6.3  SOLUTIONS

Notes: Example 1 seems to help students understand Theorem 8. Theorem 8 is needed for the Gram-Schmidt
process (but only for a subspace that itself has an orthogonal basis). Theorems 8 and 9 are needed for the
discussions of least squares in Sections 6.5 and 6.6. Theorem 10 is used with the QR factorization to provide a
good numerical method for solving least squares problems, in Section 6.5. Exercises 19 and 20 lead naturally
into consideration of the Gram-Schmidt process.
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. The vector in Span{u,] is
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Since x = u, +c,u, + s + o, the vector

isin Span{u,,u;,u,}.

. Since u, -u, =-1+1+0=0, {u;,u,} is an orthogonal set. The orthogonal projection of y onto

Span{u,,u,} is
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. Since u,-u, =-12+12+0=0, {u,,u,} is an orthogonal set. The orthogonal projection of y onto
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. Since u,-u, =3+1-4=0, {u,,u,} is an orthogonal set. The orthogonal projection of y onto
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. Since u;-u, =5+3-8=0, {u,,u,} is an orthogonal set. By the Orthogonal Decomposition Theorem,
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andy = § +z, where § isin Wand zisin W~.
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8. Since u,-u, =~1+3-2=0, {u,,u,} is an orthogonal set. By the Orthogonal Decomposition Theorem,
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andy = § +2z, where y isin Wand zisin W™.

9. Since u, -u, =u,-u; =0, -u; =0, {u,u,,u;} is an orthogonal set. By the Orthogonal Decomposition

Theorem,
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andy = ¥ +2z, where § isin Wand zisin W™.

10. Since u, -u, =u,-u; =u, -u; =0, {u;,u,,u;} is an orthogonal set. By the Orthogonal Decomposition

Theorem,
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andy= § +z, where § isin Wand zisin W~.

11. Note that v, and v, are orthogonal. The Best Approximation Theorem says that ¥ , which is the
orthogonal projection of y onto W =Span{v,,v,}, is the closest point to y in W. This vector is
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12. Note that v, and v, are orthogonal. The Best Approximation Theorem says that ¥ , which is the
orthogonal projection of y onto W =Span{v,,v,}, is the closest point to y in W. This vector is
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13. Note that v, and v, are orthogonal. By the Best Approximation Theorem, the closest point in
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14. Note that v, and v, are orthogonal. By the Best Approximation Theorem, the closest point in

Span{v,,v,} tozis
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15. The distance from the pointy in > *to a subspace W is defined as the distance from y to the closest point
in W. Since the closest point in Wtoy is § = proj, v, the desired distance is [y = ¥ |I. One computes that
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16. The distance from the point y in 2 to a subspace W is defined as the distance from y to the closest point

in W. Since the closest point in Wto y is § = proj,,y, the desired distance is | ¥y = 9 |. One computes that
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b. Since U'U =1,, the columns of U form an orthonormal basis for W, and by Theorem 10
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b. Since UTU =1, {u;} forms an orthonormal basis for W, and by Theorem 10
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19. By the Orthogonal Decomposition Theorem, u; is the sum of a vector in W =Span{u,.u,} and a vector
v orthogonal to W. This exercise asks for the vector v:
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Any muitiple of the vector v will also be in W*.
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By the Orthogonal Decomposition Theorem, u, is the sum of a vector in W = Span{u,,u,} and a vector
v orthogonal to W. This exercise asks for the vector v:

ol [ o] T 0]

(1 | I P
v:u4—-pr0jwu4:u4-Lgul—-36u2J=‘1 -l 1/5 :fA/Sj
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Any multiple of the vector v will also be in W+.

a. True. See the calculations for z, in Example 1 or the box after Example 6 in Section 6.1.

b. True. See the Orthogonal Decomposition Theorem.

c. False. See the last paragraph in the proof of Theorem 8, or see the second paragraph after the
statement of Theorem 9.

d. True. See the box before the Best Approximation Theorem.

e. True. Theorem 10 applies to the column space W of U because the columns of U are linearly
independent and hence form a basis for W,

- True. See the proof of the Orthogonal Decomposition Theorem.
. True. See the subsection “A Geometric Interpretation of the Orthogonal Projection.”
. True. The orthgonal decomposition in Theorem 8 is unique.

e T o

. False. The Best Approximation Theorem says that the best approximation to y is Projy y.

o

. False. This statement is only true if x is in the column space of U. If n > p, then the column space of
U will not be all of I”, so the statement cannot be true for all x in 2.

By the Orthogonal Decomposition Theorem, each x in R” can be written uniquely as X = p + u, with p in
Row A and u in (Row A)*. By Theorem 3 in Section 6.1, (Row A)* =NulA, souisin NulA.

Next, suppose Ax = b is consistent. Let x be a solution and write x = p + u as above. Then
Ap=A(X-u)=Ax-Au=b-0=b, so the equation AX = b has at least one solution p in Row A.

Finally, suppose that p and p, are both in RowA and both satisfy Ax = b. Then p-p, isin

NulA = (Row A)*, since A(p-p,)=Ap-Ap,=b-b=0. The equations p=p, +(p-p,) and

p = p + 0 both then decompose p as the sum of a vector in RowA and a vector in (Row A)* . By the
uniqueness of the orthogonal decomposition (Theorem 8), p=p;, and p is unique.

a. By hypothesis, the vectors w,, ..., w » are pairwise orthogonal, and the vectors Vi, ..., v, are
pairwise orthogonal. Since w, is in W for any iand v; isin W+ for any j, w;-v; =0 for any i and j.
Thus {Wi.....w,,v,...,v, } forms an orthogonal set.

b. For any y in &", write y = § + z as in the Orthogonal Decomposition Theorem, with y in
Wand zin W+ . Then there exist scalars ¢,...,c,, and dy,....d, suchthat y=y +z =
GWF...+C, W, +dv, +...+d, v, . Thus the set {wi,...,wp,vl,...,vq} spans ="

c. The set (w,...,w p» Yis-- ¥, } s linearly independent by (a) and spans =" by (b), and is thus a basis

for i”. Hence dimW +dimW™* = p + g = dim 7",
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25. [M] Since UTU =1 4> U has orthonormal columns by Theorem 6 in Section 6.2. The closest point to y in
Col U is the orthogonal projection § of y onto Col U. From Theorem 10,
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26. [M] The distance from b to Col U is || b — b ||, where b =UUTb. One computes that
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which is 2.1166 to four decimal places.




