6.3 SOLUTIONS

Notes: Example 1 seems to help students understand Theorem 8. Theorem 8 is needed for the Gram-Schmidt process (but only for a subspace that itself has an orthogonal basis). Theorems 8 and 9 are needed for the discussions of least squares in Sections 6.5 and 6.6. Theorem 10 is used with the QR factorization to provide a good numerical method for solving least squares problems, in Section 6.5. Exercises 19 and 20 lead naturally into consideration of the Gram-Schmidt process.

1. The vector in $Span\{\mathbf{u}_4\}$ is

$$\frac{\mathbf{x} \cdot \mathbf{u}_4}{\mathbf{u}_4 \cdot \mathbf{u}_4} \mathbf{u}_4 = \frac{72}{36} \mathbf{u}_4 = 2\mathbf{u}_4 = \begin{bmatrix} 10 \\ -6 \\ -2 \\ 2 \end{bmatrix}$$

Since $\mathbf{x} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + c_3 \mathbf{u}_3 + \frac{\mathbf{x} \cdot \mathbf{u}_4}{\mathbf{u}_4 \cdot \mathbf{u}_4} \mathbf{u}_4$, the vector

$$\mathbf{x} - \frac{\mathbf{x} \cdot \mathbf{u}_4}{\mathbf{u}_4 \cdot \mathbf{u}_4} \mathbf{u}_4 = \begin{bmatrix} 10 \\ -8 \\ 2 \\ 0 \end{bmatrix} - \begin{bmatrix} 10 \\ -6 \\ -2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ 4 \\ -2 \end{bmatrix}$$

is in $Span\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.

2. The vector in Span $\{\mathbf{u}_1\}$ is

$$\frac{\mathbf{v} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 = \frac{14}{7} \mathbf{u}_1 = 2\mathbf{u}_1 = \begin{bmatrix} 2\\4\\2\\2 \end{bmatrix}$$

Since $\mathbf{x} = \frac{\mathbf{v} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + c_2 \mathbf{u}_2 + c_3 \mathbf{u}_3 + c_4 \mathbf{u}_4$, the vector

$$\mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 = \begin{bmatrix} 4 \\ 5 \\ -3 \\ 3 \end{bmatrix} - \begin{bmatrix} 2 \\ 4 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ -5 \\ 1 \end{bmatrix}$$

is in Span $\{\mathbf{u}_2,\mathbf{u}_3,\mathbf{u}_4\}$.

3. Since $\mathbf{u}_1 \cdot \mathbf{u}_2 = -1 + 1 + 0 = 0$, $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal set. The orthogonal projection of \mathbf{y} onto Span $\{\mathbf{u}_1, \mathbf{u}_2\}$ is

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = \frac{3}{2} \mathbf{u}_1 + \frac{5}{2} \mathbf{u}_2 = \frac{3}{2} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \frac{5}{2} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \\ 0 \end{bmatrix}$$

4. Since $\mathbf{u}_1 \cdot \mathbf{u}_2 = -12 + 12 + 0 = 0$, $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal set. The orthogonal projection of \mathbf{y} onto $\mathrm{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$ is

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = \frac{30}{25} \mathbf{u}_1 - \frac{15}{25} \mathbf{u}_2 = \frac{6}{5} \begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix} - \frac{3}{5} \begin{bmatrix} -4 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \\ 0 \end{bmatrix}$$

5. Since $\mathbf{u}_1 \cdot \mathbf{u}_2 = 3 + 1 - 4 = 0$, $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal set. The orthogonal projection of \mathbf{y} onto $\mathrm{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$ is

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = \frac{7}{14} \mathbf{u}_1 - \frac{15}{6} \mathbf{u}_2 = \frac{1}{2} \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} - \frac{5}{2} \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 6 \end{bmatrix}$$

6. Since $\mathbf{u}_1 \cdot \mathbf{u}_2 = 0 - 1 + 1 = 0$, $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal set. The orthogonal projection of \mathbf{y} onto $\mathrm{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$ is

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = -\frac{27}{18} \mathbf{u}_1 + \frac{5}{2} \mathbf{u}_2 = -\frac{3}{2} \begin{bmatrix} -4 \\ -1 \\ 1 \end{bmatrix} + \frac{5}{2} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 1 \end{bmatrix}$$

7. Since $\mathbf{u}_1 \cdot \mathbf{u}_2 = 5 + 3 - 8 = 0$, $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal set. By the Orthogonal Decomposition Theorem,

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = 0 \mathbf{u}_1 + \frac{2}{3} \mathbf{u}_2 = \begin{bmatrix} 10/3 \\ 2/3 \\ 8/3 \end{bmatrix}, \mathbf{z} = \mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} -7/3 \\ 7/3 \\ 7/3 \end{bmatrix}$$

and $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$, where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} .

8. Since $\mathbf{u}_1 \cdot \mathbf{u}_2 = -1 + 3 - 2 = 0$, $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal set. By the Orthogonal Decomposition Theorem,

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = 2\mathbf{u}_1 + \frac{1}{2}\mathbf{u}_2 = \begin{bmatrix} 3/2 \\ 7/2 \\ 1 \end{bmatrix}, \mathbf{z} = \mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} -5/2 \\ 1/2 \\ 2 \end{bmatrix}$$

and $y = \hat{y} + z$, where \hat{y} is in W and z is in W^{\perp} .

9. Since $\mathbf{u}_1 \cdot \mathbf{u}_2 = \mathbf{u}_1 \cdot \mathbf{u}_3 = \mathbf{u}_2 \cdot \mathbf{u}_3 = 0$, $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal set. By the Orthogonal Decomposition Theorem,

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 + \frac{\mathbf{y} \cdot \mathbf{u}_3}{\mathbf{u}_3 \cdot \mathbf{u}_3} \mathbf{u}_3 = 2\mathbf{u}_1 + \frac{2}{3}\mathbf{u}_2 - \frac{2}{3}\mathbf{u}_3 = \begin{bmatrix} 2\\4\\0\\0 \end{bmatrix}, \mathbf{z} = \mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 2\\-1\\3\\-1 \end{bmatrix}$$

and $y = \hat{y} + z$, where \hat{y} is in W and z is in W^{\perp} .

10. Since $\mathbf{u}_1 \cdot \mathbf{u}_2 = \mathbf{u}_1 \cdot \mathbf{u}_3 = \mathbf{u}_2 \cdot \mathbf{u}_3 = 0$, $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal set. By the Orthogonal Decomposition Theorem,

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 + \frac{\mathbf{y} \cdot \mathbf{u}_3}{\mathbf{u}_3 \cdot \mathbf{u}_3} \mathbf{u}_3 = \frac{1}{3} \mathbf{u}_1 + \frac{14}{3} \mathbf{u}_2 - \frac{5}{3} \mathbf{u}_3 = \begin{bmatrix} 5\\2\\3\\6 \end{bmatrix}, \mathbf{z} = \mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} -2\\2\\2\\0 \end{bmatrix}$$

and $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$, where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} .

11. Note that \mathbf{v}_1 and \mathbf{v}_2 are orthogonal. The Best Approximation Theorem says that $\hat{\mathbf{y}}$, which is the orthogonal projection of \mathbf{y} onto $W = \mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$, is the closest point to \mathbf{y} in W. This vector is

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \frac{\mathbf{y} \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 = \frac{1}{2} \mathbf{v}_1 + \frac{3}{2} \mathbf{v}_2 = \begin{bmatrix} 3 \\ -1 \\ 1 \\ -1 \end{bmatrix}$$

12. Note that \mathbf{v}_1 and \mathbf{v}_2 are orthogonal. The Best Approximation Theorem says that $\hat{\mathbf{y}}$, which is the orthogonal projection of \mathbf{y} onto $W = \mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$, is the closest point to \mathbf{y} in W. This vector is

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \frac{\mathbf{y} \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 = 3\mathbf{v}_1 + 1\mathbf{v}_2 = \begin{bmatrix} -1\\ -5\\ -3\\ 9 \end{bmatrix}$$

13. Note that \mathbf{v}_1 and \mathbf{v}_2 are orthogonal. By the Best Approximation Theorem, the closest point in $\operatorname{Span}\{\mathbf{v}_1,\mathbf{v}_2\}$ to \mathbf{z} is

$$\hat{\mathbf{z}} = \frac{\mathbf{z} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \frac{\mathbf{z} \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 = \frac{2}{3} \mathbf{v}_1 - \frac{7}{3} \mathbf{v}_2 = \begin{bmatrix} -1 \\ -3 \\ -2 \\ 3 \end{bmatrix}$$

14. Note that \mathbf{v}_1 and \mathbf{v}_2 are orthogonal. By the Best Approximation Theorem, the closest point in $\text{Span}\{\mathbf{v}_1,\mathbf{v}_2\}$ to \mathbf{z} is

$$\hat{\mathbf{z}} = \frac{\mathbf{z} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \frac{\mathbf{z} \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 = \frac{1}{2} \mathbf{v}_1 + 0 \mathbf{v}_2 = \begin{bmatrix} 1\\0\\-1/2\\-3/2 \end{bmatrix}$$

15. The distance from the point \mathbf{y} in \mathbb{R}^3 to a subspace W is defined as the distance from \mathbf{y} to the closest point in W. Since the closest point in W to \mathbf{y} is $\hat{\mathbf{y}} = \operatorname{proj}_W \mathbf{y}$, the desired distance is $\|\mathbf{y} - \hat{\mathbf{y}}\|$. One computes that

$$\hat{\mathbf{y}} = \begin{bmatrix} 3 \\ -9 \\ -1 \end{bmatrix}, \mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 2 \\ 0 \\ 6 \end{bmatrix}, \text{ and } ||\mathbf{y} - \hat{\mathbf{y}}|| = \sqrt{40} = 2\sqrt{10}.$$

16. The distance from the point \mathbf{y} in \mathbb{R}^4 to a subspace W is defined as the distance from \mathbf{y} to the closest point in W. Since the closest point in W to \mathbf{y} is $\hat{\mathbf{y}} = \operatorname{proj}_W \mathbf{y}$, the desired distance is $\|\mathbf{y} - \hat{\mathbf{y}}\|$. One computes that

$$\hat{\mathbf{y}} = \begin{bmatrix} -1 \\ -5 \\ -3 \\ 9 \end{bmatrix}, \, \mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 4 \\ 4 \\ 4 \\ 4 \end{bmatrix}, \text{ and } \| \mathbf{y} - \hat{\mathbf{y}} \| = 8.$$

17. a.
$$U^T U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, UU^T = \begin{bmatrix} 8/9 & -2/9 & 2/9 \\ -2/9 & 5/9 & 4/9 \\ 2/9 & 4/9 & 5/9 \end{bmatrix}$$

b. Since $U^TU = I_2$, the columns of *U* form an orthonormal basis for *W*, and by Theorem 10

$$\operatorname{proj}_{W} \mathbf{y} = UU^{T} \mathbf{y} = \begin{bmatrix} 8/9 & -2/9 & 2/9 \\ -2/9 & 5/9 & 4/9 \\ 2/9 & 4/9 & 5/9 \end{bmatrix} \begin{bmatrix} 4 \\ 8 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 5 \end{bmatrix}.$$

18. a.
$$U^T U = \begin{bmatrix} 1 \end{bmatrix} = 1, UU^T = \begin{bmatrix} 1/10 & -3/10 \\ -3/10 & 9/10 \end{bmatrix}$$

b. Since $U^TU = 1$, $\{\mathbf{u}_1\}$ forms an orthonormal basis for W, and by Theorem 10

$$\operatorname{proj}_{W} \mathbf{y} = UU^{T} \mathbf{y} = \begin{bmatrix} 1/10 & -3/10 \\ -3/10 & 9/10 \end{bmatrix} \begin{bmatrix} 7 \\ 9 \end{bmatrix} = \begin{bmatrix} -2 \\ 6 \end{bmatrix}.$$

19. By the Orthogonal Decomposition Theorem, \mathbf{u}_3 is the sum of a vector in $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$ and a vector \mathbf{v} orthogonal to W. This exercise asks for the vector \mathbf{v} :

$$\mathbf{v} = \mathbf{u}_3 - \text{proj}_W \mathbf{u}_3 = \mathbf{u}_3 - \left(-\frac{1}{3}\mathbf{u}_1 + \frac{1}{15}\mathbf{u}_2\right) = \begin{bmatrix}0\\0\\1\end{bmatrix} - \begin{bmatrix}0\\-2/5\\4/5\end{bmatrix} = \begin{bmatrix}0\\2/5\\1/5\end{bmatrix}$$

Any multiple of the vector \mathbf{v} will also be in \mathbf{W}^{\perp} .

20. By the Orthogonal Decomposition Theorem, u₄ is the sum of a vector in W = Span{u₁, u₂} and a vector v orthogonal to W. This exercise asks for the vector v:

$$\mathbf{v} = \mathbf{u}_4 - \text{proj}_W \mathbf{u}_4 = \mathbf{u}_4 - \left(\frac{1}{6}\mathbf{u}_1 - \frac{1}{30}\mathbf{u}_2\right) = \begin{bmatrix} 0\\1\\0 \end{bmatrix} - \begin{bmatrix} 0\\1/5\\-2/5 \end{bmatrix} = \begin{bmatrix} 0\\4/5\\2/5 \end{bmatrix}$$

Any multiple of the vector \mathbf{v} will also be in W^{\perp} .

- 21. a. True. See the calculations for \mathbf{z}_2 in Example 1 or the box after Example 6 in Section 6.1.
 - b. True. See the Orthogonal Decomposition Theorem.
 - c. False. See the last paragraph in the proof of Theorem 8, or see the second paragraph after the statement of Theorem 9.
 - d. True. See the box before the Best Approximation Theorem.
 - e. True. Theorem 10 applies to the column space W of U because the columns of U are linearly independent and hence form a basis for W.
- 22. a. True. See the proof of the Orthogonal Decomposition Theorem.
 - b. True. See the subsection "A Geometric Interpretation of the Orthogonal Projection."
 - c. True. The orthgonal decomposition in Theorem 8 is unique.
 - **d**. False. The Best Approximation Theorem says that the best approximation to \mathbf{y} is $\operatorname{proj}_{\mathbf{w}} \mathbf{y}$.
 - **e.** False. This statement is only true if **x** is in the column space of *U*. If n > p, then the column space of *U* will not be all of \mathbb{R}^n , so the statement cannot be true for all **x** in \mathbb{R}^n .
- 23. By the Orthogonal Decomposition Theorem, each \mathbf{x} in \mathbb{R}^n can be written uniquely as $\mathbf{x} = \mathbf{p} + \mathbf{u}$, with \mathbf{p} in Row A and \mathbf{u} in $(\operatorname{Row} A)^{\perp}$. By Theorem 3 in Section 6.1, $(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$, so \mathbf{u} is in NulA.

Next, suppose $A\mathbf{x} = \mathbf{b}$ is consistent. Let \mathbf{x} be a solution and write $\mathbf{x} = \mathbf{p} + \mathbf{u}$ as above. Then $A\mathbf{p} = A(\mathbf{x} - \mathbf{u}) = A\mathbf{x} - A\mathbf{u} = \mathbf{b} - \mathbf{0} = \mathbf{b}$, so the equation $A\mathbf{x} = \mathbf{b}$ has at least one solution \mathbf{p} in Row A. Finally, suppose that \mathbf{p} and \mathbf{p}_1 are both in Row A and both satisfy $A\mathbf{x} = \mathbf{b}$. Then $\mathbf{p} - \mathbf{p}_1$ is in Nul $A = (\operatorname{Row} A)^{\perp}$, since $A(\mathbf{p} - \mathbf{p}_1) = A\mathbf{p} - A\mathbf{p}_1 = \mathbf{b} - \mathbf{b} = \mathbf{0}$. The equations $\mathbf{p} = \mathbf{p}_1 + (\mathbf{p} - \mathbf{p}_1)$ and $\mathbf{p} = \mathbf{p} + \mathbf{0}$ both then decompose \mathbf{p} as the sum of a vector in Row A and a vector in $(\operatorname{Row} A)^{\perp}$. By the uniqueness of the orthogonal decomposition (Theorem 8), $\mathbf{p} = \mathbf{p}_1$, and \mathbf{p} is unique.

- **24. a.** By hypothesis, the vectors $\mathbf{w}_1, ..., \mathbf{w}_p$ are pairwise orthogonal, and the vectors $\mathbf{v}_1, ..., \mathbf{v}_q$ are pairwise orthogonal. Since \mathbf{w}_i is in W for any i and \mathbf{v}_j is in W^{\perp} for any j, $\mathbf{w}_i \cdot \mathbf{v}_j = 0$ for any i and j. Thus $\{\mathbf{w}_1, ..., \mathbf{w}_p, \mathbf{v}_1, ..., \mathbf{v}_q\}$ forms an orthogonal set.
 - **b.** For any \mathbf{y} in \mathbb{R}^n , write $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$ as in the Orthogonal Decomposition Theorem, with $\hat{\mathbf{y}}$ in W and \mathbf{z} in W^{\perp} . Then there exist scalars c_1, \ldots, c_p and d_1, \ldots, d_q such that $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z} = c_1 \mathbf{w}_1 + \ldots + c_p \mathbf{w}_p + d_1 \mathbf{v}_1 + \ldots + d_q \mathbf{v}_q$. Thus the set $\{\mathbf{w}_1, \ldots, \mathbf{w}_p, \mathbf{v}_1, \ldots, \mathbf{v}_q\}$ spans \mathbb{R}^n .
 - c. The set $\{\mathbf w_1, \dots, \mathbf w_p, \mathbf v_1, \dots, \mathbf v_q\}$ is linearly independent by (a) and spans $\mathbb R^n$ by (b), and is thus a basis for $\mathbb R^n$. Hence $\dim W + \dim W^\perp = p + q = \dim \mathbb R^n$.

25. [M] Since $U^TU = I_4$, U has orthonormal columns by Theorem 6 in Section 6.2. The closest point to y in Col U is the orthogonal projection \hat{y} of y onto Col U. From Theorem 10,

$$\hat{\mathbf{y}} = UU^{\mathsf{T}}\mathbf{y} = \begin{bmatrix} 1.2 \\ .4 \\ 1.2 \\ 1.2 \\ .4 \\ 1.2 \\ .4 \\ .4 \end{bmatrix}$$
The distance from **h** to Col

26. [M] The distance from **b** to Col *U* is $\|\mathbf{b} - \hat{\mathbf{b}}\|$, where $\hat{\mathbf{b}} = UU^{\mathsf{T}}\mathbf{b}$. One computes that

$$\hat{\mathbf{b}} = UU^{\mathsf{T}}\mathbf{b} = \begin{bmatrix} .2 \\ .92 \\ .44 \\ 1 \\ -.2 \\ -.44 \\ .6 \\ -.92 \end{bmatrix}, \mathbf{b} - \hat{\mathbf{b}} = \begin{bmatrix} .8 \\ .08 \\ .56 \\ 0 \\ -.8 \\ -.56 \\ -1.6 \\ -.08 \end{bmatrix}, ||\mathbf{b} - \hat{\mathbf{b}}|| = \frac{\sqrt{112}}{5}$$

which is 2.1166 to four decimal places.