable.
- **23**. *A* is diagonalizable because you know that five linearly independent eigenvectors exist: three in the three-dimensional eigenspace and two in the two-dimensional eigenspace. Theorem 7 guarantees that the set of all five eigenvectors is linearly independent.
- **24.** No, by Theorem 7(b). Here is an explanation that does not appeal to Theorem 7: Let \mathbf{v}_1 and \mathbf{v}_2 be eigenvectors that span the two one-dimensional eigenspaces. If \mathbf{v} is any other eigenvector, then it belongs to one of the eigenspaces and hence is a multiple of either \mathbf{v}_1 or \mathbf{v}_2 . So there cannot exist three linearly independent eigenvectors. By the Diagonalization Theorem, A cannot be diagonalizable.
- 25. Let $\{\mathbf{v}_1\}$ be a basis for the one-dimensional eigenspace, let \mathbf{v}_2 and \mathbf{v}_3 form a basis for the two-dimensional eigenspace, and let \mathbf{v}_4 be any eigenvector in the remaining eigenspace. By Theorem 7, $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is linearly independent. Since A is 4×4 , the Diagonalization Theorem shows that A is diagonalizable.
- 26. Yes, if the third eigenspace is only one-dimensional. In this case, the sum of the dimensions of the eigenspaces will be six, whereas the matrix is 7×7. See Theorem 7(b). An argument similar to that for Exercise 24 can also be given.
- 27. If A is diagonalizable, then $A = PDP^{-1}$ for some invertible P and diagonal D. Since A is invertible, 0 is not an eigenvalue of A. So the diagonal entries in D (which are eigenvalues of A) are not zero, and D is invertible. By the theorem on the inverse of a product,

$$A^{-1} = (PDP^{-1})^{-1} = (P^{-1})^{-1}D^{-1}P^{-1} = PD^{-1}P^{-1}$$

Since D^{-1} is obviously diagonal, A^{-1} is diagonalizable.

28. If A has n linearly independent eigenvectors, then by the Diagonalization Theorem, $A = PDP^{-1}$ for some invertible P and diagonal D. Using properties of transposes,

$$A^{T} = (PDP^{-1})^{T} = (P^{-1})^{T} D^{T} P^{T}$$
$$= (P^{T})^{-1} DP^{T} = QDQ^{-1}$$

where $Q = (P^T)^{-1}$. Thus A^T is diagonalizable. By the Diagonalization Theorem, the columns of Q are n linearly independent eigenvectors of A^T .

29. The diagonal entries in D_1 are reversed from those in D. So interchange the (eigenvector) columns of P to make them correspond properly to the eigenvalues in D_1 . In this case,

$$P_1 = \begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix} \text{ and } D_1 = \begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix}$$

Although the first column of P must be an eigenvector corresponding to the eigenvalue 3, there is nothing to prevent us from selecting some multiple of $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, say $\begin{bmatrix} -3 \\ 6 \end{bmatrix}$, and letting $P_2 = \begin{bmatrix} -3 & 1 \\ 6 & -1 \end{bmatrix}$. We now have three different factorizations or "diagonalizations" of A:

$$A = PDP^{-1} = P_1D_1P_1^{-1} = P_2D_1P_2^{-1}$$

- 30. A nonzero multiple of an eigenvector is another eigenvector. To produce P_2 , simply multiply one or both columns of P by a nonzero scalar unequal to 1.
- 31. For a 2×2 matrix A to be invertible, its eigenvalues must be nonzero. A first attempt at a construction might be something such as $\begin{bmatrix} 2 & 3 \\ 0 & 4 \end{bmatrix}$, whose eigenvalues are 2 and 4. Unfortunately, a 2×2 matrix with two distinct eigenvalues is diagonalizable (Theorem 6). So, adjust the construction to $\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$, which works. In fact, any matrix of the form $\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}$ has the desired properties when a and b are nonzero. The eigenspace for the eigenvalue a is one-dimensional, as a simple calculation shows, and there is no other eigenvalue to produce a second eigenvector.
- 32. Any 2×2 matrix with two distinct eigenvalues is diagonalizable, by Theorem 6. If one of those eigenvalues is zero, then the matrix will not be invertible. Any matrix of the form $\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$ has the desired properties when a and b are nonzero. The number a must be nonzero to make the matrix diagonalizable; b must be nonzero to make the matrix not diagonal. Other solutions are $\begin{bmatrix} 0 & 0 \\ a & b \end{bmatrix}$ and $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$.

33.
$$A = \begin{bmatrix} -6 & 4 & 0 & 9 \\ -3 & 0 & 1 & 6 \\ -1 & -2 & 1 & 0 \\ -4 & 4 & 0 & 7 \end{bmatrix}$$

 $ev = eig(A) = (5, 1, -2, -2)$

nulbasis (A-ev(1) *eye(4)) =
$$\begin{bmatrix} 1.0000 \\ 0.5000 \\ -0.5000 \\ 1.0000 \end{bmatrix}$$

A basis for the eigenspace of $\lambda = 5$ is $\begin{bmatrix} 2\\1\\-1\\2 \end{bmatrix}$.

nulbasis (A-ev(2)*eye(4)) =
$$\begin{bmatrix} 1.0000 \\ -0.5000 \\ -3.5000 \\ 1.0000 \end{bmatrix}$$

A basis for the eigenspace of $\lambda = 1$ is $\begin{bmatrix} 2 \\ -1 \\ -7 \\ 2 \end{bmatrix}$.

nulbasis (A-ev(3) *eye(4)) =
$$\begin{bmatrix} 1.0000 \\ 1.0000 \\ 1.0000 \\ 0 \end{bmatrix}, \begin{bmatrix} 1.5000 \\ -0.7500 \\ 0 \\ 1.0000 \end{bmatrix}$$

A basis for the eigenspace of $\lambda = -2$ is $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 6 \\ -3 \\ 0 \\ 4 \end{bmatrix}$.

Thus we construct
$$P = \begin{bmatrix} 2 & 2 & 1 & 6 \\ 1 & -1 & 1 & -3 \\ -1 & -7 & 1 & 0 \\ 2 & 2 & 0 & 4 \end{bmatrix}$$
 and $D = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix}$.

34.
$$A = \begin{bmatrix} 0 & 13 & 8 & 4 \\ 4 & 9 & 8 & 4 \\ 8 & 6 & 12 & 8 \\ 0 & 5 & 0 & -4 \end{bmatrix}$$
,
ev = eig(A) = (-4,24,1,-4)

nulbasis (A-ev(1) *eye(4)) =
$$\begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

A basis for the eigenspace of $\lambda = -4$ is $\begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

nulbasis (A-ev(2)*eye(4)) =
$$\begin{bmatrix} 5.6000 \\ 5.6000 \\ 7.2000 \\ 1.0000 \end{bmatrix}$$

A basis for the eigenspace of $\lambda = 24$ is $\begin{bmatrix} 28 \\ 28 \\ 36 \\ 5 \end{bmatrix}$

nulbasis (A-ev(3)*eye(4)) =
$$\begin{bmatrix} 1.0000\\ 1.0000\\ -2.0000\\ 1.0000 \end{bmatrix}$$

A basis for the eigenspace of $\lambda = 1$ is $\begin{bmatrix} 1\\1\\-2\\1 \end{bmatrix}$

Thus we construct
$$P = \begin{bmatrix} -2 & -1 & 28 & 1 \\ 0 & 0 & 28 & 1 \\ 1 & 0 & 36 & -2 \\ 0 & 1 & 5 & 1 \end{bmatrix}$$
 and $D = \begin{bmatrix} -4 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & 24 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.

35.
$$A = \begin{bmatrix} 11 & -6 & 4 & -10 & -4 \\ -3 & 5 & -2 & 4 & 1 \\ -8 & 12 & -3 & 12 & 4 \\ 1 & 6 & -2 & 3 & -1 \\ 8 & -18 & 8 & -14 & -1 \end{bmatrix}$$

$$ev = eig(A) = (5,1,3,5,1)$$

nulbasis (A-ev(1) *eye(5)) =
$$\begin{bmatrix} 2.0000 \\ -0.3333 \\ -1.0000 \\ 1.0000 \\ 0 \end{bmatrix}, \begin{bmatrix} 1.0000 \\ -0.3333 \\ -1.0000 \\ 0 \\ 1.0000 \end{bmatrix}$$

A basis for the eigenspace of
$$\lambda = 5$$
 is
$$\begin{bmatrix} 6 \\ -1 \\ -3 \\ 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ -3 \\ 0 \\ 3 \end{bmatrix}$$

$$\text{nulbasis}(\text{A-ev}(2) \star \text{eye}(5)) = \begin{bmatrix} 0.8000 \\ -0.6000 \\ -0.4000 \\ 1.0000 \\ 0 \end{bmatrix}, \begin{bmatrix} 0.6000 \\ -0.2000 \\ -0.8000 \\ 0 \\ 1.0000 \end{bmatrix}$$

A basis for the eigenspace of $\lambda = 1$ is $\begin{bmatrix} 4 \\ -3 \\ -2 \\ 5 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 3 \\ -1 \\ -4 \\ 0 \\ 5 \end{bmatrix}$

nulbasis (A-ev(3)*eye(5)) =
$$\begin{bmatrix} 0.5000 \\ -0.2500 \\ -1.0000 \\ -0.2500 \\ 1.0000 \end{bmatrix}$$

A basis for the eigenspace of $\lambda = 3$ is $\begin{bmatrix} 2 \\ -1 \\ -4 \\ -1 \\ 4 \end{bmatrix}$.

Thus we construct
$$P = \begin{bmatrix} 6 & 3 & 4 & 3 & 2 \\ -1 & -1 & -3 & -1 & -1 \\ -3 & -3 & -2 & -4 & -4 \\ 3 & 0 & 5 & 0 & -1 \\ 0 & 3 & 0 & 5 & 4 \end{bmatrix}$$
 and $D = \begin{bmatrix} 5 & 0 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}$.

36.
$$A = \begin{bmatrix} 4 & 4 & 2 & 3 & -2 \\ 0 & 1 & -2 & -2 & 2 \\ 6 & 12 & 11 & 2 & -4 \\ 9 & 20 & 10 & 10 & -6 \\ 15 & 28 & 14 & 5 & -3 \end{bmatrix}$$

 $ev = eig(A) = (3,5,7,5,3)$

nulbasis(A-ev(1)*eye(5)) =
$$\begin{bmatrix} 2.0000 \\ -1.5000 \\ 0.5000 \\ 1.0000 \\ 0 \end{bmatrix}, \begin{bmatrix} -1.0000 \\ 0.5000 \\ 0.5000 \\ 0 \end{bmatrix}$$

A basis for the eigenspace of
$$\lambda = 3$$
 is $\begin{bmatrix} 4 \\ -3 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}$.

nulbasis (A-ev(2)*eye(5)) =
$$\begin{bmatrix} 0 \\ -0.5000 \\ 1.0000 \\ 0 \end{bmatrix}, \begin{bmatrix} -1.0000 \\ 1.0000 \\ 0 \\ 1.0000 \end{bmatrix}$$

A basis for the eigenspace of
$$\lambda = 5$$
 is $\begin{bmatrix} 0 \\ -1 \\ 2 \\ 0 \\ -1 \\ 1 \end{bmatrix}$

nulbasis (A-ev(3)*eye(5)) =
$$\begin{bmatrix} 0.3333\\ 0.0000\\ 0.0000\\ 1.0000\\ 1.0000 \end{bmatrix}$$

A basis for the eigenspace of $\lambda = 7$ is $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 3 \\ 3 \end{bmatrix}$.

Thus we construct
$$P = \begin{bmatrix} 4 & -2 & 0 & -1 & 1 \\ -3 & 1 & -1 & 1 & 0 \\ 1 & 1 & 2 & 0 & 0 \\ 2 & 0 & 0 & -1 & 3 \\ 0 & 2 & 0 & 1 & 3 \end{bmatrix}$$
 and $D = \begin{bmatrix} 3 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 5 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 7 \end{bmatrix}$

Notes: For your use, here is another matrix with five distinct real eigenvalues. To four decimal places, they are 11.0654, 9.8785, 3.8238, -3.7332, and -6.0345.

$$\begin{bmatrix} 6 & -8 & 5 & -3 & 0 \\ -7 & 3 & -5 & 3 & 0 \\ -3 & -7 & 5 & -3 & 5 \\ 0 & -4 & 1 & -7 & 5 \\ -5 & -3 & -2 & 0 & 8 \end{bmatrix}$$

The MATLAB box in the *Study Guide* encourages students to use eig (A) and nulbasis to practice the diagonalization procedure in this section. It also remarks that in later work, a student may automate the process, using the command $[P \ D] = eig \ (A)$. You may wish to permit students to use the full power of eig in some problems in Sections 5.5 and 5.7.