
 1

Learning J

An Introduction to the J Programming Language

Roger Stokes

revised July 2013

 2

About this Book

Table of Contents

Acknowledgements

Index

J software and documentation are available at the J Software
Home Page

This book is also available in various formats from here

Please send comments and criticisms to the J Forum

Copyright © Roger Stokes 2013. This material may be freely
reproduced, provided that acknowledgment is made.

http://www.jsoftware.com/j_forum.htm
http://www.rogerstokes.free-online.co.uk/learningj.htm
http://www.jsoftware.com/
http://www.jsoftware.com/

 3

ABOUT THIS BOOK
This book is meant to help the reader to learn the computer-
programming language J.

My hope is that the book will be useful to a wide readership. Care
is taken to introduce only one new idea at a time, to provide
examples at every step, and to make the examples very simple.
Even so, the experienced programmer will find much to appreciate
in the radical simplicity and power of the J notation.

The scope of this book is the core J language defined in the J
Dictionary. The coverage of the core language is meant to be
relatively complete, covering (eventually) most of the Dictionary.

Hence the book does not cover topics such as graphics, plotting,
GUI, and database covered in the J User Guide, nor does it cover
the J Application Library . I should make clear what the aims of the
book are not: neither to teach principles of programming, nor to
study algorithms, or topics in mathematics or other subjects using
J as a vehicle, nor to provide definitive reference material.

The book is organized as follows. Part 1 is a basic introduction
which touches on a variety of themes. The aim is to provide the
reader, by the end of Part 1, with an overview and a general
appreciation of the J language. The themes introduced in Part 1
are then developed in more depth and detail in the remainder of
the book.

All the examples have been executed with J701.

http://www.jsoftware.com/jwiki/JAL
http://www.jsoftware.com/help/user/contents.htm
http://www.jsoftware.com/help/dictionary/contents.htm
http://www.jsoftware.com/help/dictionary/contents.htm

 4

TABLE OF CONTENTS

Part 1: Getting Acquainted 1: Basics
2: Lists and Tables
3: Defining Functions
4: Scripts and Explicit Functions

Part 2: Arrays 5: Building Arrays
6: Indexing
7: Ranks

Part 3: Defining Functions:
Verbs

8: Composing Verbs
9: Trains of Verbs
10: Conditional and Other Forms
11: Tacit Verbs Concluded
12: Explicit Verbs

Part 4: Defining Functions:
Operators

13: Explicit Operators
14: Gerunds
15: Tacit Operators

Part 5: Structural Functions 16: Rearrangements
17: Patterns of Application
18: Sets, Classes and Relations

Part 6: Numerical and
Mathematical Functions

19: Numbers
20: Scalar Numerical Functions
21: Factors and Polynomials
22: Vectors and Matrices
23: Calculus

 5

Part 7: Names and Objects 24: Names and Locales
25: Object-Oriented
Programming

Part 8: Facilities 26: Script Files
27: Representations and
Conversions
28: Data Files
29: Error Handling
30: Sparse Arrays
31: Performance
32: Trees

Appendices A1: Evaluating Expressions
A2: Collected Terminology
Index

Acknowledgements
I am grateful to readers of earlier drafts for encouragement and
for valuable criticisms and suggestions.

Chapter 1: Basics 6

Chapter 1: Basics

1.1 Interactive Use

The user types a line at the keyboard. This input line may be an
expression, such as 2+2. When the line is entered (by pressing the
"enter" or "carriage return" key), the value of the expression is
computed and displayed on the next line.

 2+2
4

The user is then prompted for another line of input. The prompt is
seen by the cursor being positioned a few spaces from the left
margin. Thus in this book, a line indented by a few spaces
represents input typed by a user, and a following line, not
indented, represents the corresponding output.

1.2 Arithmetic

The symbol for multiplication is * (asterisk).

 2*3
6

If we try this again, this time typing 2 space * space 3

 2 * 3
6

 7 Chapter 1: Basics

the result is the same as before, showing that the spaces here are
optional. Spaces can make an expression more readable.

The symbol for division is % (percent).

 3 % 4
0.75

For subtraction, we have the familiar - symbol:

 3 - 2
1

The next example shows how a negative number is represented.
The negative sign is a leading _ (underscore) symbol, with no
space between the sign and the digits of the number. This sign is
not an arithmetic function: it is part of the notation for writing
numbers, in the same way that a decimal point is part of the
notation.

 2 - 3
_1

The symbol for negation is -, the same symbol as for subtraction:

 - 3
_3

The symbol for the power function is ^ (caret). 2 cubed is 8:

 2 ^ 3
8

The arithmetic function to compute the square of a number has

Chapter 1: Basics 8

the symbol *: (asterisk colon).

 *: 4
16

1.3 Some Terminology: Function, Argument,
Application, Value

Consider an expression such as 2 * 3. We say that the
multiplication function * is applied to its arguments. The left
argument is 2 and the right argument is 3. Also, 2 and 3 are said
to be the values of the arguments.

1.4 List Values

Sometimes we may wish to repeat the same computation several
times for several different numbers. A list of numbers can be given
as 1 2 3 4, for example, written with a space between each
number and the next. To find the square of each number in this list
we could say:

 *: 1 2 3 4
1 4 9 16

Here we see that the "Square" function (*:) applies separately to
each item in the list. If a function such as + is given two list
arguments, the function applies separately to pairs of
corresponding items:

 1 2 3 + 10 20 30
11 22 33

 9 Chapter 1: Basics

If one argument is a list and the other a single item, the single
item is replicated as needed:

 1 + 10 20 30
11 21 31

 1 2 3 + 10
11 12 13

Sometimes it is helpful, when we are looking at a new function, to
see how a pattern in a list of arguments gives rise to a pattern in
the list of results.

For example, when 7 is divided by 2 we can say that the quotient
is 3 and the remainder is 1. A built-in J function to compute
remainders is | (vertical bar), called the "Residue" function.
Patterns in arguments and results are shown by:

 2 | 0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

 3 | 0 1 2 3 4 5 6 7
0 1 2 0 1 2 0 1

The Residue function is like the familiar "mod" or "modulo"
function, except that we write (2 | 7) rather than (7 mod 2)

1.5 Parentheses

An expression can contain parentheses, with the usual meaning;
what is inside parentheses is, in effect, a separate little
computation.

 (2+1)*(2+2)

Chapter 1: Basics 10

12

Parentheses are not always needed, however. Consider the J
expression: 3*2+1. Does it mean (3*2)+1, that is, 7, or does it
mean 3*(2+1) that is, 9 ?

 3 * 2 + 1
9

In school mathematics we learn a convention, or rule, for writing
expressions: multiplication is to be done before addition. The point
of this rule is that it reduces the number of parentheses we need
to write.

There is in J no rule such as multiplication before addition. We can
always write parentheses if we need to. However, there is in J a
parenthesis-saving rule, as the example of 3*2+1 above shows.
The rule, is that, in the absence of parentheses, the right
argument of an arithmetic function is everything to the right. Thus
in the case of 3*2+1, the right argument of * is 2+1. Here is
another example:

 1 + 3 % 4
1.75

We can see that % is applied before +, that is, the rightmost
function is applied first.

This "rightmost first" rule is different from, but plays the same role
as, the common convention of "multiplication before addition". It is
merely a convenience: you can ignore it and write parentheses
instead. Its advantage is that there are, in J, many (something like
100) functions for computation with numbers and it would be out
of the question to try to remember which function should be
applied before which.

 11 Chapter 1: Basics

In this book, I will on occasion show you an expression having
some parentheses which, by the "rightmost first" rule, would not
be needed. The aim in doing this is to emphasize the structure of
the expression, by setting off parts of it, so as to make it more
readable.

1.6 Variables and Assignments

The English-language expression:

let x be 100 can be rendered in J as:

 x =: 100

This expression, called an assignment, causes the value 100 to be
assigned to the name x. We say that a variable called x is created
and takes on the value 100. When a line of input containing only
an assignment is entered at the computer, then nothing is
displayed in response.

A name with an assigned value can be used wherever the value is
wanted in following computations.

 x - 1
99

The value in an assignment can itself be computed by an
expression:

 y =: x - 1

Thus the variable y is used to remember the results of the
computation x-1 . To see what value has been assigned to a

Chapter 1: Basics 12

variable, enter just the name of the variable. This is an expression
like any other, of a particularly simple form:

 y
99

Assignments can be made repeatedly to the same variable; the
new value supersedes the current value:

 z =: 6
 z =: 8
 z
8

The value of a variable can be used in computing a new value for
the same variable:

 z =: z + 1
 z
9

It was said above that a value is not displayed when a line
consisting of an assignment is entered. Nevertheless, an
assignment is an expression: it does have a value which can take
part in a larger expression.

 1 + (u =: 99)
100
 u
99

Here are some examples of assignments to show how we may
choose names for variables:

 x =: 0

 13 Chapter 1: Basics

 X =: 1
 K9 =: 2
 finaltotal =: 3
 FinalTotal =: 4
 average_annual_rainfall =: 5

Each name must begin with a letter. It may contain only letters
(upper-case or lower-case), numeric digits (0-9) or the underscore
character (_). Note that upper-case and lower-case letters are
distinct; x and X are the names of distinct variables:

 x
0
 X
1

1.7 Terminology: Monads and Dyads

A function taking a single argument on the right is called a
monadic function, or a monad for short. An example is "Square",
(*:). A function taking two arguments, one on the left and one on
the right, is called a dyadic function or dyad. An example is + .

Subtraction and negation provide an example of the same symbol
(-) denoting two different functions. In other words, we can say
that - has a monadic case (negation) and a dyadic case
(subtraction). Nearly all the built-in functions of J have both a
monadic and a dyadic case. For another example, recall that the
division function is %, or as we now say, the dyadic case of % . The
monadic case of % is the reciprocal function.

 % 4
0.25

Chapter 1: Basics 14

1.8 More Built-In Functions

The aim in this section is convey a little of the flavour of
programming in J by looking at a small further selection of the
many built-in functions which J offers.

Consider the English-language expression: add together the
numbers 2, 3, and 4, or more briefly:

add together 2 3 4

We expect a result of 9. This expression is rendered in J as:

 + / 2 3 4
9

Comparing the English and the J, "add" is conveyed by the + and
"together" is conveyed by the / . Similarly, the expression:

multiply together 2 3 4

should give a result of 24. This expression is rendered in J as

 * / 2 3 4
24

We see that +/2 3 4 means 2+3+4 and */2 3 4 means 2*3*4. The
symbol / is called "Insert", because in effect it inserts whatever
function is on its left between each item of the list on its right. The
general scheme is that if F is any dyadic function and L is a list of
numbers a, b, c, y, z then:

 F / L means a F b F F y F z

 15 Chapter 1: Basics

Moving on to further functions, consider these three propositions:

2 is larger than
1

(which is clearly
true)

2 is equal to 1 (which is false)

2 is less than 1 (which is false)
In J, "true" is represented by the number 1 and and "false" by the
number 0. The three propositions are rendered in J as:

 2 > 1
1

 2 = 1
0

 2 < 1
0

If x is a list of numbers, for example:

 x =: 5 4 1 9

we can ask: which numbers in x are greater than 2?

 x > 2
1 1 0 1

Evidently, the first, second and last, as reported by the 1's in the
result of x > 2. Is it the case that all numbers in x are greater
than 2?

 * / x > 2
0

Chapter 1: Basics 16

No, because we saw that x>2 is 1 1 0 1. The presence of any zero
("false") means the the multiplication (here 1*1*0*1) cannot
produce 1.

How many items of x are greater than 2? We add together the 1's
in x>2:

 + / x > 2
3

How many numbers are there altogether in x? We could add
together the 1's in x=x.

 x
5 4 1 9

 x = x
1 1 1 1

 +/ x = x
4

but there is a built-in function # (called "Tally") which gives the
length of a list:

 # x
4

1.9 Side By Side Displays

When we are typing J expressions into the computer, expressions
and results follow each other down the screen. Let me show you
the last few lines again:

 17 Chapter 1: Basics

 x
5 4 1 9
 x = x
1 1 1 1
 +/ x = x
4
 # x
4

Now, sometimes in this book I would like to show you a few lines
such as these, not one below the other but side by side across the
page, like this:

x x = x +/ x = x # x

5 4 1 9 1 1 1 1 4 4

This means: at this stage of the proceedings, if you type in the
expression x you should see the response 5 4 1 9. If you now
type in x = x you should see 1 1 1 1, and so on. Side-by-side
displays are not a feature of the J system, but merely figures, or
illustrations, in this book. They show expressions in the first row,
and corresponding values below them in the second row.

When you type in an assignment (x=:something), the J system
does not show the value. Nevertheless, an assignment is an
expression and has a value. Now and again it might be helpful to
see, or to be reminded of, the values of our assignments, so I will
often show them in these side-by-side displays. To illustrate:

x =: 1 + 2 3 4 x = x +/ x = x # x

3 4 5 1 1 1 3 3

Chapter 1: Basics 18

Returning now to the built-in functions, suppose we have a list.
Then we can choose items from it by taking them in turn and
saying "yes, yes, no, yes, no" for example. Our sequence of
choices can be represented as 1 1 0 1 0. Such a list of 0's and 1's
is called a bit-string (or sometimes bit-list or bit-vector). There is a
function, dyadic #, which can take a bit-string (a sequence of
choices) as left argument to select chosen items from the right
argument.

y =: 6 7 8 9 10 1 1 0 1 0 # y

6 7 8 9 10 6 7 9

We can select from y just those items which satisfy some
condition, such as: those which are greater than 7

y y > 7 (y > 7) # y

6 7 8 9 10 0 0 1 1 1 8 9 10

1.10 Comments

In a line of J, the symbol NB. (capital N, capital B dot) introduces a
comment. Anything following NB. to the end of the line is not
evaluated. For example

 NB. this is a whole line of annotation

 6 + 6 NB. ought to produce 12

 19 Chapter 1: Basics

12

1.11 Naming Scheme for Built-In Functions

Each built-in function of J has an informal and a formal name. For
example, the function with the formal name + has the informal
name of "Plus". Further, we have seen that there may be monadic
and dyadic cases , so that the formal name - corresponds to the
informal names "Negate" and "Minus".

The informal names are, in effect, short descriptions, usually one
word. They are not recognised by the J software, that is,
expressions in J use always the formal names. In this book, the
informal names will be quoted, thus: "Minus".

Nearly all the built-in functions of J have formal names with one
character or two characters. Examples are the * and *: functions.
The second character is always either : (colon) or . (dot, full stop,
or period).

A two-character name is meant to suggest some relationship to a
basic one-character function. Thus "Square" (*:) is related to
"Times" (*).

Hence the built-in J functions tend to come in families of up to 6
related functions. There are the monadic and dyadic cases, and for
each case there are the basic, the colon and dot variants. This will
be illustrated for the > family.

Dyadic > we have already met as "Larger Than".

Monadic > we will come back to later.

Chapter 1: Basics 20

Monadic >. rounds its argument up to an integer. Note that
rounding is always upwards as opposed to rounding to the nearest
integer. Hence the name: "Ceiling"

 >. _1.7 1 1.7
_1 1 2

Dyadic >. selects the larger of its two arguments

 3 >. 1 3 5
3 3 5

We can find the largest number in a list by inserting "Larger Of"
between the items, using /. For example, the largest number in
the list 1 6 5 is found by evaluating (>. / 1 6 5). The next few
lines are meant to convince you that this should give 6. The
comments show why each line should give the same result as the
previous.

 >. / 1 6 5
6
 1 >. 6 >. 5 NB. by the meaning of /
6
 1 >. (6 >. 5) NB. by rightmost-first rule
6
 1 >. (6) NB. by the meaning of >.
6
 1 >. 6 NB. by the meaning of ()
6
 6 NB. by the meaning of >.
6

Monadic >: is informally called "Increment". It adds 1 to its
argument:

 21 Chapter 1: Basics

 >: _2 3 5 6.3
_1 4 6 7.3

Dyadic >: is "Larger or Equal"

 3 >: 1 3 5
1 1 0

Chapter 2: Lists and Tables 22

Chapter 2: Lists and Tables

Computations need data. So far we have seen data only as single
numbers or lists of numbers. We can have other things by way of
data, such as tables for example. Things like lists and tables are
called "arrays".

2.1 Tables

A table with, say, 2 rows and 3 columns can be built with the $
function:

 table =: 2 3 $ 5 6 7 8 9 10
 table
5 6 7
8 9 10

The scheme here is that the expression (x $ y) builds a table.
The dimensions of the table are given by the list x which is of the
form number-of-rows followed by number-of-columns. The
elements of the table are supplied by the list y.

Items from y are taken in order, so as to fill the first row, then the
second, and so on. The list y must contain at least one item. If
there are too few items in y to fill the whole table, then y is re-
used from the beginning.

 23 Chapter 2: Lists and Tables

2 4 $ 5 6 7 8 9 2 2 $ 1

5 6 7 8
9 5 6 7

1 1
1 1

The $ function offers one way to build tables, but there are many
more ways: see Chapter 05.

Functions can be applied to whole tables exactly as we saw earlier
for lists:

table 10 * table table + table

5 6 7
8 9 10

50 60 70
80 90 100

10 12 14
16 18 20

One argument can be a table and one a list:

table 0 1 * table

5 6 7
8 9 10

0 0 0
8 9 10

In this last example, evidently the items of the list 0 1 are
automatically matched against the rows of the table, 0 matching
the first row and 1 the second. Other patterns of matching the
arguments against each other are also possible - see Chapter 07.

Chapter 2: Lists and Tables 24

2.2 Arrays

A table is said to have two dimensions (namely, rows and columns)
and in this sense a list can be said to have only one dimension.

We can have table-like data objects with more than two
dimensions. The left argument of the $ function can be a list of any
number of dimensions. The word "array" is used as the general
name for a data object with some number of dimensions. Here are
some arrays with one, two and three dimensions:

3 $ 1 2 3 $ 5 6 7 2 2 3 $ 5 6 7 8

1 1 1 5 6 7
5 6 7

5 6 7
8 5 6

7 8 5
6 7 8

The 3-dimensional array in the last example is said to have 2
planes, 2 rows and 3 columns and the two planes are displayed
one below the other.

Recall that the monadic function # gives the length of a list.

6 7 # 6 7 8

2 3

The monadic function $ gives the list-of-dimensions of its
argument:

 25 Chapter 2: Lists and Tables

L =: 5 6 7 $ L T =: 2 3 $ 1 $ T

5 6 7 3 1 1 1
1 1 1

2 3

Hence, if x is an array, the expression (# $ x) yields the length of
the list-of-dimensions of x, that is, the dimension-count of x, which
is 1 for a list, 2 for a table and so on.

L $ L # $ L T $T # $ T

5 6 7 3 1 1 1 1
1 1 1

2 3 2

If we take x to be a single number, then the expression (# $ x)
gives zero.

 # $ 17
0

We interpret this to mean that, while a table has two dimensions,
and a list has one, a single number has none, because its
dimension-count is zero. A data object with a dimension-count of
zero will be called a scalar. We said that "arrays" are data objects
with some number of dimensions, and so scalars are also arrays,
the number of dimensions being zero in this case.

We saw that (# $ 17) is 0. We can also conclude from this that,
since a scalar has no dimensions, its list-of-dimensions (given here
by $ 17) must be a zero-length, or empty, list. Now a list of length
2, say can be generated by an expression such as 2 $ 99 and so
an empty list, of length zero, can be generated by 0 $ 99 (or

Chapter 2: Lists and Tables 26

indeed, 0 $ any number)

The value of an empty list is displayed as nothing:

2 $ 99 0 $ 99 $ 17

99 99

Notice that a scalar, (17 say), is not the same thing as a list of
length one (e.g. 1 $ 17), or a table with one row and one column
(e.g. 1 1 $ 17). The scalar has no dimensions, the list has one,
the table has two, but all three look the same when displayed on
the screen:

 S =: 17
 L =: 1 $ 17
 T =: 1 1 $ 17

S L T # $
S

$
L

$ T

17 1
7

1
7

0 1 2

A table may have only one column, and yet still be a 2-dimensional
table. Here t has 3 rows and 1 column.

t =: 3 1 $ 5 6 7 $ t # $ t

5
6
7

3 1 2

 27 Chapter 2: Lists and Tables

2.3 Terminology: Rank and Shape

The property we called "dimension-count" is in J called by the
shorter name of of "rank", so a single number is a said to be a
rank-0 array, a list of numbers a rank-1 array and so on. The list-
of-dimensions of an array is called its "shape".

The mathematical terms "vector" and "matrix" correspond to what
we have called "lists" and "tables" (of numbers). An array with 3 or
more dimensions (or, as we now say, an array of rank 3 or higher)
will be called a "report".

A summary of terms and functions for describing arrays is shown
in the following table.

+--------+--------+-----------+------+
| | Example| Shape | Rank |
+--------+--------+-----------+------+
| | x | $ x | # $ x|
+--------+--------+-----------+------+
| Scalar | 6 | empty list| 0 |
+--------+--------+-----------+------+
| List | 4 5 6 | 3 | 1 |
+--------+--------+-----------+------+
| Table |0 1 2 | 2 3 | 2 |
| |3 4 5 | | |
+--------+--------+-----------+------+
Report	0 1 2	2 2 3	3
	3 4 5		
	6 7 8		
	9 10 11		
+--------+--------+-----------+------+

Chapter 2: Lists and Tables 28

This table above was in fact produced by a small J program, and is
a genuine "table", of the kind we have just been discussing. Its
shape is 6 4. However, it is evidently not just a table of numbers,
since it contains words, list of numbers and so on. We now look at
arrays of things other than numbers.

2.4 Arrays of Characters

Characters are letters of the alphabet, punctuation, numeric digits
and so on. We can have arrays of characters just as we have
arrays of numbers. A list of characters is entered between single
quotes, but is displayed without the quotes. For example:

 title =: 'My Ten Years in a Quandary'
 title
My Ten Years in a Quandary

A list of characters is called a character-string, or just a string. A
single quote in a string is entered as two successive single quotes.

 'What''s new?'
What's new?

An empty, or zero-length, string is entered as two successive
single quotes, and displays as nothing.

'' # ''

 0

 29 Chapter 2: Lists and Tables

2.5 Some Functions for Arrays

At this point it will be useful to look at some functions for dealing
with arrays. J is very rich in such functions: here we look at a just
a few.

2.5.1 Joining
The built-in function , (comma) is called "Append". It joins things
together to make lists.

a =: 'rear' b =: 'ranged' a,b

rear ranged rearranged

The "Append" function joins lists or single items.

x =: 1 2 3 0 , x x , 0 0 , 0 x , x

1 2 3 0 1 2 3 1 2 3 0 0 0 1 2 3 1 2 3

The "Append" function can take two tables and join them together
end-to-end to form a longer table:

T1=: 2 3 $ 'catdog' T2=: 2 3 $ 'ratpig' T1,T2

cat
dog

rat
pig

cat
dog
rat
pig

For more information about "Append", see Chapter 05.

Chapter 2: Lists and Tables 30

2.5.2 Items
The items of a list of numbers are the individual numbers, and we
will say that the items of a table are its rows. The items of a 3-
dimensional array are its planes. In general we will say that the
items of an array are the things which appear in sequence along its
first dimension. An array is the list of its items.

Recall the built-in verb # ("Tally") which gives the length of a list.

x # x

1 2 3 3

In general # counts the number of items of an array, that is, it
gives the first dimension:

T1 $ T1 # T1

cat
dog

2 3 2

Evidently # T1 is the first item of the list-of-dimensions $ T1. A
scalar, with no dimensions, is regarded as a single item:

 # 6
1

Consider again the example of "Append" given above.

 31 Chapter 2: Lists and Tables

T1 T2 T1 , T2

cat
dog

rat
pig

cat
dog
rat
pig

Now we can say that in general (x , y) is a list consisting of the
items of x followed by the items of y.

For another example of the usefulness of "items", recall the verb
+/ where + is inserted between items of a list.

+/ 1 2 3 1 + 2 + 3

6 6

Now we can say that in general +/ inserts + between items of an
array. In the next example the items are the rows:

T =: 3 2 $ 1 2 3 4 5 6 +/ T 1 2 + 3 4 + 5 6

1 2
3 4
5 6

9 12 9 12

2.5.3 Selecting
Now we look at selecting items from a list. Positions in a list are
numbered 0, 1, 2 and so on. The first item occupies position 0.

Chapter 2: Lists and Tables 32

To select an item by its position we use the function { (left brace,
called "From") .

Y =: 'abcd' 0 { Y 1 { Y 3 { Y

abcd a b d

A position-number is called an index. The { function can take as
left argument a single index or a list of indices:

Y 0 { Y 0 1 { Y 3 0 1 { Y

abcd a ab dab

There is a built-in function i. (letter-i dot). The expression (i. n)
generates n successive integers from zero.

i. 4 i. 6 1 + i. 3

0 1 2 3 0 1 2 3 4 5 1 2 3

If x is a list, the expression (i. # x) generates all the possible
indexes into the list x.

x =: 'park' # x i. # x

park 4 0 1 2 3

With a list argument, i. generates an array:

 33 Chapter 2: Lists and Tables

 i. 2 3
0 1 2
3 4 5

There is a dyadic version of i., called "Index Of". The expression
(x i. y) finds the position, that is, index, of y in x.

 'park' i. 'k'
3

The index found is that of the first occurrence of y in x.

 'parka' i. 'a'
1

If y is not present in x, the index found is 1 greater than the last
possible position.

 'park' i. 'j'
4

For more about the many variations of indexing, see Chapter 06.

2.5.4 Equality and Matching
Suppose we wish to determine whether two arrays are the same.
There is a built-in verb -: (minus colon, called "Match"). It tests
whether its two arguments have the same shapes and the same
values for corresponding elements.

X =: 'abc' X -: X Y =: 1 2 3 4 X -: Y

abc 1 1 2 3 4 0

Chapter 2: Lists and Tables 34

Whatever the arguments, the result of Match is always a single 0
or 1.

Notice that an empty list of, say, characters is regarded as
matching an empty list of numbers:

 '' -: 0 $ 0
1

because they have the same shapes, and furthermore it is true
that all corresponding elements have the same values, (because
there are no such elements).

There is another verb, = (called "Equal") which tests its arguments
for equality. = compares its arguments element by element and
produces an array of booleans of the same shape as the
arguments.

Y Y = Y Y = 2

1 2 3 4 1 1 1 1 0 1 0 0

Consequently, the two arguments of = must have the same
shapes, (or at least, as in the example of Y=2, compatible shapes).
Otherwise an error results.

Y Y = 1 5 6 4 Y = 1 5 6

1 2 3 4 1 0 0 1 error

 35 Chapter 2: Lists and Tables

2.6 Arrays of Boxes

2.6.1 Linking
There is a built-in function ; (semicolon, called "Link"). It links
together its two arguments to form a list. The two arguments can
be of different kinds. For example we can link together a
character-string and a number.

 A =: 'The answer is' ; 42
 A
+-------------+--+
|The answer is|42|
+-------------+--+

The result A is a list of length 2, and is said to be a list of boxes.
Inside the first box of A is the string 'The answer is'. Inside the
second box is the number 42. A box is shown on the screen by a
rectangle drawn round the value contained in the box.

A 0 { A

+-------------+--+
|The answer is|42|
+-------------+--+

+-------------+
|The answer is|
+-------------+

A box is a scalar whatever kind of value is inside it. Hence boxes
can be packed into regular arrays, just like numbers. Thus A is a
list of scalars.

Chapter 2: Lists and Tables 36

A $ A s =: 1 { A # $ s

+-------------+--+
|The answer is|42|
+-------------+--+

2 +--+
|42|
+--+

0

The main purpose of an array of boxes is to assemble into a single
variable several values of possibly different kinds. For example, a
variable which records details of a purchase (date, amount,
description) could be built as a list of boxes:

 P =: 18 12 1998 ; 1.99 ; 'baked beans'
 P
+----------+----+-----------+
|18 12 1998|1.99|baked beans|
+----------+----+-----------+

Note the difference between "Link" and "Append". While "Link"
joins values of possibly different kinds, "Append" always joins
values of the same kind. That is, the two arguments to "Append"
must both be arrays of numbers, or both arrays of characters, or
both arrays of boxes. Otherwise an error is signalled.

'answer is'; 42 'answer is' , 42

+---------+--+
|answer is|42|
+---------+--+

error

 37 Chapter 2: Lists and Tables

On occasion we may wish to combine a character-string with a
number, for example to present the result of a computation
together with some description. We could "Link" the description
and the number, as we saw above. However a smoother
presentation could be produced by converting the number to a
string, and then Appending this string and the description, as
characters.

Converting a number to a string can be done with the built-in
"Format" function ": (double-quote colon). In the following
example n is a single number, while s, the formatted value of n, is
a string of characters of length 2.

n =: 42 s =: ": n # s 'answer is ' , s

42 42 2 answer is 42

For more about "Format", see Chapter 19. Now we return to the
subject of boxes. Because boxes are shown with rectangles drawn
round them, they lend themselves to presentation of results on-
screen in a simple table-like form.

 p =: 4 1 $ 1 2 3 4
 q =: 4 1 $ 3 0 1 1

 2 3 $ ' p ' ; ' q ' ; ' p+q ' ; p ; q ; p+q
+---+---+-----+
| p | q | p+q |
+---+---+-----+
1	3	4
2	0	2
3	1	4
4	1	5
+---+---+-----+

Chapter 2: Lists and Tables 38

2.6.2 Boxing and Unboxing
There is a built-in function < (left-angle-bracket, called "Box"). A
single boxed value can be created by applying < to the value.

 < 'baked beans'
+-----------+
|baked beans|
+-----------+

Although a box may contain a number, it is not itself a number. To
perform computations on a value in a box, the box must be, so to
speak "opened" and the value taken out. The function > (right-
angle-bracket) is called "Open".

b =: < 1 2 3 > b

+-----+
|1 2 3|
+-----+

1 2 3

It may be helpful to picture < as a funnel. Flowing into the wide
end we have data, and flowing out of the narrow end we have
boxes which are scalars, that is, dimensionless or point-like.
Conversely for > . Since boxes are scalars, they can be strung
together into lists of boxes with the comma function, but the
semicolon function is often more convenient because it combines
the stringing-together and the boxing:

 39 Chapter 2: Lists and Tables

(< 1 1) , (< 2 2) , (< 3 3) 1 1 ; 2 2 ; 3 3

+---+---+---+
|1 1|2 2|3 3|
+---+---+---+

+---+---+---+
|1 1|2 2|3 3|
+---+---+---+

2.7 Summary

In conclusion, every data object in J is an array, with zero, one or
more dimensions. An array may be an array of numbers, or an
array of characters, or an array of boxes (and there are further
possibilities).

Chapter 3: Defining Functions 40

Chapter 3: Defining Functions

J comes with a collection of functions built-in; we have seen a few,
such as * and +. In this section we take a first look at how to put
together these built-in functions, in various ways, for the purpose
of defining our own functions.

3.1 Renaming

The simplest way of defining a function is to give a name of our
own choice to a built-in function. The definition is an assignment.
For example, to define square to mean the same as the built-in *:
function:

 square =: *:

 square 1 2 3 4
1 4 9 16

We might choose to do this if we prefer our own name as more
memorable. We can give two different names to the same built-in
function, intending to use one for the monadic case and the other
for the dyadic.

 41 Chapter 3: Defining Functions

 Ceiling =: >.
 Max =: >.

Ceiling 1.7 3 Max 4

2 4

3.2 Inserting

Recall that (+/ 2 3 4) means 2+3+4, and similarly (*/ 2 3 4)
means 2*3*4. We can define a function and give it a name, say
sum, with an assignment:

 sum =: + /

 sum 2 3 4
9

Here, sum =: +/ shows us that +/ is by itself an expression which
denotes a function.

This expression +/ can be understood as: "Insert" (/) applied to
the function + to produce a list-summing function.

That is, / is itself a kind of function. It takes one argument, on its
left. Both its argument and its result are functions.

Chapter 3: Defining Functions 42

3.3 Terminology: Verbs, Operators and Adverbs

We have seen functions of two kinds. Firstly, there are "ordinary"
functions, such as + and *, which compute numbers from
numbers. In J these are called "verbs".

Secondly, we have functions, such as /, which compute functions
from functions. Functions of this kind will be called "operators", to
distinguish them from verbs.

Operators which take one argument are called "adverbs". An
adverb always takes its argument on the left. Thus we say that in
the expression (+ /) the adverb / is applied to the verb + to
produce a list-summing verb.

The terminology comes from the grammar of English sentences:
verbs act upon things and adverbs modify verbs.

3.4 Commuting

Having seen one adverb, (/), let us look at another. The adverb ~
has the effect of exchanging left and right arguments.

'a' , 'b' 'a' ,~ 'b'

ab ba

The scheme is that for a dyad f with arguments x and y

 x f~ y means y f x

For another example, recall the residue verb | where 2 | 7

 43 Chapter 3: Defining Functions

means, in conventional notation, "7 mod 2". We can define a mod
verb:

 mod =: | ~

7 mod 2 2 | 7

1 1

Let me draw some pictures. Firstly, here is a diagram of function f
applied to an argument y to produce a result (f y). In the
diagram the function f is drawn as a rectangle and the arrows are
arguments flowing into, or results flowing out of, the function.
Each arrow is labelled with an expression.

Here is a similar diagram for a dyadic f applied to arguments x
and y to produce (x f y).

Chapter 3: Defining Functions 44

Here now is a diagram for the function (f~), which can be pictured
as containing inside itself the function f, together with a crossed
arrangement of arrows.

 45 Chapter 3: Defining Functions

3.5 Bonding

Suppose we wish to define a verb double such that double x
means x * 2 . That is, double is to mean "multiply by 2". We
define it like this:

 double =: * & 2

 double 3
6

Here we take a dyad, *, and produce from it a monad by fixing one
of the two arguments at a chosen value (in this case, 2). The &
operator is said to form a bond between a function and a value for
one argument. The scheme is: if f is a dyadic function, and k is a
value for the right argument of f, then

 (f & k) y means y f k

Instead of fixing the right argument we could fix the left, so we
also have the scheme

 (k & f) y means k f y

For example, suppose that the rate of sales tax is 10%, then a
function to compute the tax, from the purchase-price is:

 tax =: 0.10 & *

 tax 50
5

Here is a diagram illustrating function k&f.

Chapter 3: Defining Functions 46

3.6 Terminology: Conjunctions and Nouns

The expression (*&2) can be described by saying that the &
operator is a function which is applied to two arguments (the verb
* and the number 2), and the result is the "doubling" verb.

A two-argument operator such as & is called in J a "conjunction",
because it conjoins its two arguments. By contrast, recall that
adverbs are operators with only one argument.

Every function in J, whether built-in or user-defined, belongs to
exactly one of the four classes: monadic verbs, dyadic verbs,
adverbs or conjunctions. Here we regard an ambivalent symbol
such as - as denoting two different verbs: monadic negation or
dyadic subtraction.

Every expression in J has a value of some type. All values which
are not functions are data (in fact, arrays, as we saw in the

 47 Chapter 3: Defining Functions

previous section).

In J, data values, that is, arrays, are called "nouns", in accordance
with the English-grammar analogy. We can call something a noun
to emphasize that it's not a verb, or an array to emphasize that it
may have several dimensions.

3.7 Composition of Functions

Consider the English language expression: the sum of the squares
of the numbers 1 2 3, that is, (1+4+9), or 14. Since we defined
above verbs for sum and square, we are in a position to write the J
expression as:

 sum square 1 2 3
14

A single sum-of-the-squares function can be written as a
composite of sum and square:

 sumsq =: sum @: square

 sumsq 1 2 3
14

The symbol @: (at colon) is called a "composition" operator. The
scheme is that if f and g are verbs, then for any argument y

 (f @: g) y means f (g y)

Here is a diagram for the scheme:

Chapter 3: Defining Functions 48

At this point, the reader may be wondering why we write (f @: g)
and not simply (f g) to denote composition. The short answer is
that (f g) means something else, which we will come to.

For another example of composition, a temperature in degrees
Fahrenheit can be converted to Celsius by composing together
functions s to subtract 32 and m tomultiply by 5%9.

 s =: - & 32
 m =: * & (5%9)
 convert =: m @: s

s 212 m s 212 convert 212

180 100 100

 49 Chapter 3: Defining Functions

For clarity, these examples showed composition of named
functions. We can of course compose expressions denoting
functions:

 conv =: (* & (5%9)) @: (- & 32)
 conv 212
100

We can apply an expression denoting a function, without giving it a
name:

 (* & (5%9)) @: (- & 32) 212
100

The examples above showed composing a monad with a monad.
The next example shows we can compose a monad with a dyad.
The general scheme is:

 x (f @: g) y means f (x g y)

For example, the total cost of an order for several items is given by
multiplying quantities by corresponding unit prices, and then
summing the results. To illustrate:

 P =: 2 3 NB. prices
 Q =: 1 100 NB. quantities

 total =: sum @: *

P Q P*Q sum P * Q P total Q

2 3 1 100 2 300 302 302

Chapter 3: Defining Functions 50

For more about composition, see Chapter 08.

3.8 Trains of Verbs

Consider the expression "no pain, no gain". This is a compressed
idiomatic form, quite comprehensible even if not grammatical in
construction - it is not a sentence, having no main verb. J has a
similar notion: a compressed idiomatic form, based on a scheme
for giving meaning to short lists of functions. We look at this next.

3.8.1 Hooks
Recall the verb tax we defined above to compute the amount of
tax on a purchase, at a rate of 10%. The definition is repeated
here:

 tax =: 0.10 & *

The amount payable on a purchase is the purchase-price plus the
computed tax. A verb to compute the amount payable can be
written:

 payable =: + tax

If the purchase price is, say, $50, we see:

tax 50 50 + tax 50 payable 50

5 55 55

In the definition (payable =: + tax) we have a sequence of two
verbs + followed by tax. This sequence is isolated, by being on the
right-hand side of the assignment. Such an isolated sequence of

 51 Chapter 3: Defining Functions

verbs is called a "train", and a train of 2 verbs is called a "hook".

We can also form a hook just by isolating the two verbs inside
parentheses:

 (+ tax) 50
55

The general scheme for a hook is that if f is a dyad and g is a
monad, then for any argument y:

 (f g) y means y f (g y)

Here is a diagram for the scheme:

For another example, recall that the "floor" verb <. computes the
whole-number part of its argument. Then to test whether a
number is a whole number or not, we can ask whether it is equal
to its floor. A verb meaning "equal-to-its-floor" is the hook (=
<.) :

Chapter 3: Defining Functions 52

 wholenumber =: = <.

y =: 3 2.7 <. y y = <. y wholenumber y

3 2.7 3 2 1 0 1 0

3.8.2 Forks
The arithmetic mean of a list of numbers L is given by the sum of L
divided by the number of items in L. (Recall that number-of-items
is given by the monadic verb #.)

L =: 3 5 7 9 sum L # L (sum L) % (# L)

3 5 7 9 24 4 6

A verb to compute the mean as the sum divided by the number of
items can be written as a sequence of three verbs: sum followed by
% followed by # .

 mean =: sum % #

 mean L
6

An isolated sequence of three verbs is called a fork. The general
scheme is that if f is a monad, g is a dyad and h is a monad then
for any argument y,

 (f g h) y means (f y) g (h y)

Here is a diagram of this scheme:

 53 Chapter 3: Defining Functions

For another example of a fork, what is called the range of numbers
in a list is given by the fork smallest , largest where the middle
verb is the comma.

Recall from Chapter 01 that the largest number in a list is given by
the verb >./ and so the smallest will be given by <./

 range =: <./ , >./

Chapter 3: Defining Functions 54

L range L

3 5 7 9 3 9

Hooks and forks are sequences of verbs, also called "trains" of
verbs. For more about trains, see Chapter 09.

3.9 Putting Things Together

Let us now try a longer example which puts together several of the
ideas we saw above.

The idea is to define a verb to produce a simple display of a given
list of numbers, showing for each number what it is as a
percentage of the total.

Let me begin by showing you a complete program for this
example, so you can see clearly where we are going. I don't
expect you to study this in detail now, because explanation will be
given below. Just note that we are looking at a program of 7 lines,
defining a verb called display and its supporting functions.

 frac =: % +/
 percent =: (100 & *) @: frac
 round =: <. @: (+ & 0.5)
 comp =: round @: percent
 br =: ,. ; (,. @: comp)
 tr =: ('Data';'Percentages') & ,:
 display =: tr @: br

If we start with some very simple data:

 data =: 3 1 4

 55 Chapter 3: Defining Functions

then we see that the display verb shows each number as given
and as a percentage (in round figures) of the total: 4 is 50% of 8.

 display data
+----+-----------+
|Data|Percentages|
+----+-----------+
3	38
1	13
4	50
+----+-----------+

First, we aim to divide each number by the total, to show the
contribution of each as a fraction. The hook (% +/) is suitable: it
can be read as divide-by-sum. If we call it frac

 frac =: % +/

then we see

data +/dat
a

data % (+/data) frac data

3 1 4 8 0.375 0.125 0.5 0.375 0.125 0.5

The percentages are given by multiplying the fractions by 100.

 percent =: (100 & *) @: frac

Chapter 3: Defining Functions 56

data frac data percent data

3 1 4 0.375 0.125 0.5 37.5 12.5 50

Let us round the percentages to the nearest whole number, by
adding 0.5 to each and then taking the floor (the integer part)
with the verb <. The verb round is:

 round =: <. @: (+&0.5)

Then the verb to compute the displayed values from the data is:

 comp =: round @: percent

percent data round percent data comp data

37.5 12.5 50 38 13 50 38 13 50

Now we want to show the data and computed values in columns.
To make a 1-column table out of a list, we can use the built-in verb
,. (comma dot, called "Ravel Items").

data ,. data ,. comp data

3 1 4 3
1
4

38
13
50

To make the bottom row of the display, we define verb br as a fork
which links together the data and the computed values, both as
columns:

 57 Chapter 3: Defining Functions

 br =: ,. ; (,. @: comp)

data br data

3 1 4 +-+--+
3	38
1	13
4	50
+-+--+

To add the top row of the display (the column headings), there is a
useful built-in verb ,: (comma colon, "Laminate", which will be
covered in Chapter 05)

 tr =: ('Data';'Percentages') & ,:

data br data tr br data

3 1 4 +-+--+
3	38
1	13
4	50
+-+--+

+----+-----------+
|Data|Percentages|
+----+-----------+
3	38
1	13
4	50
+----+-----------+

and so we put everything together:

Chapter 3: Defining Functions 58

 display =: tr @: br

 display data
+----+-----------+
|Data|Percentages|
+----+-----------+
3	38
1	13
4	50
+----+-----------+

This display verb has two aspects: the function comp which
computes the values (the rounded percentages), and the
remainder which is concerned to present the results. By changing
the definition of comp, we can display a tabulation of the values of
other functions. Suppose we define comp to be the built-in square-
root verb (%:) .

 comp =: %:

We would also want to change the column-headings in the top row,
specified by the tr verb:

 tr =: ('Numbers';'Square Roots') & ,:

 display 1 4 9 16
+-------+------------+
|Numbers|Square Roots|
+-------+------------+
1	1
4	2
9	3
16	4
+-------+------------+

 59 Chapter 3: Defining Functions

In review, we have seen a small J program with some
characteristic features of J: bonding, composition, a hook and a
fork. As with all J programs, this is only one of the many possible
ways to write it.

In this chapter we have taken a first look at defining functions.
There are two kinds of functions: verbs and operators. So far we
have looked only at defining verbs. In the next chapter we look at
another way of defining verbs, and in Chapter 13 onwards we will
look at defining operators.

Chapter 4: Scripts and Explicit Functions 60

Chapter 4: Scripts and Explicit
Functions

What is called a "script" is a sequence of lines of J where the whole
sequence can be replayed on demand to perform a computation.
The themes of this chapter are scripts, functions defined by
scripts, and scripts in files.

4.1 Text

Here is an assignment to the variable txt:

 txt =: 0 : 0
What is called a "script" is
a sequence of lines of J.
)

The expression 0 : 0 means "as follows", that is, 0 : 0 is a verb
which takes as its argument, and delivers as its result, whatever
lines are typed following it, down to the line beginning with the
solo right- parenthesis.

The value of txt is these two lines, in a single character string.
The string contains line-feed (LF) characters, which cause txt to
be displayed as several lines. txt has a certain length, it is rank 1,
that is, just a list, and it contains 2 line-feed characters.

 61 Chapter 4: Scripts and Explicit Functions

 txt
What is called a "script" is
a sequence of lines of J.

$ txt # $
txt

+/ txt = LF

55 1 2

Let us say that txt is a "text" variable, that is, a character string
with zero or more line-feed characters.

4.2 Scripts for Procedures

Here we look at computations described as step-by-step
procedures to be followed. For a very simple example, the
Fahrenheit-to-Celsius conversion can be described in two steps.
Given some temperature T say in degrees Fahrenheit:

 T =: 212

then the first step is subtracting 32. Call the result t, say

 t =: T - 32

The second step is multiplying t by 5%9 to give the temperature in
degrees Celsius.

 t * 5 % 9

Chapter 4: Scripts and Explicit Functions 62

100

Suppose we intend to perform this computation several times with
different values of T. We could record this two-line procedure as a
script which can be replayed on demand. The script consists of the
lines of J stored in a text variable, thus:

 script =: 0 : 0
t =: T - 32
t * 5 % 9
)

Scripts like this can be executed with the built-in J verb given by
the expression 0 !: 1 which we can call, say, do.

 do =: 0 !: 1

Here the expression 0 !: 1 can be understood as the verb
produced by giving a left argument of 0 and a right argument of 1
to the conjunction !: (exclamation colon, called the "Foreign
Conjunction"). !: offers a set of utility functions or system
services which are organised into groups of verbs. For more
details, see the Dictionary here .

In this example the left argument of 0 specifies the script-
executing group, and the right argument of 1 picks out a particular
member of that group, namely a verb to execute the script to the
end regardless of errors, and displaying the execution on screen.

If we now enter do script we should now see the lines on the
screen just as though they had been typed in from the keyboard:

 do script
 t =: T - 32

http://www.jsoftware.com/help/dictionary/xmain.htm

 63 Chapter 4: Scripts and Explicit Functions

 t * 5 % 9
100

We can run the script again with a different value for T

 T =: 32
 do script
 t =: T - 32
 t * 5 % 9
0

4.3 Explicitly-Defined Functions

Functions can be defined by scripts. Here is an example, the
Fahrenheit-to-Celsius conversion as a verb.

 Celsius =: 3 : 0
t =: y - 32
t * 5 % 9
)

Celsius 32 212 1 + Celsius 32 212

0 100 1 101

The main features of this definition are:

4.3.1 Heading
The function is introduced with the expression 3 : 0 which means:
"a verb as follows". (By contrast, recall that 0 : 0 means "a
character string as follows").

Chapter 4: Scripts and Explicit Functions 64

The colon in 3 : 0 is a conjunction. Its left argument (3) means
"verb". Its right argument (0) means "lines following". For more
details, see Chapter 12. A function introduced in this way is called
"explicitly-defined", or just "explicit".

4.3.2 Meaning
The expression Celsius 32 212 applies the verb Celsius to the
argument 32 212, by carrying out a computation which can be
described, or modelled, like this:

 y =: 32 212
 t =: y - 32
 t * 5 % 9
0 100

Notice that, after the first line, the computation proceeds according
to the script.

4.3.3 Argument Variable(s)
The value of the argument (32 212) is supplied to the script as a
variable named y . This "argument variable" is named y in a
monadic function. (In a dyadic function, as we shall see below, the
left argument is named x and the right is y)

4.3.4 Local Variables
Here is our definition of Celsius repeated:

 Celsius =: 3 : 0
t =: y - 32
t * 5 % 9
)

We see it contains an assignment to a variable t. This variable is
used only during the execution of Celsius. Unfortunately this

 65 Chapter 4: Scripts and Explicit Functions

assignment to t interferes with the value of any other variable also
called t, defined outside Celsius, which we happen to be using at
the time. To demonstrate:

 t =: 'hello'

 Celsius 212
100

 t
180

We see that the variable t with original value ('hello') has been
changed in executing Celsius. To avoid this undesirable effect, we
declare that t inside Celsius is to be a strictly private affair,
distinct from any other variable called t.

For this purpose there is a special form of assignment, with the
symbol =. (equal dot). Our revised definition becomes:

 Celsius =: 3 : 0
t =. y - 32
t * 5 % 9
)

and we say that t in Celsius is a local variable, or that t is local
to Celsius. By contrast, a variable defined outside a function is
said to be global. Now we can demonstrate that in Celsius
assignment to local variable t does not affect any global variable t

 t =: 'hello'

 Celsius 212
100

Chapter 4: Scripts and Explicit Functions 66

 t
hello

The argument-variable y is also a local variable. Hence the
evaluation of (Celsius 32 212) is more accurately modelled by
the computation:

 y =. 32 212
 t =. y - 32
 t * 5 % 9
0 100

4.3.5 Dyadic Verbs
Celsius is a monadic verb, introduced with 3 : 0 and defined in
terms of the single argument y. By contrast, a dyadic verb is
introduced with 4 : 0. The left and right arguments are always
named x and y respectively Here is an example. The "positive
difference" of two numbers is the larger minus the smaller.

 posdiff =: 4 : 0
larger =. x >. y
smaller =. x <. y
larger - smaller
)

3 posdiff 4 4 posdiff 3

1 1

4.3.6 One-Liners
A one-line script can be written as a character string, and given as
the right argument of the colon conjunction.

 67 Chapter 4: Scripts and Explicit Functions

 PosDiff =: 4 : '(x >. y) - (x <. y)'
 4 PosDiff 3
1

4.3.7 Control Structures
In the examples we have seen so far of functions defined by
scripts, execution begins with the expression on the first line,
proceeds to the next line, and so on to the last.

This straight-through path is not the only path possible. A choice
can be made as to which expression to execute next.

For an example, here is a function to compute a volume from
given length, width and height. Suppose the function is to check
that its argument is given correctly as a list of 3 items (length,
width and height). If so, a volume is computed. If not, the result is
to be the character-string 'ERROR'.

 volume =: 3 : 0
if. 3 = # y
do. * / y
else. 'ERROR'
end.
)

We see:

volume 2 3 4 volume 2 3

24 ERROR

Everything from if. to end. together forms what is called a
"control structure". Within it if. do. else. and end. are called

Chapter 4: Scripts and Explicit Functions 68

"control words". See Chapter 12 for more on control structures.

4.4 Tacit and Explicit Compared

We have now seen two different styles of function definition. The
explicit style, introduced in this chapter, is so called because it
explicitly mentions variables standing for arguments. Thus in
volume above, the variable y is an explicit mention of an
argument.

By contrast, the style we looked at in the previous chapter is called
"tacit", because there is no mention of variables standing for
arguments. For example, compare explicit and tacit definitions of
the positive-difference function:

 epd =: 4 : '(x >. y) - (x <. y)'

 tpd =: >. - <.

Many functions defined in the tacit style can also be defined
explicitly, and vice versa. Which style is preferable depends on
what seems most natural, in the light of however we conceive the
function to be defined. The choice lies between breaking down the
problem into, on the one hand, a scripted sequence of steps or, on
the other hand, a collection of smaller functions.

The tacit style allows a compact definition. For this reason, tacit
functions lend themselves well to systematic analysis and
transformation. Indeed, the J system can, for a broad class of tacit
functions, automatically compute such transformations as inverses
and derivatives.

 69 Chapter 4: Scripts and Explicit Functions

4.5 Functions as Values

A function is a value, and a value can be displayed by entering an
expression. An expression can be as simple as a name. Here are
some values of tacit and explicit functions:

 - & 32
+-+-+--+
|-|&|32|
+-+-+--+

 epd
+-+-+-------------------+
|4|:|(x >. y) - (x <. y)|
+-+-+-------------------+

 Celsius
+-+-+-----------+
|3|:|t =. y - 32|
| | |t * 5 % 9 |
+-+-+-----------+

The value of each function is here represented as a boxed
structure. This is the default, but we can choose from several other
possibilities: see Chapter 27. For now I will mention only the
"linear representation", which shows a function as a sequence of
characters which could be typed in again to produce the function.
We can switch the session to to show functions in the linear
representation by entering:

 (9!:3) 5

and we see for example:

Chapter 4: Scripts and Explicit Functions 70

 epd
4 : '(x >. y) - (x <. y)'

In the following chapters, values of functions will often be shown in
this linear representation.

4.6 Script Files

We have seen scripts (lines of J) used for definitions of single
variables: text variables or functions. By contrast, a file holding
lines of J as text can store many definitions. Such a file is called a
script file, and its usefulness is that all its definitions together can
be executed by reading the file.

Here is an example. Using a text-editor of your choice, create a file
on your computer, containing 2 lines of text like the following.

 squareroot =: %:

 z =: 1 , (2+2) , (4+5)

A J script file has a filename ending with .ijs by convention, so
suppose the file is created (in Windows) with the full pathname
c:\temp\myscript.ijs for example.

Then in the J session it will be convenient to identify the file by
defining a variable F say to hold this filename as a string.

 F =: 'c:\temp\myscript.ijs'

Having created this 2-line script file, we can execute it by typing at
the keyboard:

 71 Chapter 4: Scripts and Explicit Functions

 0!:1 < F

and we should now see the lines on the screen just as though they
had been typed from the keyboard.

 squareroot =: %:
 z =: 1 ,(2+2), (4+5)

We can now compute with the definitions we have just loaded in
from the file:

 z
1 4 9

 squareroot z
1 2 3

The activities in a J session will be typically a mixture of editing
script files, loading or reloading the definitions from script files,
and initiating computations at the keyboard. What carries over
from one session to another is only the script files. The state, or
memory, of the J system itself disappears at the end of the
session, along with all the definitions entered during the session.
Hence it is a good idea to ensure, before ending a J session, that
any script file is up to date, that is, it contains all the definitions
you wish to preserve.

At the beginning of a session the J system will automatically load a
designated script file, called the "profile". (See Chapter 26 for
more details). The profile can be edited, and is a good place to
record any definitions of your own which you find generally useful.

We have now come to the end of Chapter 4 and of Part 1. The
following chapters will treat, in more depth and detail, the themes
we have touched upon in Part 1.

Chapter 5: Building Arrays 72

Chapter 5: Building Arrays

This chapter is about building arrays. First we look at building
arrays from lists, and then at joining arrays together in various
ways to make larger arrays.

5.1 Building Arrays by Shaping Lists

5.1.1 Review
Recall from Chapter 02 what we mean by the word "items". The
items of a list of numbers are the numbers. The items of a table
are its rows. The items of a 3-dimensional array are its planes.

Recall also that x $ y produces an array of the items of the list y,
with shape x, that is, with dimensions given by the list x. For
example:

2 2 $ 0 1 2 3 2 3 $ 'ABCDEF'

0 1
2 3

ABC
DEF

If the list y contains fewer than the number of items needed, then
y is re-used in cyclical fashion to make up the number of items
needed. This means that an array can be built to show some
simple patterning, such as all elements being the same, for
example.

 73 Chapter 5: Building Arrays

2 3 $ 'ABCD' 2 2 $ 1 3 3 $ 1 0 0 0

ABC
DAB

1 1
1 1

1 0 0
0 1 0
0 0 1

The "Shape" verb, dyadic $, has a companion verb, "ShapeOf"
(monadic $), which yields the list-of-dimensions, that is, shape, of
its argument. To illustrate:

A =: 2 3 $ 'ABCDEF' $ A a =: 'pqr' $ a

ABC
DEF

2 3 pqr 3

For any array A, its list-of-dimensions $ A is a 1-dimensional list
(the shape). Hence $ $ A is a list of 1 item (the rank). Hence $ $
$ A is always a list containing just the number 1.

A $ A $ $
A

$ $ $ A

ABC
DEF

2 3 2 1

5.1.2 Empty Arrays
An array can be of length zero in any of its dimensions. A zero
length, or empty, list can be built by writing 0 for its list of
dimensions, and any value (doesn't matter what) for the value of

Chapter 5: Building Arrays 74

the item(s).

E =: 0 $ 99 $ E

 0

If E is empty, then it has no items, and so, after appending an item
to it, the result will have one item.

E $ E w =: E ,98 $ w

 0 98 1

Similarly, if ET is an empty table with no rows, and say, 3 columns,
then after adding a row, the result will have one row.

ET =: 0 3 $ 'x' $ ET $ ET , 'pqr'

 0 3 1 3

5.1.3 Building a Scalar
Suppose we need to build a scalar. A scalar has no dimensions,
that is, its dimension-list is empty. We can give an empty list as
the left argument of $ to make a scalar:

S =: (0$0) $ 17 $ S $ $ S

17 0

 75 Chapter 5: Building Arrays

5.1.4 Shape More Generally
We said that (x $ y) produces an x-shaped array of the items of
y. That is, in general the shape of (x$y) will be not just x, but
rather x followed by the shape of an item of y.

If y is a table, then an item of y is a row, that is, a list. In the
following example, the shape of an item of Y is the length of a row
of Y, which is 4 .

X =: 2 Y =: 3 4 $ 'A' Z =: X $ Y $ Z

2 AAAA
AAAA
AAAA

AAAA
AAAA

2 4

The next sections look at building new arrays by joining together
arrays we already have.

5.2 Appending, or Joining End-to-End

Recall that any array can be regarded as a list of items, so that for
example the items of a table are its rows. The verb , (comma) is
called "Append". The expression (x,y) is a list of the items of x
followed by the items of y.

Chapter 5: Building Arrays 76

 B =: 2 3 $ 'UVWXYZ'
 b =: 3 $ 'uvw'

a b a , b A B A , B

pqr uvw pqruvw ABC
DEF

UVW
XYZ

ABC
DEF
UVW
XYZ

In the example of (A,B) above. the items of A are lists of length 3,
and so are the items of B. Hence items of A are compatible with,
that is, have the same rank and length as items of B. What if they
do not? In this case the "Append" verb will helpfully try to stretch
one argument to fit the other, by bringing them to the same rank,
padding to length, and replicating scalars as necessary. This is
shown the following examples.

5.2.1 Bringing To Same Rank
Suppose we want to append a row to a table. For example,
consider appending the 3-character list b (above) to the 2 by 3
table A (above) to form a new row.

A b A , b

ABC
DEF

uv
w

ABC
DEF
uvw

 77 Chapter 5: Building Arrays

Notice that we want the two items of A to be followed by the single
item of b, but b is not a 1-item affair. We could do it by reshaping
b into a 1 by 3 table, that is, by raising the rank of b. However, this
is not necessary, because, as we see, the "Append" verb has
automatically stretched the low-rank argument into a 1-item array,
by supplying leading dimension(s) of 1 as necessary.

A b A , (1 3 $ b) A , b b , A

ABC
DEF

uvw ABC
DEF
uvw

ABC
DEF
uvw

uvw
ABC
DEF

5.2.2 Padding To Length
When the items of one argument are shorter than the items of the
other, they will be padded out to length. Characters arrays are
padded with the blank character, numerical arrays with zero.

A A , 'XY' (2 3 $ 1) , 9 9

ABC
DEF

ABC
DEF
XY

1 1 1
1 1 1
9 9 0

5.2.3 Replicating Scalars
A scalar argument of "Append" is replicated as necessary to match
the other argument. In the following example, notice how the
scalar '*' is replicated, but the vector (1 $ '*') is padded.

Chapter 5: Building Arrays 78

A A , '*' A , 1 $ '*'

ABC
DEF

ABC
DEF

ABC
DEF
*

5.3 Stitching, or Joining Side-to-Side

The dyadic verb ,. (comma dot) is called "Stitch". In the
expression (x ,. y) each item of x has the corresponding item of
y appended to produce an item of the result.

a b a ,. b A B A ,. B

pqr uvw pu
qv
rw

ABC
DEF

UVW
XYZ

ABCUVW
DEFXYZ

5.4 Laminating, or Joining Face-to-Face

The verb ,: (comma colon) is called "Laminate". The result of
(x ,: y) is always an array with two items, of which the first is x
and the second is y

 79 Chapter 5: Building Arrays

a b a ,: b

pqr uvw pqr
uvw

If x and y are tables, then we can imagine the result as one table
laid on top of the other to form a 3-dimensional array, of length 2
along its first dimension.

A B A ,: B $ A ,: B

ABC
DEF

UVW
XYZ

ABC
DEF

UVW
XYZ

2 2 3

5.5 Linking

The verb ; (semicolon) is called "Link". It is convenient for building
lists of boxes.

'good' ; 'morning' 5 ; 12 ; 1995

+----+-------+
|good|morning|
+----+-------+

+-+--+----+
|5|12|1995|
+-+--+----+

Chapter 5: Building Arrays 80

Notice how the example of 5;12;1995 shows that (x;y) is not
invariably just (< x),(< y) . Since "Link" is intended for building
lists of boxes, it recognises when its right argument is already a
list of boxes. If we define a verb which does produce (< x),(< y)

 foo =: 4 : '(< x) , (< y)'

we can compare these two:

1 ; 2 ; 3 1 foo 2 foo 3

+-+-+-+
|1|2|3|
+-+-+-+

+-+-----+
1	+-+-+			
		2	3	
	+-+-+			
+-+-----+

5.6 Unbuilding Arrays

We have looked at four dyadic verbs: "Append" (,), "Stitch" (,.),
"Laminate" (,:) and "Link" (;). Each of these has a monadic
case, which we now look at.

 81 Chapter 5: Building Arrays

5.6.1 Razing
Monadic ; is called "Raze". It unboxes elements of the argument
and assembles them into a list.

B =: 2 2 $ 1;2;3;4 ; B $; B

+-+-+
|1|2|
+-+-+
|3|4|
+-+-+

1 2 3 4 4

5.6.2 Ravelling
Monadic , is called "Ravel". It assembles elements of the argument
into a list.

B , B $, B

+-+-+
|1|2|
+-+-+
|3|4|
+-+-+

+-+-+-+-+
|1|2|3|4|
+-+-+-+-+

4

5.6.3 Ravelling Items
Monadic ,. is called "Ravel Items". It separately ravels each item
of the argument to form a table.

Chapter 5: Building Arrays 82

k =: 2 2 3 $ i. 12 ,. k

0 1 2
3 4 5

6 7 8
9 10 11

0 1 2 3 4 5
6 7 8 9 10 11

"Ravel Items" is useful for making a 1-column table out of a list.

b ,. b

uvw u
v
w

5.6.4 Itemizing
Monadic ,: is called "Itemize". It makes a 1-item array out of any
array, by adding a leading dimension of 1.

A ,: A $,: A

ABC
DEF

ABC
DEF

1 2 3

5.7 Arrays Large and Small

As we have seen, an array can be built with the $ verb.

 83 Chapter 5: Building Arrays

 3 2 $ 1 2 3 4 5 6
1 2
3 4
5 6

For small arrays, where the contents can be listed on a single line,
there are alternatives to using $, which avoid the need to give the
dimensions explicitly.

> 1 2 ; 3 4 ; 5 6 1 2 , 3 4 ,: 5 6

1 2
3 4
5 6

1 2
3 4
5 6

To build large tables, a convenient method is as follows. First, here
is a "utility" verb (that is, a verb which is useful for present
purposes, but we don't need to study its definition now.)

 ArrayMaker =: ". ;. _2

The purpose of ArrayMaker is to build a numeric table row by row
from the lines of a script.

 table =: ArrayMaker 0 : 0
1 2 3
4 5 6
7 8 9
)

Chapter 5: Building Arrays 84

table $ table

1 2 3
4 5 6
7 8 9

3 3

(See Chapter 17 for an explanation of how ArrayMaker works).
Arrays of boxes can also be entered from a script in the same way:

 X =: ArrayMaker 0 : 0
'hello' ; 1 2 3 ; 8
'Waldo' ; 4 5 6 ; 9
)

X $ X

+-----+-----+-+
|hello|1 2 3|8|
+-----+-----+-+
|Waldo|4 5 6|9|
+-----+-----+-+

2 3

We have reached the end of Chapter 5.

 85 Chapter 5: Building Arrays

Chapter 6: Indexing 86

Chapter 6: Indexing

Indexing is the name given to selecting of elements of arrays by
position. This topic includes selecting elements, rearranging
selected elements to form new arrays, and amending, or updating,
selected elements of arrays.

6.1 Selecting

The verb { (left-brace) is called "From". The expression (x { y)
selects elements from y according to positions given by x. For
example, recall from Chapter 02 that if L is a list, then the
positions of items of L are numbered 0 1 and so on. The
expression (0 { L) gives the value of the first item of L and 1 { L
gives the second item.

L =: 'abcdef' 0 { L 1 { L

abcdef a b

The left argument of { is called the "index".

6.1.1 Common Patterns of Selection.
Several items may be selected together:

L 0 2 4 { L

abcdef ace

 87 Chapter 6: Indexing

Items selected from L may be replicated and re-ordered:

L 5 4 4 3 { L

abcdef feed

An index value may be negative: a value of _1 selects the last
item, _2 selects the next-to-last item and so on. Positive and
negative indices may be mixed.

L _1 { L _2 1 { L

abcdef f eb

A single element of a table at, say, row 1 column 2 is selected with
an index (< 1 ; 2).

T =: 3 3 $ 'abcdefghi' (< 1 ; 2) { T

abc
def
ghi

f

We can select from a table all elements in specified rows and
columns, to produce a smaller table (called a subarray). To select a
subarray consisting of, for example rows 1 and 2 and columns 0
and 1, we use an index (< 1 2; 0 1)

Chapter 6: Indexing 88

T (< 1 2;0 1) { T

abc
def
ghi

de
gh

A complete row or rows may be selected from a table. Recall that a
table is a list of items, each item being a row. Thus selecting rows
from tables is just like selecting items from lists.

T 1 { T 2 1 { T

abc
def
ghi

def ghi
def

To select a complete column or columns, a straightforward way is
to select all the rows:

T (< 0 1 2 ; 1){ T

abc
def
ghi

beh

but there are other possibilities: see below.

6.1.2 Take, Drop, Head, Behead, Tail, Curtail
Next we look at a group of verbs providing some convenient short

 89 Chapter 6: Indexing

forms of indexing. There is a built-in verb {. (left brace dot, called
"Take"). The first n items of list L are selected by (n {. L)

L 2 {. L

abcdef ab

If we take n items from L with (n {. L), and n is greater than the
length of L, the result is padded to length n, with zeros, spaces or
empty boxes as appropriate.

For example, suppose we require to make a string of exactly 8
characters from a given string, a description of some kind, which
may be longer or shorter than 8. If longer, we shorten. If shorter
we pad with spaces.

s =: 'pasta' # s z =: 8 {. s # z

pasta 5 pasta 8

There is a built-in verb }. (right-brace dot, called "Drop"). All but
the first n items of L are selected by (n }. L).

L 2 }. L

abcdef cdef

The last n items of L are selected by (-n) {. L. All but the last n
are selected by (-n) }. L

Chapter 6: Indexing 90

L _2 {. L _2 }. L

abcdef ef abcd

There are abbreviations of Take and Drop in the special case where
n=1. The first item of a list is selected by monadic {. (left-brace
dot, called "Head"). All but the first are selected by }. (right-brace
dot, called "Behead").

L {. L }. L

abcdef a bcdef

The last item of a list is selected by monadic {: (left-brace colon,
called "Tail"). All but the last are selected by }: (right-brace colon,
called "Curtail".

L {: L }: L

abcdef f abcde

6.2 General Treatment of Selection

It will help to have some terminology. In general we will have an
n-dimensional array, but consider a 3-dimensional array. A single
element is picked out by giving a plane- number, a row-number
and a column-number. We say that the planes are laid out in order
along the first axis, and similarly the rows along the second axis,
and the columns along the third.

 91 Chapter 6: Indexing

There is no special notation for indexing; rather the left argument
of { is a data structure which expresses, or encodes, selections
and rearrangements. This data structure can be built in any way
convenient. What follows is an explanation of how to build it.

6.2.1 Independent Selections
The general expression for indexing is of the form index { array.
Here index is an array of scalars. Each scalar in index gives rise
to a separate independent selection, and the results are assembled
together.

L 0 1 { L

abcdef ab

6.2.2 Shape of Index
The shape of the results depends on the shape of index.

L index =: 2 2 $ 2 0 3 1 index { L

abcdef 2 0
3 1

ca
db

The indices must lie within the range -#L to (#L)-1:

L #L _7 { L 6 { L

abcdef 6 error error

6.2.3 Scalars
Each scalar in index is either a single number or a box (and of

Chapter 6: Indexing 92

course if one is a box, all are.) If the scalar is a single number it
selects an item from array.

A =: 2 3 $ 'abcdef' 1 { A

abc
def

def

If the scalar in index is a box however then it contains a list of
selectors which are applied to successive axes. To show where a
box is used for this purpose, we can use the name SuAx, say, for
the box function.

 SuAx =: <

The following example selects from A the element at row 1, column
0.

A (SuAx 1 0) { A

abc
def

d

6.2.4 Selections on One Axis
In a list of selectors for successive axes, of the form (SuAx p , r,
c) say, each of p, r and c is a scalar. This scalar is either a number
or a box (and if one is boxed, all are). A number selects one thing
on its axis: one plane, row or column as appropriate, as in the last
example.

However, if the selector is a box it contains a list of selections all
applicable to the same axis. To show where a box is used for this

 93 Chapter 6: Indexing

purpose we can use the name Sel, say, for the box function.

 Sel =: <

For example, to select from A elements at row 1, columns 0 2:

A (SuAx (Sel 1), (Sel 0 2)) { A

abc
def

df

6.2.5 Excluding Things
Instead of selecting things on a particular axis, we can exclude
things, by supplying a list of thing-numbers enclosed in yet
another level of boxing. To show where a box is used for this
purpose we can use the name Excl, say, for the box function.

 Excl =: <

For example, to select from A elements at row 0, all columns
excluding column 1:

A (SuAx (Sel 0), (Sel (Excl 1))) { A

abc
def

ac

We can select all things on a particular axis by excluding nothing,
that is, giving an empty list (0$0) as a list of thing-numbers to
exclude. For example, to select from A elements at row 1, all
columns:

Chapter 6: Indexing 94

A (SuAx (Sel 1),(Sel (Excl 0$0))) { A

abc
def

def

6.2.6 Simplifications
The expression (Excl 0$0) denotes a boxed empty list. There is a
built-in J abbreviation for this, namely (a:) (letter-a colon, called
"Ace"), which in this context we can think of as meaning "all".

A (SuAx (Sel 1),(Sel a:)) { A

abc
def

def

If in any index of the form (SuAx p,q,..., z), the last selector z
is the "all" form, (Sel (Excl 0$0)) or (Sel a:), then it can be
omitted.

A (SuAx (Sel 1),(Sel a:)) {A (SuAx (Sel 1)) {A

abc
def

def def

If in any index of the form (SuAx (Sel p),(Sel q),...), the "all"
form is entirely absent, then the index can be abbreviated to
(SuAx p;q;...). For example, to select elements at row 1,
columns 0 and 2:

 95 Chapter 6: Indexing

A (SuAx (Sel 1),(Sel 0 2)) {A (SuAx 1;0 2) {A

abc
def

df df

Finally, as we have already seen, if selecting only one thing on
each axis, a simple unboxed list is sufficient. For example to select
the element at row 1, column 2:

A (SuAx 1;2) { A (SuAx 1 2) { A

abc
def

f f

6.2.7 Shape of the Result
Suppose that B is a 3-dimensional array:

 B =: 10 + i. 3 3 3

and we define p to select planes along the first axis of B, and r to
select rows along the second axis, and c to select columns along
the third axis:

 p =: 1 2
 r =: 1 2
 c =: 0 1

We see that, selecting with p;r;c, the shape of the result R is the
concatenation of the shapes of p, r and c

Chapter 6: Indexing 96

B R =: (< p;r;c) { B $ R ($p),($r),($c)

10 11 12
13 14 15
16 17 18

19 20 21
22 23 24
25 26 27

28 29 30
31 32 33
34 35 36

22 23
25 26

31 32
34 35

2 2 2 2 2 2

B is 3-dimensional, and so is R. As we would expect, this
concatenation-of-shapes holds when a selector (r, say) is a list of
length one:

r =: 1 $ 1 S =: (< p;r;c){B $ S ($p),($r),($c)

1 22 23

31 32

2 1 2 2 1 2

and the concatenation-of-shapes holds when selector r is a scalar:

r =: 1 T =: (< p;r;c){B $ T ($p),($r),($c) $ r

1 22 23
31 32

2 2 2 2

 97 Chapter 6: Indexing

In this last example, r is a scalar, so the shape of r is an empty
list, and so the axis corresponding to r has disappeared, and so
the result T is 2-dimensional.

6.3 Amending (or Updating) Arrays

Sometimes we need to compute an array which is the same as an
existing array except for new values at a comparatively small
number of positions. We may speak of 'updating' or 'amending' an
array at selected positions. The J function for amending arrays is }
(right brace, called "Amend").

6.3.1 Amending with an Index

To amend an array we need three things:

• the original array
• a specification of the position(s) at which the original is to

be amended. This can be an index exactly like the index we
have seen above for selection with {.

• new values to replace existing elements at specified
positions.

Consequently the J expression to perform an amendment may
have the general form:

 newvalues index } original

For example: to amend list L to replace the first item (at index 0)
with '*':

Chapter 6: Indexing 98

L new=:'*' index=:0 new index } L

abcdef * 0 *bcdef

} is an adverb, which takes index as its argument to yield the
dyadic amending verb (index }).

 ReplaceFirst =: 0 }
 '*' ReplaceFirst L
*bcdef

(index }) is a verb like any other, dyadic and yielding a value in
the usual way. Therefore to change an array by amending needs
the whole of the result to be reassigned to the old name. Thus
amendment often takes place on the pattern:

 A =: new index } A

The J system ensures that this is an efficient computation with no
unnecessary movement of data.

To amend a table at row 1 column 2, for example:

A '*' (< 1 2) } A

abc
def

abc
de*

To amend multiple elements, a list of new values can be supplied,
and they are taken in turn to replace a list of values selected by an
index

 99 Chapter 6: Indexing

L '*#' 1 2 } L

abcdef a*#def

6.3.2 Amending with a Verb
Suppose that Y is a list of numbers, and we wish to amend it so
that all numbers exceeding a given value X are replaced by X. (For
the sake of this example, we here disregard the built-in J verb
(<.) for this function.)

The indices at which Y is to be amended must be computed from X
and Y. Here is a function f to compute the indices:

 f =: 4 : '(y > x) # (i. # y)'

X =: 100 Y =: 98 102 101 99 Y > X X f Y

100 98 102 101 99 0 1 1 0 1 2

The amending is done, in the way we have seen above, by
supplying indices of (X f Y):

Y X (X f Y) } Y

98 102 101 99 98 100 100 99

The "Amend" adverb } allows the expression (X (X f Y) } Y) to
be abbreviated as (X f } Y).

Chapter 6: Indexing 100

X (X f Y) } Y X f } Y

98 100 100 99 98 100 100 99

Since } is an adverb, it can accept as argument either the indices
(X f Y) or the verb f.

 cap =: f }

 10 cap 8 9 10 11
8 9 10 10

Note that if verb f is to be supplied as argument to adverb }, then
f must be a dyad, although it may ignore X or Y.

6.3.3 Linear Indices
We have just looked at amending lists with a verb. The purpose of
the verb is to find the places at which to amend, that is, to
compute from the values in a list the indices at which to amend.
With a table rather than a list, the indices would have to be 2-
dimensional, and the task of the verb in constructing the indices
would be correspondingly more difficult. It would be easier to
flatten a table into a linear list, amend it as a list, and rebuild the
list into a table again.

For example, suppose we have a table:

 M =: 2 2 $ 13 52 51 14

Then, using our index-finding verb f, the flattening, amending and
rebuilding is shown by:

 101 Chapter 6: Indexing

M LL =: ,M Z =: 50 f } LL ($M) $ Z

13 52
51 14

13 52 51 14 13 50 50 14 13 50
50 14

However, there is a better way. First note that our index-finding
verb f takes as argument, not M but (LL =: , M). Thus
information about the original shape of M is not available to the
index-finder f. In this example, this does not matter, but in
general we may want the index-finding to depend upon both the
shape and the values in M. It would be better if f took the whole of
M as argument. In this case f must do its own flattening. Thus we
redefine f:

 f =: 4 : 0
y =. , y
(y > x) # (i. # y)
)

M 50 f M

13 52
51 14

1 2

Now the index finder f takes an array as argument, and delivers
indices into the flattened array, so-called "linear indices". The
amending process, with this new f, is shown by:

Chapter 6: Indexing 102

M ($M) $ 50 (50 f M) } (, M)

13 52
51 14

13 50
50 14

Finally, provided f delivers linear indices, then (}) allows the last
expression to be abbreviated as:

M 50 f } M

13 52
51 14

13 50
50 14

6.4 Tree Indexing

So far we have looked at indexing into rectangular arrays. There is
also a form of indexing into boxed structures, which we can picture
as "trees" having branches and leaves. For example:

 branch =: <
 leaf =: <

 branch0 =: branch (leaf 'J S'),(leaf 'Bach')
 branch1 =: branch (leaf 1), (leaf 2), (leaf 1777)
 tree =: branch0,branch1
 tree
+----------+----------+
+---+----+	+-+-+----+							
	J S	Bach			1	2	1777	
+---+----+	+-+-+----+							
+----------+----------+

 103 Chapter 6: Indexing

Then data can be fetched from the tree by specifying a path from
the root. The path is a sequence of choices, given as left argument
to the verb {:: (left-brace colon colon,called "Fetch") The path 0
will fetch the first branch, while the path 0;1 fetches the second
leaf of the first branch:

0 {:: tree (0;1) {:: tree

+---+----+
|J S|Bach|
+---+----+

Bach

The monadic form {:: tree is called the "Map" of tree. it has the
same boxed structure as tree and shows the path to each leaf.

 {:: tree
+-------------+-------------------+
+-----+-----+	+-----+-----+-----+																						
	+-+-+	+-+-+			+-+-+	+-+-+	+-+-+																
		0	0			0	1					1	0			1	1			1	2		
	+-+-+	+-+-+			+-+-+	+-+-+	+-+-+																
+-----+-----+	+-----+-----+-----+																						
+-------------+-------------------+

This is the end of Chapter 6.

Chapter 7: Ranks 104

Chapter 7: Ranks

Recall that the rank of an array is its number of dimensions. A
scalar is of rank 0, a list of numbers is of rank 1, a table of rank 2,
and so on.

The subject of this chapter is how the ranks of arguments are
taken into account when verbs are applied.

7.1 The Rank Conjunction

First, some terminology. An array can be regarded as being divided
into "cells" in several different ways. Thus, a table such as

 M =: 2 3 $ 'abcdef'
 M
abc
def

may be regarded as being divided into 6 cells each of rank 0, or
divided into 2 cells each of rank 1, or as being a single cell of rank
2. A cell of rank k will be called a k-cell.

7.1.1 Monadic Verbs
The box verb (monadic <) applies just once to the whole of the
argument, to yield a single box, whatever the rank of the
argument.

 105 Chapter 7: Ranks

L =: 2 3 4 < L M < M

2 3 4 +-----+
|2 3 4|
+-----+

ab
c
de
f

+---+
|abc|
|def|
+---+

However, we may choose to box each cell separately. There is a
conjunction " (double-quote, called "Rank"), we write (< " 0) to
box each scalar, that is, each 0-cell.

M < " 0 M < " 1 M < " 2 M

abc
def

+-+-+-+
|a|b|c|
+-+-+-+
|d|e|f|
+-+-+-+

+---+---+
|abc|def|
+---+---+

+---+
|abc|
|def|
+---+

The general scheme is that in the expression (u " k y), the
monadic verb u is applied separately to each k-cell of y.

We can define a verb to exhibit the k-cells of an array, each cell in
its own box::

 cells =: 4 : '< " x y'

Chapter 7: Ranks 106

M 0 cells M 1 cells M

abc
def

+-+-+-+
|a|b|c|
+-+-+-+
|d|e|f|
+-+-+-+

+---+---+
|abc|def|
+---+---+

7.1.2 Dyadic Verbs
Given a table, how do we multiply each row by a separate
number? We multiply with the verb (* " 1 0) which can be
understood as "multiply 1-cells by 0-cells", For example,

X =: 2 2 $ 0 1 2 3 Y =: 2 3 X (* " 1 0) Y

0 1
2 3

2 3 0 2
6 9

The general scheme is that the expression

 X (u " (L,R)) Y

means: apply dyad u separately to each pair consisting of an L-cell
from X and the corresponding R-cell from Y. To multiply each
column by a separate number, we combine each 1-cell of x with
the solitary 1-cell of y

 107 Chapter 7: Ranks

X Y X (* " 1 1) Y

0 1
2 3

2 3 0 3
4 9

7.2 Intrinsic Ranks

In J, every verb has what might be called a natural, or intrinsic,
rank for its argument(s). Here are some examples to illustrate. For
the first example, consider:

*: 2 *: 2 3 4

4 4 9 16

Here, the arithmetic function "square" naturally applies to a single
number(a 0-cell). When a rank-1 array (a list) is supplied as
argument, the function is applied separately to each 0-cell of the
argument. In other words, the natural rank of (monadic) *: is 0.

 For another example, there is a built-in verb #. (hash dot called
"Base Two"). Its argument is a bit-string (a list) representing a
number in binary notation, and it computes the value of that
number. For example, 1 0 1 in binary is 5

 #. 1 0 1
5

The verb #. applies naturally to a list of bits, that is, to a 1-cell.

Chapter 7: Ranks 108

When a rank-2 array (a table) is supplied as argument, the verb is
applied separately to each 1-cell, that is, to each row of the table.

t =: 3 3 $ 1 0 1 0 0 1 0 1 1 #. t

1 0 1
0 0 1
0 1 1

5 1 3

Thus the natural rank of monadic #. is 1.

For a third example, as we have already seen, the monadic case of
< applies just once to the whole of its argument, whatever the
rank of its argument. The natural rank of < is thus an indefinitely
large number, that is, infinity, denoted by _ . These examples
showed monadic verbs. In the same way every dyadic verb will
have two natural ranks, one for each argument. For example, the
natural ranks of dyadic + are 0 0 since + takes a number (rank-0)
on left and right. In general, a verb has both a monadic and a
dyadic case, and hence altogether 3 ranks, called its "intrinsic
ranks".

The intrinsic ranks of a verb are shown with the aid of a built-in
adverb b. (lowercase b dot, called "Basic Characteristics"). For any
verb u, the expression u b. 0 gives the ranks in the order
monadic, left, right.

*: b. 0 #. b. 0 < b. 0

0 0 0 1 1 1 _ 0 0

For convenience, the rank conjunction " can accept a right

 109 Chapter 7: Ranks

argument consisting of a single rank (for a monad) or two ranks
(for a dyad) or three ranks (for an ambivalent verb).

One rank or two are automatically expanded to three as shown by:

(<"1) b. 0 (<"1 2) b. 0 (<"1 2 3) b. 0

1 1 1 2 1 2 1 2 3

7.3 Frames

Suppose u is to be a verb which sums all the numbers in a table,
by summing the columns and then summing the column-sums. We
specify that u is to have monadic rank 2.

 u =: (+/) @: (+/) " 2

w =: 4 5 $ 1 u w u b. 0

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

20 2 2 2

Suppose a four-dimensional array A has shape 2 3 4 5.

 A =: 2 3 4 5 $ 1

We can regard A as a 2-by-3 array of 2-cells, each cell being 4-by-
5. Now consider computing (u A). The verb u, being of rank 2,
applies separately to each 2-cell, giving us a 2-by-3 array of

Chapter 7: Ranks 110

results.

Each result is a scalar (because u produces scalars), and hence the
overall result will be 2 by 3 scalars.

u A $ u A

20 20 20
20 20 20

2 3

The shape 2 3 is called the "frame" of A with respect to its 2-cells,
or its 2-frame for short. The k-frame of A is given by dropping the
last k dimensions from the shape of A, or equivalently, as the
shape of the array of k-cells of A.

 frame =: 4 : '$ x cells y'

$ A 2 frame A

2 3 4 5 2 3

In general, suppose that verb u has rank k, and from each k-cell it
computes a cell of shape s. (The same s, we are supposing, for
each cell). Then the shape of the overall result (u A)is: the k-
frame of A followed by the shape s.

To demonstrate that this is the case, we can find k from u, as the
first (monadic) rank of u:

 k =: 0 { u b. 0

We can find the shape s by applying u to a typical k-cell of A, say

 111 Chapter 7: Ranks

the first.

 s =: $ u 0 { > (, k cells A)

In this example, the shape s is an empty list, because u produces
scalars.

k s kfr =: k frame A kfr, s $ u A

2 2 3 2 3 2 3

Here we supposed that verb u gives the same-shaped result for
each cell in its argument. This is not necessarily the case - see the
section on "Reassembly of Results" below.

7.3.1 Agreement
A dyad has two intrinsic ranks, one for the left argument, one for
the right. Suppose these ranks are L and R for a verb u.

When u is applied to arguments X and Y, u is applied separately to
each pair consisting of an L-cell from x and the corresponding R-
cell from Y. For example, suppose dyad u has ranks (0 1). It
combines a 0-cell from X and a 1-cell from Y.

 u =: < @ , " 0 1
 X =: 2 $ 'ab'
 Y =: 2 3 $ 'ABCDEF'

Chapter 7: Ranks 112

X Y X u Y

ab ABC
DEF

+----+----+
|aABC|bDEF|
+----+----+

Notice that here the 0-frame of X is the same as the 1-frame of Y.
These two frames are said to agree.

X Y $
X

$Y 0 frame X 1 frame Y

ab AB
C
DE
F

2 2 3 2 2

What if these two frames are not the same? They can still agree if
one is a prefix of the other. That is, if one frame is the vector f,
and the other frame can be written as (f,g) for some vector g.
Here is an example. With

 X =: 2 3 2 $ i. 12
 Y =: 2 $ 0 1

and a dyad such as +, with ranks (0 0), we are interested in the
0-frame of X and the 0-frame of Y.

 113 Chapter 7: Ranks

X Y 0 frame X 0 frame Y X+Y

0 1
2 3
4 5

6 7
8 9
10 11

0 1 2 3 2 2 0 1
2 3
4 5

7 8
9 10
11 12

We see that the two frames are 2 and 2 3 2 and their difference g
is therefore 3 2.

Here Y has the shorter frame. Then each cell of Y corresponds to,
not just a single cell of X, but rather a 3 2-shaped array of cells.

In such a case, a cell of Y is automatically replicated to form a 3 2-
shaped array of identical cells. In effect the shorter frame is made
up to length, so as to agree with the longer. Here is an example.
The expression (3 2 & $) " 0 Y means " a 3 by 2 replication of
each 0-cell of Y".

X Y YYY =: (3 2&$)"0 Y X + YYY X + Y

0 1
2 3
4 5

6 7
8 9
10 11

0 1 0 0
0 0
0 0

1 1
1 1
1 1

0 1
2 3
4 5

7 8
9 10
11 12

0 1
2 3
4 5

7 8
9 10
11 12

Chapter 7: Ranks 114

What we have seen is the way in which a low-rank argument is
automatically replicated to agree with a high-rank argument, which
is possible provided one frame is a prefix of the other. Otherwise
there will be a length error. The frames in question are determined
by the intrinsic dyadic ranks of the verb.

The general scheme for automatically replicating one argument is:
for arguments x and y, if u is a dyad with ranks L and R, and the L-
frame of x is f,g and the R-frame of y is f (supposing y to have
the shorter frame)

then (x u y) is computed as (x u (g& $)"R y)

7.4 Reassembly of Results

We now look briefly at how the results of the computations on the
separate cells are reassembled into the overall result.

Suppose that the frame of application of a verb to its argument(s)
is f, say. Then we can visualise each individual result as being
stuffed into its place in the f-shaped framework of results. If each
individual result-cell has the same shape, s say, then the shape of
the overall result will be (f,s). However, it is not necessarily the
case that all the individual results are the same shape. For
example, consider the following verb R, which takes a scalar y and
produces a rank-y result.

 R =: (3 : '(y $ y) $ y') " 0

 115 Chapter 7: Ranks

R 1 R 2

1 2 2
2 2

When R is applied to an array, the overall result may be explained
by envisaging each separate result being stufffed into its
appropriate box in an f-shaped array of boxes. Then everything is
unboxed all together. Note that it is the unboxing which supplies
padding and extra dimensions if necessary to bring all cells to the
same shape.

(R 1); (R 2) > (R 1) ; (R 2) R 1 2

+-+---+
|1|2 2|
| |2 2|
+-+---+

1 0
0 0

2 2
2 2

1 0
0 0

2 2
2 2

Consequently the shape of the overall result is given by (f, m)
where m is the shape of the largest of the individual results.

7.5 More on the Rank Conjunction

7.5.1 Relative Cell Rank
The rank conjunction will accept a negative number for a rank.
Thus the expression (u " _1 y) means that u is to be applied to
cells of rank 1 less than the rank of y, that is, to the items of y.

Chapter 7: Ranks 116

X $ X < " _1 X < " _2 X

0 1
2 3
4 5

6 7
8 9
10 11

2 3 2 +---+-----+
0 1	6 7
2 3	8 9
4 5	10 11
+---+-----+

+---+---+-----+
|0 1|2 3|4 5 |
+---+---+-----+
|6 7|8 9|10 11|
+---+---+-----+

7.5.2 User-Defined Verbs
The rank conjunction " has a special significance for user-defined
verbs. The significance is that it allows us to define a verb
considering only its "natural" rank: we ignore the possibility that it
may be applied to higher-rank arguments. In other words, we can
write a definition assuming the verb will be applied only to
arguments of the natural rank. Afterwards, we can then put the
finishing touch to our definition with the rank conjunction. Here are
two examples.

The factorial of a number n is the product of the numbers from 1
to n. Hence (disregarding for the moment J's built-in verb !) we
could define factorial straightforwardly as

 f =: */ @: >: @: i.

because i. n gives the numbers 0 1 ... (n-1), and >: i. n
gives 1 2 ... n. We see:

f 2 f 3 f 4 f 5

2 6 24 120

 117 Chapter 7: Ranks

Will f work as expected with a vector argument?

 f 2 3
4 10 18

Evidently not. The reason is that (f 2 3) begins by computing (i.
2 3), and (i. 2 3) does NOT mean (i. 2) followed by (i. 3).
The remedy is to specify that f applies separately to each scalar
(rank-0 cell) in its argument:

 f =: (*/ @: (>: @: i.)) " 0

 f 2 3 4 5
2 6 24 120

For a second example of the significance of the rank-conjunction
we look at explicitly defined verbs. The point being made here is,
to repeat, that it is useful to be able to write a definition on the
assumption that the argument is a certain rank say, a scalar, and
only later deal with extending to arguments of any rank.

Note that for any explicit verb, its intrinsic ranks are always
assumed to be infinite. This is because the J system does not look
at the definition until the verb is executed. Since the rank is
infinite, the whole argument of an explicit verb is always treated as
a single cell (or pair of cells for a dyad) and there is no automatic
extension to deal with multiple cells.

For example, the absolute value of a number can be computed by
the verb:

 abs =: 3 : 'if. y < 0 do. - y else. y end.'

Chapter 7: Ranks 118

abs 3 abs _3

3 3

Since abs is explicitly defined, we see that its monadic (first) rank
is infinite:

 abs b. 0
_ _ _

This means that if abs is applied to an array y, of any rank, it will
be applied just once, and we can see from the definition that the
result will be y or -y. There are no other possibilities.

It is indeed the case that if y is a vector then (y < 0) yields a
vector result, but the expression (if. y < 0) makes ONE
decision. (This decision will in fact be based, not on the whole of y
< 0 but only on its first element. See Chapter 12 for more details).
Hence if the argument contains both positives and negatives, this
decision must be wrong for some parts of the argument.

 abs 3 _3
3 _3

Hence with abs defined as above, it is important to say that it
applies separately to each scalar in its argument. Thus a better
definition for abs would be:

 abs =:(3 : 'if. y < 0 do. -y else. y end.') " 0

file:///C:/Users/homer/14/12.htm#aaa

 119 Chapter 7: Ranks

 abs 3 _3
3 3

This brings us to the end of Chapter 7.

Chapter 8: Composing Verbs 120

Chapter 8: Composing Verbs

This chapter is concerned with operators which combine two verbs
to produce new composite verbs.

8.1 Composition of Monad and Monad

Recall from Chapter 03 the composition conjunction @: (at colon,
called "At"). Given verbs sum and square we can define a
composite verb, sum-of-the-squares.

 sum =: +/
 square =: *:

sumsq =: sum @: square sumsq 3 4

sum@:square 25

The general scheme is that if f and g are monads then

 (f @: g) y means f (g y)

Note in particular that f is applied to the whole result (g y). To
illustrate, suppose g applies separately to each row of a table, so
we have:

 g =: sum " 1
 f =: <

 121 Chapter 8: Composing Verbs

y =: 2 2 $ 1 2 3 4 g y f g y (f @: g) y

1 2
3 4

3 7 +---+
|3 7|
+---+

+---+
|3 7|
+---+

We have just seen the most basic of kind of composition. Now we
look at some variations.

8.2 Composition: Monad And Dyad

If f is a monad and g is a dyad, then (f @: g) is a dyadic verb
such that

 x (f @: g) y means f (x g y)

For example, the sum of the product of two vectors x and y is
called the "scalar product".

 sp =: +/ @: *

x =: 1 2 y =: 2 3 x * y +/(x * y) x sp y

1 2 2 3 2 6 8 8

The last example showed that, in the expression (x (f @: g) y)
the verb f is applied once to the whole of (x g y)

Chapter 8: Composing Verbs 122

8.3 Composition: Dyad And Monad

The conjunction &: (ampersand colon, called "Appose") will
compose dyad f and monad g. The scheme is:

 x (f &: g) y means (g x) f (g y)

For example, we can test whether two lists are equal in length,
with the verb (= &: #)

 eqlen =: = &: #

x y #
x

#
y

(#x) = (#y) x eqlen y

1 2 2 3 2 2 1 1

Here f is applied once to the whole of (g x) and (g y).

8.4 Ambivalent Compositions

To review, we have seen three different schemes for composition.
These are:

 (f @: g) y = f (g y)

 x (f @: g) y = f (x g y)

 x (f &: g) y = (g x) f (g y)

There is a fourth scheme,

 123 Chapter 8: Composing Verbs

 (f &: g) y = f (g y)

which is, evidently, the same as the first. This apparent duplication
may be useful if we are interested in writing an ambivalent
definition, that is, with both a monadic and a dyadic case.

Notice that from the first and second schemes it follows that if
verb g is ambivalent then the composition f @: g is also
ambivalent. For example, suppose g is the ambivalent built-in verb
|. with |. y being the reverse of y and x |. y being the rotation
of y by x places.

y =: 'abcdef' (< @: |.) y 1 (< @: |.) y

abcdef +------+
|fedcba|
+------+

+------+
|bcdefa|
+------+

From the third and fourth schemes above it follows that if verb f is
ambivalent, then (f &: g) is ambivalent. For example, suppose
that f is the verb % (reciprocal or divide). and g is *: (square).

% *: 2 (% &: *:) 2 (*: 3) % (*:2) 3 (% &: *:) 2

0.25 0.25 2.25 2.25

8.5 More on Composition: Monad Tracking Monad

There is a conjunction @ (at, called "Atop"). It is a variation of the
@: conjunction. Here is an example to show the difference between
(f @: g) and (f @ g).

Chapter 8: Composing Verbs 124

 y =: 2 2 $ 0 1 2 3

y f g (f @: g) y (f @ g) y

0 1
2 3

< sum"1 +---+
|1 5|
+---+

+-+-+
|1|5|
+-+-+

We see that with (f @: g) verb f is applied once. However, with
(f@g), for each separate application of g there is a corresponding
application of f. We could say that applications of f track the
applications of g.

Recall from Chapter 07 that a verb has in general three ranks,
monadic, left and right, and for a verb f these ranks are yielded by
the expression f b. 0. For example

g g b. 0

sum"1 1 1 1

Suppose that the monadic rank of g is G.

 G =: 0 { (g b. 0)

Then (f @ g) means (f @: g) applied separately to each G-cell,
that is, (f @: g)"G.

 125 Chapter 8: Composing Verbs

(f @ g) y (f @: g)"G y

+-+-+
|1|5|
+-+-+

+-+-+
|1|5|
+-+-+

and so the general scheme is:

 (f @ g) y means (f @: g) " G
y

8.6 Composition: Monad Tracking Dyad

Next we look at the composition (f @ g) for a dyadic g. Suppose f
and g are defined by:

 f =: <
 g =: |. " 0 1 NB. dyadic

Here x g y means: rotate vectors in y by corresponding scalars in
x. For example:

x=: 1 2 y=: 2 3 $ 'abcdef' x g y

1 2 abc
def

bca
fde

Here now is an example to show the difference between f @: g
and f @ g

Chapter 8: Composing Verbs 126

f (x g y) x (f @: g) y x (f @ g) y

+---+
|bca|
|fde|
+---+

+---+
|bca|
|fde|
+---+

+---+---+
|bca|fde|
+---+---+

We see that with (f @: g) verb f is applied once. With (f@g), for
each separate application of g there is a corresponding application
of f.

Suppose that the left and right ranks of dyad g are L and R. Then
(f @ g) means (f @: g) applied separately to each pair of an L-
cell from x and corresponding R-cell from y. That is, (f@g) means
(f @: g)"G where G = L,R.

G =: 1 2 { (g b. 0) x (f @:g)" G y x (f @ g) y

0 1 +---+---+
|bca|fde|
+---+---+

+---+---+
|bca|fde|
+---+---+

The scheme is:

 x (f@g) y = x (f@:g) " G y

8.7 Composition: Dyad Tracking Monad

Recall that in Chapter 03 we met the conjunction & as a bonding
operator. With one argument a noun and the other argument a
dyadic verb the result is a monad. For example +&6 is a monad

 127 Chapter 8: Composing Verbs

which adds 6 to its argument.

If both arguments of & are verbs then & has a different
interpretation. In this case it is is a composition operator, called
"Compose". Now we look at the composition f & g for dyadic f.

Suppose g is the "Square" function, and f is the "comma" function
which joins two lists.

 f =: ,
 g =: *:

x =: 1 2 y =: 3 4 g x g y

1 2 3 4 1 4 9 16

Here now is an example to show the difference between (f &: g)
and (f & g)

(g x) f (g y) x (f &: g) y x (f & g) y

1 4 9 16 1 4 9 16 1 9
4 16

We see that in (f &: g) the verb f is applied just once, to give 1
4 , 9 16. By contrast, in (f & g) there are two separate
applications of f, giving firstly 1,9 and secondly 4,16.

The scheme is that

 x (f & g) y means (g x) (f " G,G)
(g y)

Chapter 8: Composing Verbs 128

where G is the monadic rank of g. Here f is applied separately to
each combination of a G-cell from x and a corresponding G-cell
from y. To illustrate:

G=: 0 { (g b. 0) (g x)(f" (G,G))(g y) x(f&g)y

0 1 9
4 16

1 9
4 16

8.8 Ambivalence Again

The composition f&g can be ambivalent. The dyadic case, x f&g y,
we saw above. For the monadic case, f&g y means the same as
f@g y.

 f =: <
 g =: *:

f&g 1 2 3 f@g 1 2 3

+-+-+-+
|1|4|9|
+-+-+-+

+-+-+-+
|1|4|9|
+-+-+-+

8.9 Summary

Here is a summary of the 8 cases we have looked at so far.

 129 Chapter 8: Composing Verbs

 @: (f @: g) y = f (g y)
 @: x (f @: g) y = f (x g y)

 &: (f &: g) y = f (g y)
 &: x (f &: g) y = (g x) f (g y)

 @ (f @ g) y = (f @: g) " G y
 @ x (f @ g) y = x (f @: g) " LR y

 & (f & g) y = (f @: g) " G y
 & x (f & g) y = (g x) (f " (G,G)) (g y)

where G is the monadic rank of g and LR is the vector of left and
right ranks of g.

8.10 Inverses

The "Square" verb, (*:), is said to be the inverse of the "Square-
root" verb (%:). The reciprocal verb is its own inverse.

*: 2 %:
4

% 4 % 0.25

4 2 0.2
5

4

Many verbs in J have inverses. There is a built-in conjunction ^:
(caret colon, called "Power") such that the expression f ^: _1 is
the inverse of verb f. (This is like writing f-1 in conventional
notation.)

Chapter 8: Composing Verbs 130

For example, the inverse of square is square root:

sqrt =: *: ^: _1 sqrt 16

*:^:_1 4

^: can automatically find inverses, not only of built-in verbs, but of
user-defined verbs such as compositions. For example, the inverse
of "twice the square-root of" is "the square of half of"

 foo =: (2&*) @: %:
 fooINV =: foo ^: _1

foo 16 fooINV 8 foo fooINV 36

8 16 36

8.11 Composition: Verb Under Verb

We now look at composition with the conjunction &. (ampersand
dot, called "Under"). The idea is that the composition "f Under g"
means: apply g, then f, then the inverse of g.

For an example, the square root of a number can be found by
taking the logarithm, halving and taking the antilog, that is,
halving under logarithm. Recall that halve is -: and logarithm is ^.

SQRT =: -: &. ^. SQRT 16

-:&.^. 4

 131 Chapter 8: Composing Verbs

The general scheme is that

 (f &. g) y means (g ^: _1) f g y

This is the end of Chapter 8.

Chapter 9: Trains of Verbs 132

Chapter 9: Trains of Verbs

In this chapter we continue the topic of trains of verbs begun in
Chapter 03. Recall that a train is an isolated sequence of functions,
written one after the other, such as (+ * -).

9.1 Review: Monadic Hooks and Forks

Recall from Chapter 03 the monadic hook, with the scheme:

 (f g) y means y f (g y)

Here is an example, as a brief reminder: a whole number is equal
to its floor:

y =: 2.1 3 <. y y = <. y (= <.) y

2.1 3 2 3 0 1 0 1

Recall also the monadic fork, with the scheme:

 (f g h) y means (f y) g (h y)

For example: the mean of a list of numbers is the sum divided by
the number-of-items:

 sum =: +/
 mean =: sum % #

 133 Chapter 9: Trains of Verbs

y =: 1 2 3 4 sum y # y (sum y)%(# y) mean y

1 2 3 4 10 4 2.5 2.5

Now we look at some further variations.

9.2 Dyadic Hooks

3 hours and 15 minutes is 3.25 hours. A verb hr, such that (3 hr
15) is 3.25, can be written as a hook. We want x hr y to be x +
(y%60) and so the hook is:

 hr =: + (%&60)
 3 hr 15
3.25

The scheme for dyadic hook is:

 x (f g) y means x f (g y)

with the diagram:

Chapter 9: Trains of Verbs 134

9.3 Dyadic Forks

Suppose we say that the expression "10 plus or minus 2" is to
mean the list 12 8. A verb to compute x plus-or-minus y can be
written as the fork (+,-):

(10+2) , (10-2) 10 (+,-) 2

12 8 12 8

The scheme for a dyadic fork is:

 x (f g h) y means (x f y) g (x h
y)

Here is a diagram for this scheme:

 135 Chapter 9: Trains of Verbs

9.4 Review

There are four basic schemes for trains of verbs.

 (f g h) y = (f y) g (h y) monadic fork

x (f g h) y = (x f y) g (x h y) dyadic fork

 (f g) y = y f (g y) monadic hook

x (f g) y = x f (g y) dyadic hook

9.5 Longer Trains

Now we begin to look at ways to broaden the class of functions
which can be defined as trains. In general a train of any length can
be analysed into hooks and forks. For a train of 4 verbs, e f g h,

Chapter 9: Trains of Verbs 136

the scheme is that

 e f g h means e (f g h)

that is, a 4-train (e f g h) is a hook, where the first verb is e and
the second is the fork (f g h). For example, Suppose that y is a
list of numbers:

 y =: 2 3 4

Then the "norm" of y is defined as (y - mean y), where mean is
defined above as (sum % #). We see that the following expressions
for the norm of y are all equivalent:

 y - mean y
_1 0 1

 (- mean) y NB. as a hook
_1 0 1

 (- (sum % #)) y NB. by definition of mean
_1 0 1

 (- sum % #) y NB. as 4-train
_1 0 1

A certain amount of artistic judgement is called for with long
trains. This last formulation as the 4-train (- sum % #) does not
bring out as clearly as it might that the key idea is subtracting the
mean. The formulation (- mean) is clearer.

For a train of 5 verbs d e f g h the scheme is:

 d e f g h means d e (f g h)

 137 Chapter 9: Trains of Verbs

That is, a 5-train (d e f g h) is a fork with first verb d, second
verb e and third verb the fork (f g h) For example, if we write a
calendar date in the form day month year:

 date =: 28 2 1999

and define verbs to extract the day month and year separately:

 Da =: 0 & {
 Mo =: 1 & {
 Yr =: 2 & {

the date can be presented in different ways by 5-trains:

(Da , Mo , Yr) date (Mo ; Da ; Yr) date

28 2 1999 +-+--+----+
|2|28|1999|
+-+--+----+

The general scheme for a train of verbs (a b c ...) depends
upon whether the number of verbs is even or odd:

 even: (a b c ...) means hook (a (b c ...))

 odd : (a b c ...) means fork (a b (c ...))

9.6 Identity Functions

There is a built-in verb, monadic [(left bracket, called "Same"). It
gives a result identical to its argument.

Chapter 9: Trains of Verbs 138

[99 ['a b c'

99 a b c

There is a dyadic case, and also a similar verb] . Altogether we
have these schemes:

 [y means y

 x [y means x

] y means y

 x] y means y

[3 2 [3] 3 2] 3

3 2 3 3

Monadic [and monadic] are both called "Same". Dyadic [is
called "Left". Dyadic] is "Right".

The expression (+ %]) is a fork; for arguments x and y it
computes:

 (x+y) % (x] y)

that is,

 (x+y) % y

 139 Chapter 9: Trains of Verbs

2] 3 (2 + 3) % (2] 3) 2 (+ %]) 3

3 1.66667 1.66667

Another use for the identity function [is to cause the result of an
assignment to be displayed. The expression foo =: 42 is an
assignment while the expression [foo =: 42 is not: it merely
contains an assignment.

 foo =: 42 NB. nothing displayed
 [foo =: 42
42

Yet another use for the [verb is to allow several assignments to
be combined on one line.

a =: 3 [b =: 4 [c =: 5 a,b,c

3 3 4 5

Since [is a verb, its arguments must be nouns, (that is, not
functions). Hence the assignments combined with [must all
evaluate to nouns.

9.6.1 Example: Hook as Abbreviation
The monadic hook (g h) is an abbreviation for the monadic fork
([g h). To demonstrate, suppose we have:

 g =: ,
 h =: *:
 y =: 3

Chapter 9: Trains of Verbs 140

Then each of the following expressions is equivalent.

 ([g h) y NB. a fork
3 9
 ([y) g (h y) NB. by defn of fork
3 9
 y g (h y) NB. by defn of [
3 9
 (g h) y NB. by defn of hook
3 9

9.6.2 Example: Left Hook
Recall that the monadic hook has the general scheme

 (f g) y = y f (g y)

How can we write, as a train, a function with the scheme

 (?) y = (f y) g y

There are two possibilities. One is the fork (f g]):

 f =: *:
 g =: ,

 (f g]) y NB. a fork
9 3
 (f y) g (] y) NB. by meaning of fork
9 3
 (f y) g y NB. by meaning of]
9 3

For another possibility, recall the ~ adverb with its scheme:

 141 Chapter 9: Trains of Verbs

 (x f~ y) means y f x

Our train can be written as the hook (g~ f).

 (g~ f) y NB. a hook
9 3
 y (g~) (f y) NB. by meaning of hook
9 3
 (f y) g y NB. by meaning of ~
9 3

9.6.3 Example: Dyad
There is a sense in which [and] can be regarded as standing for
left and right arguments.

 f =: 'f' & ,
 g =: 'g' & ,

foo =: (f @: [) , (g @:]) 'a' foo 'b'

f@:[, g@:] fagb

9.7 The Capped Fork

The class of functions which can be written as unbroken trains can
be widened with the aid of the "Cap" verb [: (leftbracket colon)

The scheme is: for verbs f and g, the fork:

 [: f g means f @: g

Chapter 9: Trains of Verbs 142

For example, with f and g as above, we have

y=:'y' f g y (f @: g) y ([: f g) y

y fgy fgy fgy

Notice how the sequence of three verbs ([: f g) looks like a fork,
but with this "capped fork" it is the MONADIC case of the middle
verb f which is applied.

The [: verb is valid ONLY as the left-hand verb of a fork. It has no
other purpose: as a verb it has an empty domain, that is, it cannot
be applied to any argument. Its usefulness lies in building long
trains. Suppose for example that:

 h =: 'h'&,

then the expression (f , [: g h) is a 5-train which denotes a
verb:

 (f , [: g h) y NB. a 5-train
fyghy

 (f y) , (([: g h) y) NB. by meaning of 5-train
fyghy

 (f y) , (g @: h y) NB. by meaning of [:
fyghy

 (f y) , (g h y) NB. by meaning of @:
fyghy

 'fy' , 'ghy' NB. by meaning of f g h

 143 Chapter 9: Trains of Verbs

fyghy

9.8 Constant Functions

Here we continue looking at ways of broadening the class of
functions that we can write as trains of verbs. There is a built-in
verb 0: (zero colon) which delivers a value of zero regardless of its
argument. There is a monadic and a dyadic case:

0: 99 0: 2 3 4 0: 'hello' 88 0: 99

0 0 0 0

As well as 0: there are similar functions 1: 2: 3: and so on up to
9: and also the negative values: _9: to _1:

1: 2 3 4 _3: 'hello'

1 _3

0: is said to be a constant function, because its result is constant.
Constant functions are useful because they can occur in trains at
places where we want a constant but must write a verb, (because
trains of verbs, naturally, contain only verbs).

For example, a verb to test whether its argument is negative (less
than zero) can be written as (< & 0) but alternatively it can be
written as a hook:

 negative =: < 0:

Chapter 9: Trains of Verbs 144

x =: _1 0 2 0: x x < (0: x) negative x

_1 0 2 0 1 0 0 1 0 0

9.9 Constant Functions with the Rank Conjunction

The constant functions _9: to 9: offer more choices for ways of
defining trains. Neverthless they are limited to single-digit scalar
constants. We look now at at a more general way of writing
constant functions. Suppose that k is the constant in question:

 k =: 'hello'

An explicit verb written as (3 : 'k') will give a constant result of
k:

k (3 : 'k') 1 (3 : 'k') 1 2

hello hello hello

Since the verb (3 : 'k') is explicit, its rank is infinite. To apply it
separately to scalars then (as we saw in Chapter 07) we need to
specify a rank R of 0, with the aid of the Rank conjunction " :

k R =: 0 ((3 : 'k') " R) 1 2

hello 0 hello
hello

 145 Chapter 9: Trains of Verbs

The expression ((3 : 'k') " R) can be abbreviated as (k " R),
because " can take, as its left argument, a verb, as above, or a
noun:

k R ((3 : 'k') " R) 1 2 ('hello' " R) 1 2

hello 0 hello
hello

hello
hello

Note that if k is a noun, then the verb (k"R) means: the constant
value k produced for each rank-R cell of the argument. By
contrast, if v is a verb, then the verb (v"R) means: the verb v
applied to each rank-R cell of the argument.

The general scheme for constant functions with " is:

 k " R means (3 : 'k') " R

9.9.1 A Special Case
Given a temperature in degrees Fahrenheit, the equivalent in
Celsius is computed by subtracting 32 and multiplying by five-
ninths.

 Celsius =: ((5%9) & *) @: (- &32)

 Celsius 32 212
0 100

Another way to define Celsius is as a fork - a train of three verbs.

 Celsius =: (5%9 "_) * (-&32)

Chapter 9: Trains of Verbs 146

 Celsius 32 212
0 100

Notice that the fork in Celsius above has its left verb as a
constant function. Here we have a special case of a fork which can
be abbreviated in the form (noun verb verb).

 Celsius =: (5%9) * (-&32)

 Celsius 32 212
0 100

The general scheme (new in J6) for this abbreviation for a fork is:
if n is a noun, u and v are verbs, then

 n u v means the fork (n"_) u v

We have come to the end of of Chapter 9.

 147 Chapter 10: Conditional and Other Forms

Chapter 10: Conditional and Other
Forms

Tacit verbs, that is, verbs defined without the use of argument
variables, were introduced in Chapter 03. Continuing this theme of
tacit definition, in Chapter 08 we looked at the use of composition-
operators and in Chapter 09 at trains of verbs.

The plan for this chapter is to look at further ways of defining
verbs tacitly:

• Conditional forms
• Recursive forms
• Iterative forms
• Generating tacit definitions from explicit definitions

10.1 Conditional Forms

Think of a number (some positive whole number). If it is odd,
multiply by 3 and then add 1. Otherwise, halve the number you
thought of. This procedure computes from 1 the new number 4,
and from 4 the new number 2.

A sequence of numbers generated by iterating the procedure is
called a Collatz sequence, or sometimes a Hailstone sequence. For
example:

 17 52 26 13 40

Chapter 10: Conditional and Other Forms 148

To write a function for this procedure, we start with three verbs,
say halve to halve, mult to multiply-and-add-one, and odd to test
for an odd number:

 halve =: -:
 mult =: 1: + (* 3:)
 odd =: 2 & |

halve 6 mult 6 odd 6

3 19 0

Now our procedure for a new number can be written as an explicit
verb:

 COLLATZ =: 3 : 'if. odd y do. mult y else. halve y end.'

and equivalently as a tacit verb:

 collatz =: halve ` mult @. odd

COLLATZ 17 collatz 17

52 52

In the definition of collatz, the symbol ` (backquote) is called the
"Tie" conjunction. It ties together halve and mult to make a list of
two verbs. (Such a list is called a "gerund" and we look at more
uses of gerunds in Chapter 14). The conjunction @. is called
"Agenda". Its right argument is a verb, which selects another verb
from the list of verbs which is the left argument. Thus in
evaluating collatz y the value of odd y is used to index the list

 149 Chapter 10: Conditional and Other Forms

(halve`mult). Then the selected verb is applied to y. That is,
halve y or mult y is computed accordingly as odd y is 0 or 1.

In this example, we have two cases to consider: the argument is
odd or not. In general, there may be several cases. The general
scheme is, if u0, u1, ... un are verbs, and t is a verb computing an
integer in the range 0 .. n, then the verb:

 foo =: u0 ` u1 ` ...` un @. t

can be modelled by the explicit verb:

 FOO =: 3 : 0
if. (t y) = 0 do. u0 y
elseif. (t y) = 1 do. u1 y

 ...

elseif. (t y) = n do. un y
end.
)

That is, verb t tests the argument y and then u0 or u1 or ... is
applied to y according to whether (t y) is 0 or 1 or

10.1.1 Example with 3 Cases
Suppose that, each month, a bank pays or charges interest
according to the balances of customers' accounts as follows. There
are three cases:

• If the balance is $100 or more, the bank pays interest of
0.5%

• If the balance is negative, the bank charges interest at 2%.
• Otherwise the balance is unchanged.

Chapter 10: Conditional and Other Forms 150

Three verbs, one for each of the three cases, could be:

 pi =: * & 1.005 NB. pay interest
 ci =: * & 1.02 NB. charge interest
 uc =: * & 1 NB. unchanged

pi 1000 ci _100 uc 50

1005 _102 50

Now we want a verb to compute, from a given balance, 0 or 1 or 2,
according to the case. We are free to choose how we number the
cases. The following verb scores 1 for a balance of $0 or more plus
another 1 for $100 or more.

 case =: (>: & 0) + (>: & 100)

 case _50 0 1 100 200
0 1 1 2 2

Now the processing of a balance can be represented by the verb
PB say, being careful to write the three verbs in the correct case-
number order.

 PB =: ci ` uc ` pi @. case

 151 Chapter 10: Conditional and Other Forms

PB _50 PB 0 PB 1 PB 100 PB 200

_51 0 1 100.5 201

The balance (the argument of PB) is expected to fall under exactly
one of the three possible cases. Suppose the argument is a list of
balances. The case verb delivers not just one but a list of case-
numbers. This is an error. The remedy is to apply the PB function
separately to each item of its argument.

PB 99 100 (PB "0) 99 100

error 99 100.5

10.2 Recursion

To compute the sum of a list of numbers, we have seen the verb
+/ but let us look at another way of defining a summing verb.

The sum of an empty list of numbers is zero, and otherwise the
sum is the first item plus the sum of the remaining items. If we
define three verbs, to test for an empty list, to take the first item
and to take the remaining items:

 empty =: # = 0:
 first =: {.
 rest =: }.

then the two cases to consider are:

• an empty list, in which case we apply the 0: function to

Chapter 10: Conditional and Other Forms 152

return zero
• a non-empty list, in which case we want the first plus the

sum of the rest:

 Sum =: (first + Sum @ rest) ` 0: @. empty

 Sum 1 1 2
4

Here we see that the verb "Sum" recurs in its own definition and
so the definition is said to be recursive. In such a recursive
definition, the name which recurs can be written as $: (dollar
colon, called "Self-Reference"), meaning "this function". This
enables us to write a recursive function as an expression, without
assigning a name. Here is the "Sum" function as an expression:

 ((first + $: @ rest) ` 0: @. empty) 1 2 3
6

10.2.1 Ackermann's Function
Ackermann's function is celebrated for being extremely recursive.
Textbooks show it in a form something like this explicit definition of
a dyad:

 Ack =: 4 : 0
if. x = 0 do. y + 1
elseif. y = 0 do. (x - 1) Ack 1
elseif. 1 do. (x - 1) Ack (x Ack y -1)
end.
)

 2 Ack 3
9

 153 Chapter 10: Conditional and Other Forms

A tacit version is due to Roger Hui (Vector, Vol 9 No 2, Oct 1992,
page 142):

 ack =: c1 ` c1 ` c2 ` c3 @. (#. @(,&*))

 c1 =: >:@] NB. 1 + y
 c2 =: <:@[ack 1: NB. (x-1) ack 1
 c3 =: <:@[ack [ack <:@] NB. (x -1) ack x ack y
-1

 2 ack 3
9

Notice that in the line defining c2 the function is referred to as
ack, not as $:, because here $: would mean c2.

Here is yet another version. The tacit version can be made to look
a little more conventional by first defining x and y as the verbs
[and]. Also, we test for only one case on a line.

 x =: [
 y =:]

 ACK =: A1 ` (y + 1:) @. (x = 0:)
 A1 =: A2 ` ((x - 1:) ACK 1:) @. (y = 0:)
 A2 =: (x - 1:) ACK (x ACK y - 1:)

 2 ACK 3
9

10.3 Iteration

10.3.1 The Power Conjunction
Think of a number, double it, double that result, double again. The

Chapter 10: Conditional and Other Forms 154

result of three doublings is eight times the original number. The
built-in verb +: is "double", and the verb "three doublings" can be
written using the "Power" conjunction (^:) as +: ^: 3

+: +: +: 1 (+: ^: 3) 1

8 8

The general scheme is that for a verb f and an integer n

 (f ^: n) y means f f f ... f f f f y

 <--- n f's --->

Notice that f ^: 0 y is just y and then f ^: 1 y is f y. For
example, recall the collatz verb "halve or multiply-by-3-and-add-
1 if odd".

(collatz ^: 0) 6 (collatz ^: 1) 6 collatz 6

6 3 3

With the Power conjunction we can generate a series by applying
collatz 0 times, once, twice and so on, starting with 6 for
example

 (collatz ^: 0 1 2 3 4 5 6) 6
6 3 10 5 16 8 4

10.3.2 Iterating Until No Change
The expression f ^: _ where the Power conjunction is given a

 155 Chapter 10: Conditional and Other Forms

right argument of infinity (_), is a verb where f is applied until a
result is reached which is the same as the previous result. The
scheme is:

 f ^: _ y means

 r such that r = f f ... f f y

 and r = f r

Here is an example. Suppose function P is defined as:

 P =: 3 : '2.8 * y * (1 - y)'

Then if we repeatedly apply the function to an argument in the
neighbourhood of 0.5, after 20 or so iterations the result will settle
on a value of about 0.643

 (P ^: 0 1 2 3 19 20 _) 0.5
0.5 0.7 0.588 0.6783 0.6439 0.642 0.6429

and this value, r say, is called a fixed point of P because r = P r

r =: (P ^: _) 0.5 P r

0.6429 0.6429

10.3.3 Iterating While
The right argument of the "Power" conjunction can be a verb which
computes the number of iterations to be performed. The scheme
is:

 (f ^: g) y means f ^: (g y) y

Chapter 10: Conditional and Other Forms 156

If g y computes 0 or 1, then f will be applied 0 times or 1 time:
For example, here is a verb which halves an even number and
leaves an odd number alone:

 halve =: -:
 even =: 0: = 2 & |

foo =: halve ^: even (foo " 0) 1 2 3 4

halve^:even 1 1 3 2

Now consider the function

 w =: (halve ^: even) ^: _

This means "halve if even, and keep doing this so long as the
result keeps changing".

 w (3 * 16)
3

The scheme is that if g returns 0 or 1 then a function written (f ^:
g ^: _) can be modelled by an explicit definition:

 model =: 3 : 0
while. (g y)
 do. y =. f y
end.
y
)

 157 Chapter 10: Conditional and Other Forms

 f =: halve
 g =: even

(f ^: g ^: _) 3 * 16 model 3*16

3 3

10.3.4 Iterating A Dyadic Verb
Adding 3, twice, to 0 gives 6

 ((3&+) ^: 2) 0
6

This expression can be abbreviated as:

 3 (+ ^: 2) 0
6

The given left argument (3) is fixed at the outset, so the iterated
verb is the monad 3&+. The general scheme is:

 x (u ^: w) y means ((x&u) ^: w) y

where w is a noun or verb.

10.4 Generating Tacit Verbs from Explicit

Suppose that e is a verb, defined explicitly as follows:

 e =: 3 : '(+/ y) % # y'

Chapter 10: Conditional and Other Forms 158

The right argument of the colon conjunction we can call the
"body". Then a tacit verb, t say, equivalent to e, can be produced
by writing 13 : instead of 3 : with the same body.

 t =: 13 : '(+/ y) % # y'

e t e 1 2 3 t 1 2 3

3 : '(+/ y) % # y' +/ % # 2 2

Here now is an example of an explicit dyad.

 ed =: 4 : 'y % x'

The equivalent tacit dyad can be generated by writing 13 : rather
than 4 : with the same body.

 td =: 13 : 'y % x'

ed td 2 ed 6 2 td 6

4 : 'y % x' %~ 3 3

We can conclude that if we write 13 : body, and body contains y
(but not x) then the result is a tacit verb of which the monadic
case is equivalent to 3 : body. On the other hand, if body
contains both x and y then the result is a tacit verb of which the
dyadic case is equivalent to 4 : body.

For the purpose of generating tacit functions, the body is restricted
to being a single string or one line. Recall that with 3 : body, the
body is not evaluated when the definition is entered. However, with

 159 Chapter 10: Conditional and Other Forms

13 : body, then in effect the body is evaluated. For example:

k =: 99 p =: 3 : 'y+k' q =: 13 : 'y+k' p 6 q 6

99 3 : 'y+k' 99 +] 105 105

We see that p is defined in terms of k while q is not. While p and q
are at present equivalent, any subsequent change in the value of k
will render them no longer equivalent.

k =: 0 p 6 q 6

0 6 105

A name with no assigned value is assumed to denote a verb. In
the following example, note that f is unassigned, C is a predefined
conjunction and g is a predefined verb.

 C =: @:
 g =: %:

foo =: 13 : '(f C f y) , g y' f =:
*:

foo 4

f@:f , g *: 256 2

This is the end of Chapter 10

Chapter 10: Conditional and Other Forms 160

 161 Chapter 11: Tacit Verbs Concluded

Chapter 11: Tacit Verbs Concluded

In this chapter we consider some general points in writing
expressions for tacit verbs.

Here is an example of a tacit verb. It multiplies its argument by 3:

f =: * & 3 f 4

*&3 12

Recall from Chapter 03 that the bonding operator & produces a
monad from a dyad by fixing one of the arguments of the dyad.
The scheme is that if N is a noun and V a dyadic verb, then:

 (N & V) y means N V y

 (V & N) y means y V N

We take the bonding operator & as an example of a typical
operator, where arguments may be nouns or verbs. In general, N
can be an expression denoting an noun, and V an expression
denoting a verb. We look now at how these expressions get
evaluated. The general rules are set out formally in Appendix 1 but
here we take an informal first look at a few of the main points.

Chapter 11: Tacit Verbs Concluded 162

11.1 If In Doubt, Parenthesize

Here is another tacit verb. Its general form is V&N. It multiplies its
argument by 5%4, that is, by 1.25

scale =: * & (5 % 4) scale 8

*&1.25 10

Are the parentheses around 5 % 4 necessary here? If we omit
them, we see:

 SCALE =: * & 5 % 4
 SCALE
1.25

so they evidently make a difference. SCALE is a number, not a
verb. The result of 1.25 is produced by applying the verb *&5 to
the argument % 4 (the reciprocal of 4)

% 4 (* & 5) (% 4) * & 5 % 4

0.25 1.25 1.25

We have a general rule: informally we can say that conjunctions
get applied before adjacent verbs. Thus in the expression * & 5 %
4 the first step is to apply the & operator to its arguments * and 5.

Why is the right argument of & just 5 and not 5%4? Because of
another general rule: the right argument of a conjunction is as
short as possible. We say that a conjunction has a "short right
scope". By contrast, we say that a verb has a "long right scope" to

 163 Chapter 11: Tacit Verbs Concluded

express what we earlier called the "rightmost first" rule for verbs.

What about the left argument of an operator? An adverb or
conjunction is said to have "long left scope", that is, as much as
possible. For example, here is a verb z which adds 3 to the square
of its argument. 3 plus the square of 2 is 7.

z =: 3 & + @: *: z 2

3&+@:*: 7

We see that the left argument of @: is the whole of 3&+.

If we are in doubt in any particular case we can always make our
intention clear. We can write parentheses around a part of an
expression, that is, around a function - verb or operator - together
with its intended argument(s). For example, verb z can be written
with parentheses as:

z =: (3 & +) @: *: z 2

3&+@:*: 7

Sometimes parentheses are necessary and sometimes not, but, let
me emphasize, if in doubt, parenthesize.

11.2 Names of Nouns Are Evaluated

In an expression of the general form N&V or V&N, the the names of
any nouns occurring in N are evaluated right away. Here is an
example of a function f to multiply by five-fourths. The numerical

Chapter 11: Tacit Verbs Concluded 164

value is given as a%b where a and b are nouns.

a =: 5 b =: 4 f =: * & (a % b) f 8

5 4 *&1.25 10

We see that function f contains the computed number 1.25 so that
a%b has been evaluated.

11.3 Names of Verb Are Not Evaluated

In N&V the verb-expression V is not necessarily fully evaluated. If
expression V is the name of a verb, then the name is enough:

w =: * g =: w & (a % b) g 8

* w&1.25 10

11.4 Unknowns are Verbs

When a new name is encountered, it is assumed to be a yet-to-be-
defined verb if it possibly can be.

 165 Chapter 11: Tacit Verbs Concluded

h =: ytbd & (a%b) ytbd =: * h 8

ytbd&1.25 * 10

Any sequence of hitherto-unknown names is assumed to be a train
of verbs:

 Ralph Waldo Emerson
Ralph Waldo Emerson

Consequently, a verb can be defined in "top-down" fashion, that is,
with detail presented later. For example, here is a Celsius-to-
Fahrenheit converter presented top-down.

 ctof =: shift @ scale
 shift =: + & 32
 scale =: * & (9 % 5)

ctof ctof 0 100

shift@scale 32 212

We can see that ctof is defined solely in terms of (the names)
scale and shift. Hence if we now change scale or shift we will
effectively change the definition of ctof.

 ctof 100
212
 scale =: * & 2
 ctof 100
232

Chapter 11: Tacit Verbs Concluded 166

 scale =: * & (9 % 5)
 ctof 100
212

The possibility of changing the definition of a function simply by
changing one of its subordinate functions, may or may not be
regarded as desirable. It is useful, in so far as we can correct a
definition just by changing a small part. However, it may be a
source of error: we may introduce a new verb, scale say,
forgetting that scale is already defined as subordinate in ctof.

There are ways to protect ctof against accidental redefinition of its
subordinate functions. Firstly, we can put a wrapper of explicit
definition around it, making scale and shift local, thus:

 CTOF =: 3 : 0
shift =. + & 32
scale =. * & (9 % 5)
shift @ scale y
)
 CTOF 100
212

A second method is to, so to speak, "freezing" or "fixing" the
definition of ctof, with the "Fix" adverb f. (letter-f dot). Observe
the difference between the values of the verbs ctof and (ctof
f.)

ctof ctof f.

shift@scale +&32@(*&1.8)

We see that adverb f. applied to a tacit verb replaces names by

 167 Chapter 11: Tacit Verbs Concluded

definitions, giving an equivalent verb defined only in terms of built-
in functions. Here is yet another definition of ctof.

 scale =: * & (9 % 5)
 shift =: + & 32
 ctof =: (shift @ scale) f.

ctof ctof 0 100

+&32@(*&1.8) 32 212

After this definition, the names scale and shift are still defined,
but are no longer important in the definition of ctof.

11.5 Parametric Functions

The following example shows the consequences of nouns being
evaluated and verbs not in an expression for a tacit verb.

A curve may be specified by an equation such as, for example:

 y = lambda * x * (1 - x)

This equation describes a family of similar parabolic curves, and
different members of the family are picked out by choosing
different values for the number lambda.

A function to correspond to this equation might be written

Chapter 11: Tacit Verbs Concluded 168

explicitly as verb P:

 P =: 3 : 'lambda * y * (1-y)'

Here lambda is not an argument to function P, but a variable, a
number, which makes a difference to the result. We say that
lambda is a parameter, or that function P is parametric.

x=:0.6 lambda=: 3.0 P x lambda=: 3.5 P x

0.6 3 0.72 3.5 0.84

Now, can we write a tacit version of P taking lambda as a
parameter?

lambda is currently 3.5. If we now generate a tacit form of P

 tP =: 13 : 'lambda * y * (1-y)'
 tP
3.5 *] * 1 -]

then we see that lambda is treated as a constant, not a parameter.
This is not what we want. We try again, this time ensuring that
lambda is not specified beforehand, by erasing it:

 erase <'lambda'
1
 tP =: 13 : 'lambda * y * (1-y)'
 tP

 169 Chapter 11: Tacit Verbs Concluded

[: lambda [: *] * 1 -]

Now we see that tP is a train of verbs, where lambda (being
unknown) is assumed to be a verb. This assumption conflicts with
the intended meaning of lambda as a number. Hence with lambda
as a number, we get an error:

lambda=: 3.5 tP x

3.5 error

Whether or not lambda is specified in advance, it appears that a
fully tacit exact equivalent to P is not possible. However we can
come close.

One possibility is to compromise on "fully tacit". Here tP is a train
of verbs, where the first is explicitly-defined to deliver the value of
lambda regardless of its argument.

tP =: (3 : 'lambda') *] * (1: -]) tP x

3 : 'lambda' *] * 1: -] 0.84

Another possibility is to compromise on "exact equivalent". Here
we take parameter lambda to be, not a number, but a constant
function (see Chapter 09) which delivers a number.

For example, a value for the parameter could be written as

 lambda =: 3.5 " 0

and tP could be defined as:

Chapter 11: Tacit Verbs Concluded 170

tP =: lambda *] * (1: -]) tP x

lambda *] * 1: -] 0.84

Now we can vary the parameter without redefining the function:

lambda =: 3.75 " 0 tP x

3.75"0 0.9

This is the end of Chapter 11

 171 Chapter 11: Tacit Verbs Concluded

Chapter 12: Explicit Verbs 172

Chapter 12: Explicit Verbs

This chapter continues from Chapter 04 the theme of the explicit
definition of verbs.

12.1 The Explicit Definition Conjunction

Recall from Chapter 04 the example of an explicit dyadic verb, the
"positive difference" of two numbers, defined as larger minus
smaller.

 PosDiff =: 4 : '(x >. y) - (x <. y)'

 3 PosDiff 4
1

The general scheme for the explicit definition of a function is to
provide two arguments to the Explicit Definition conjunction (: ,
colon) in the form

 type : body

In the body, the variables x and y are the arguments.

12.1.1 Type
The type is a number: type-3 functions are monadic verbs or
ambivalent verbs. Type-4 functions are strictly dyadic verbs (that
is, with no monadic case). There are other types: types 1 and 2
are operators, covered in Chapter 13 . Type 13 is covered in
Chapter 10 .

 173 Chapter 12: Explicit Verbs

12.1.2 Memnonics for Types
The standard J profile predefines several variables to provide
mnemonic names for the types, and other things, thus:

 noun =: 0
 adverb =: 1
 conjunction =: 2
 verb =: 3
 monad =: 3
 dyad =: 4
 def =: :
 define =: : 0

Thus the PosDiff example above could be also written as:

 PosDiff =: dyad def '(x >. y) - (x <. y)'

 3 PosDiff 4
1

12.1.3 Body Styles
The body of an explicit definition consists of one or more lines of
text. There are several ways to provide the body The example
above, PosDiff, shows a single line written as a string.

A multi-line body can be introduced with a right argument of 0 for
the colon operator.

 PosDiff =: 4 : 0
larger =. x >. y
smaller =. x <. y
larger - smaller
)

Chapter 12: Explicit Verbs 174

 3 PosDiff 4
1

Another variation allows a multi-line body to be written compactly
by embedding line-feeds. LF is predefined to be the line-feed
character. Notice that the whole body must be parenthesized.

 PosDiff =: 4 : ('la =. x >. y', LF, 'sm =. x <.
y', LF, 'la - sm')

PosDiff 3 PosDiff 4

+-+-+------------+
4	:	la =. x >. y
		sm =. x <. y
		la - sm
+-+-+------------+

1

Another variation uses a boxed list of lines (again with the body
parenthesized):

 PosDiff =: 4 : ('la =. x >. y' ; 'sm =. x <.
y' ; 'la - sm')

PosDiff 3 PosDiff 4

+-+-+------------+
4	:	la =. x >. y
		sm =. x <. y
		la - sm
+-+-+------------+

1

 175 Chapter 12: Explicit Verbs

Notice that these are not variations of syntax, but rather
alternative expressions for constructing a data-structure
acceptable as the right-argument of the : operator.

12.1.4 Ambivalent Verbs
An ambivalent verb has both a monadic and a dyadic case. In the
definition, the monadic case is presented first, then a line
consisting of a solo colon, and then the dyadic case. For example:

 log =: 3 : 0
^. y NB. monad - natural logarithm
:
x ^. y NB. dyad - base-x logarithm
)

log 2.7182818 10 log 100

1 2

12.2 Assignments

In this section we consider assignments, which are of significance
in defining explicit functions.

12.2.1 Local and Global Variables
Consider the example

 foo =: 3 : 0
L =. y
G =: y
L

Chapter 12: Explicit Verbs 176

)

Here, the assignment of the form

 L =. expression

causes the value of expression to be assigned to a local variable
named L. Saying that L is local means that L exists only while the
function foo is executing, and furthermore this L is distinct from
any other variable named L. By contrast, the assignment of the
form

 G =: expression

causes the value of expression to be assigned to a global variable
named G. Saying that G is global means that the unique variable G
exists independently, in its own right.

To illustrate, we define two GLOBAL variables called L and G, then
execute foo to show that the L mentioned in foo is not the same
as global L, while the G mentioned in foo is the same as global G:

 L =: 'old L'
 G =: 'old G'

foo foo 'new' L G

+-+-+-------+
3	:	L =. y
		G =: y
		L
+-+-+-------+

new old L new

 177 Chapter 12: Explicit Verbs

With versions of J from J6 onward, it is regarded as an error to
make a global assignment (with =:) to a variable with the same
name as an already-existing local variable.

For example, the argument variables x and y are local, so it would
normally be an error in an explicit verb to make a global
assignment to a variable named y .

 foo =: 3 : 0
z =. y + 1
y =: 'hello'
z
)

 foo 6
|domain error: foo
| y =:'hello'

If we really, really wanted to assign to a global named y from
within an explicit definition, the local y must first be erased.

 foo =: 3 : 0
z =. y+1
erase <'y'
y =: 'hello'
z
)

 foo 6
7
 y
hello

Chapter 12: Explicit Verbs 178

12.2.2 Local Functions
We have seen local variables, which are nouns. We may also have
local functions. A local function may be tacit or explicit, as in the
following example

 foo =: 3 : 0
Square =. *:
Cube =. 3 : 'y * y * y'
(Square y) + (Cube y)
)

 foo 2
12

However, what we can't have is an explicit local function defined by
an inner multiline body Recall that a multiline body is a script
terminated by a solo right parenthesis, so we cannot have one
such body inside another. Instead, we could use an alternative
form for the body of an inner function, such as scale in the
following example:

 FTOC =: 3 : 0
 line1 =. 'k =. 5 % 9'
 line2 =. 'k * y'
scale =. 3 : (line1 ; line2)
scale y - 32
)

 FTOC 212
100

One final point on the topic of inner functions. A name, of a
variable or function, is either global or local. If it is local, then that
means it is recognised in the function in which it is defined.
However it is not recognised in any inner function. For example:

 179 Chapter 12: Explicit Verbs

 K =: 'hello '

 zip =: 3 : 0
K =. 'goodbye '
zap =. 3 : 'K , y'
zap y
)

 zip 'George'
hello George

We see that there is a global K and a local K. The inner function
zap uses the global K because the K which is local to zip is not
local to zap.

12.2.3 Multiple and Indirect Assignments
J provides a convenient means of unpacking a list by assigning
different names to different items.

'day mo yr' =: 16 10 95 da
y

m
o

yr

16 10 95 16 1
0

95

Instead of a simple name to the left of the assignment, we have a
string with names separated by spaces.

A variation uses a boxed set of names:

Chapter 12: Explicit Verbs 180

('day';'mo';'yr') =: 17 11 96 da
y

m
o

yr

17 11 96 17 1
1

96

The parentheses around the left hand of the assignment force
evaluation as a set of names, to give what is called "indirect
assignment". To illustrate:

 N =: 'DAY';'MO';'YR'

(N) =: 18 12 97 DAY MO YR

18 12 97 18 12 97

As a convenience, a multiple assignment will automatically remove
one layer of boxing from the right-hand side:

(N) =: 19;'Jan';98 DAY MO YR

+--+---+--+
|19|Jan|98|
+--+---+--+

19 Ja
n

98

12.2.4 Unpacking the Arguments
Every J function takes exactly one or exactly two arguments - not
zero and not more than two. This may appear to be a limitation
but in fact is not. A collection of values can be packaged up into a

 181 Chapter 12: Explicit Verbs

list, or boxed list, to form in effect multiple arguments to the J
function. However, the J function must unpack the values again. A
convenient way to do this is with the multiple assignment. For
example, the familiar formula to find the roots of a quadratic
(a*x^2) +(b*x)+c, given the vector of coefficients a,b,c might
be:

 rq =: 3 : 0
'a b c' =. y
((-b) (+,-) %: (b^2)-4*a*c) % (2*a)
)

rq 1 1 _6 rq 1 ; 1 ; _6

2 _3 2 _3

12.3 Control Structures

12.3.1 Review
Recall from Chapter 04 the positive-difference function defined as:

 POSDIFF =: 4 : 0
if. x > y
do. x - y
else. y - x
end.
)

 3 POSDIFF 4
1

Everything from if. to end. is called a "control structure". In it,

Chapter 12: Explicit Verbs 182

if. do. else. and end. are called "control words".

The plan for this section is to use this example for a general
discussion of control structures, and then go on to look at a
number of particular control structures.

12.3.2 Layout
We can freely choose a layout for the expressions and control
words forming a control structure. Immediately before or
immediately after any control word, any end-of-line is optional, so
that we can choose to remove one or insert one. For example, by
removing as many as possible from POSDIFF we get

 PD =: 4 : 'if. x > y do. x - y else. y - x
end. '

 3 PD 4
1

12.3.3 Expressions versus Control Structures
We speak of evaluating an expression. We regard assignments as
expressions, since they produce values, but in this case it is
natural to speak of "executing" the assignment, since there is an
effect as well as a value produced. We will use the words "execute"
and "evaluate" more or less interchangeably.

Executing (or evaluating) a control structure produces a value, the
value of one of the expressions within it. Nevertheless, a control
structure is not an expression, and cannot form part of an
expression. The following is a syntax error:

 foo =: 3 : '1 + if. y > 0 do. y else. 0 end.'

 foo 6

 183 Chapter 12: Explicit Verbs

|syntax error: foo
| 1+

Observing the distinction between expressions and control
structures, we can say that the body of an explicit definition is a
sequence of items, where an item is either an expression or a
control structure. Here is an example where the body is an
expression followed by a control structure followed by an
expression.

 PD1 =: 4 : 0
w =. x - y
if. x > y do. z =. w else. z =. - w end.
z
)

 3 PD1 4
1

The value produced by a control structure is discarded if the
control structure it is not the last item in the sequence. However,
this value can be captured when the item is the last, so that the
value becomes the result delivered by the function.

Hence the previous example can be simplified to:

 PD2 =: 4 : 0
w =. x - y
if. x > y do. w else. - w end.
)

 3 PD 4
1

Chapter 12: Explicit Verbs 184

12.3.4 Blocks
The examples above show the pattern:

 if. T do. B1 else. B2 end.

meaning: if the expression T evaluates to "true", then execute the
expression B1, and otherwise execute the expression B2.

Expression T is regarded as evaluating to "true" if T evaluates to
any array of which the first element is not 0.

 foo =: 3 : 'if. y do. ''yes'' else. ''no''
end.'

foo 1 1 1 foo 'abc' foo 0 foo 0 1

yes yes no no

More generally, T, B1 and B2 may be what are called "blocks". A
block is a sequence of items, where an item is either an expression
or a control structure. The result delivered by a block is the value
of the last item of the block.

Here is an example, to form the sum of a list, where the T-block
and the B2-block each consist of a sequence.

 sum =: 3 : 0
if.
 length =. # y NB. T block
 length = 0 NB. T block

 185 Chapter 12: Explicit Verbs

do.
 0 NB. B1 block
else.
 first =. {. y NB. B2 block
 rest =. }. y NB. B2 block
 first + sum rest NB. B2 block
end.
)

 sum 1 2 3
6

Here we see that the value of the T-block (true or false) is the
value of the last expression in the sequence, (length = 0)

The items of a block may be (inner) control structures. For
example, here is a function to classify the temperature of porridge:

 ClaTePo =: 3 : 0
if. y > 80 do. 'too hot'
else.
 if. y < 60 do. 'too cold'
 else. 'just right'
 end.
end.
)

 ClaTePo 70
just right

12.3.5 Variants of if.
A neater version of the last example is:

 CLATEPO =: 3 : 0
if. y > 80 do. 'too hot'

Chapter 12: Explicit Verbs 186

elseif. y < 60 do. 'too cold'
elseif. 1 do. 'just right'
end.
)

 CLATEPO 70
just right

showing the pattern:

 if. T1 do. B1 elseif. T2 do. B2 ...
elseif. Tn do. Bn end.

Notice that according to this scheme, if all of the tests T1 ... Tn
fail, then none of the blocks B1 .. Bn will be executed.
Consequently we may wish to make Tn a catch-all test, with the
constant value 1, as in the example of CLATEPO above.

If all the tests do fail, so that none of the blocks B0 ... Bn is
executed, then the result will be i. 0 0 which is a J convention for
a null value.

 foo =: 3 : 'if. y = 1 do. 99 elseif. y = 2 do.
77 end. '

 (i. 0 0) -: foo 0
1

There is also the pattern:

 if. T do. B end.

 187 Chapter 12: Explicit Verbs

Here either B is executed or it is not. For example, positive-
difference yet again:

 PD =: 4 : 0
z =. x - y
if. y > x do. z =. y - x end.
z
)

 3 PD 4
1

12.3.6 The select. Control Structure
Consider this example of a verb to classify a name, using an if.
control structure.

 class =: 3 : 0
t =. 4 !: 0 < y
if. t = 0 do. 'noun'
elseif. t = 1 do. 'adverb'
elseif. t = 2 do. 'conjunction'
elseif. t = 3 do. 'verb'
elseif. 1 do. 'bad name'
end.
)

 class 'class'
verb
 class 'oops'
bad name

A neater formulation is allowed by the select. control structure.

 CLASS =: 3 : 0

Chapter 12: Explicit Verbs 188

select. 4 !: 0 < y
case. 0 do. 'noun'
case. 1 do. 'adverb'
case. 2 do. 'conjunction'
case. 3 do. 'verb'
case. do. 'bad name'
end.
)

 CLASS 'CLASS'
verb
 CLASS 'oops'
bad name

Suppose we are interested only in a three-way classification, into
nouns, verbs and operators (meaning adverbs or conjunctions).
We could of course write:

 Class =: 3 : 0
select. 4 !: 0 < y
case. 0 do. 'noun'
case. 1 do. 'operator'
case. 2 do. 'operator'
case. 3 do. 'verb'
case. do. 'bad name'
end.
)

but this can be abbreviated as:

 Clss =: 3 : 0
select. 4 !: 0 < y
case. 0 do. 'noun'

 189 Chapter 12: Explicit Verbs

case. 1;2 do. 'operator'
case. 3 do. 'verb'
case. do. 'bad name'
end.
)

Clss 'Clss' o =: @: Clss 'o' Clss 'oops'

verb +--+
|@:|
+--+

operator bad name

12.3.7 The while. and whilst. Control Structures
In the general pattern

 while. T do. B end.

block B is executed repeatedly so long as block T evaluates to true.
Here is an example, a version of the factorial function:

 fact =: 3 : 0
r =. 1
while. y > 1
do. r =. r * y
 y =. y - 1
end.
r
)

 fact 5
120

Chapter 12: Explicit Verbs 190

The variation whilst. T do. B end. means

 B

 while. T do. B end.

that is, block B is executed once, and then repeatedly so long as
block T is true.

12.3.8 for.
The pattern

 for_a. A do. B. end.

means: for each item a in array A, execute block B. Here a may be
any name; the variable a takes on the value of each item of A in
turn. For example, to sum a list:

 Sum =: 3 : 0
r =. 0
for_term. y do. r =. r+term end.
r
)

 Sum 1 2 3
6

In addition to the variable a for the value of an item, the variable
a_index is available to give the index of the item. For example,
this function numbers the items:

 191 Chapter 12: Explicit Verbs

 f3 =: 3 : 0
r =. 0 2 $ 0
for_item. y do. r =. r , (item_index; item) end.
r
)

 f3 'ab';'cdef';'gh'
+-+----+
|0|ab |
+-+----+
|1|cdef|
+-+----+
|2|gh |
+-+----+

Another variation is the pattern for. A do. B end. in which block
B is executed as many times as there are items of A. For example,
here is a verb to count the items of a list.

 f4 =: 3 : 0
count =. 0
for. y do. count =. count+1 end.
)

 f4 'hello'
5

12.3.9 Other Control Structures
Chapter 29 covers the control structure try. catch. end. . Other
control words and structures are covered in the J Dictionary

This is the end of Chapter 12.

Chapter 13: Explicit Operators 192

Chapter 13: Explicit Operators

This chapter covers explicit definition of operators, that is, adverbs
and conjunctions defined with the colon conjunction.

The scheme for explicit definition is:

 1 : body is an adverb

 2 : body is a conjunction

where body is one or more lines of text. The possibilities for the
result produced by an operator so defined are: a tacit verb, an
explicit verb, a noun or another operator. We will look at each case
in turn.

13.1 Operators Generating Tacit Verbs

Recall from Chapter 07 the built-in rank conjunction ". For any
verb u, the expression u"0 is a verb which applies u to the 0-cells
(scalars) of its argument.

Now suppose we aim to define an adverb A, to generate a verb
according to the scheme: for any verb u

 u A is to be u " 0

Adverb A is defined explicitly like this:

 193 Chapter 13: Explicit Operators

A =: 1 : 'u " 0' f =: < A f 1 2

1 : 'u " 0' <"0 +-+-+
|1|2|
+-+-+

In the definition (A =: 1 : 'u " 0') the left argument of the
colon is 1, meaning "adverb".

The right argument is the string 'u " 0'. This string has the form
of a tacit verb, where u stands for whatever verb will be supplied
as argument to the adverb A. In the explicit definition of an
adverb, the argument-variable is always u.

Adverbs are so called because, in English grammar, adverbs
modify verbs. In J, by contrast, adverbs and conjunctions in
general can take nouns or verbs as arguments. In the following
example, adverb W is to generate a verb according to the scheme:
for integer u

 u W is to be < " u

that is, u W boxes the rank-u cells of the argument. The definition
of W is shown by:

Chapter 13: Explicit Operators 194

W =: 1 : '< " u' 0 W z =: 'abc' 0 W z 1 W z

1 : '< " u' <"0 abc +-+-+-+
|a|b|c|
+-+-+-+

+---+
|abc|
+---+

For another example of an adverb, recall the dyad # where x # y
selects items from y according to the bitstring x.

y =: 1 0 2 3 1 0 1 1 # y

1 0 2 3 1 2 3

To select items greater than 0, we can apply the test-verb (>&0)

y >&0 y (>&0 y) # y

1 0 2 3 1 0 1 1 1 2 3

A tacit verb to select items greater than 0 can be written as a fork
f:

f =: >&0 #] f y

>&0 #] 1 2 3

This fork can be generalised into an adverb, B say, to generate a

 195 Chapter 13: Explicit Operators

verb to select items according to whatever verb is supplied in place
of the test >&0.

 B =: 1 : 'u #]'

If we supply >&1 as a test-verb:

g =: (>&1) B y g y

>&1 #] 1 0 2 3 2 3

We see that the body of B is the fork to be generated, with u
standing for the argument-verb to be supplied. Conjunctions,
taking two arguments, are defined with (2 : '...'). The left
argument is u and the right is v

For example, consider a conjunction THEN, to apply one verb and
then apply another to the result, that is, a composition. The
scheme we want is:

 u THEN v is to be v @: u

and the definition of THEN is:

THEN =: 2 : 'v @: u' h =: *: THEN < h 1 2 3

2 : 'v @: u' <@:*: +-----+
|1 4 9|
+-----+

For another example, consider counting (with #) those items of a
list which are greater than 0. A verb to do this might be:

Chapter 13: Explicit Operators 196

foo =: # @: (>&0 #]) y foo y

#@:(>&0 #]) 1 0 2 3 3

We can generalize foo to apply a given verb u to items selected by
another given verb v. We define a conjunction C with the scheme

 u C v is to be u @: (v #])

and the definition of C is straightforwardly:

C =: 2 : 'u @: (v #])' f =: # C (>&0) y f y

2 : 'u @: (v #])' #@:(>&0 #]) 1 0 2 3 3

13.1.1 Multiline Bodies
The right argument of colon we may call the body of the definition
of our operator. In the examples so far, the body was a string, a
schematic tacit verb, for example 'v .@: u' . This is the verb to
be delivered by our operator. More generally, the body can be
several lines. The idea is that, when the operator is applied to its
argument, the whole body is executed. That is, each line is
evaluated in turn and the result delivered is the value of the last
line evaluated. This is exactly analogous to explicit verbs, except
that here the result is a value of type "function" rather than of type
"array".

Here is an example of a multi-line body, the previous example
done in two steps. To apply u to items selected by v, a scheme for
conjunction D could be written:

 u D v is to be (u @: select) where

 197 Chapter 13: Explicit Operators

select is v #]

and D defined by

 D =: 2 : 0
select =: v #]
u @: select
)

Again counting items greater than 0, we have

f =: # D (>&0) y f y

#@:select 1 0 2 3 3

The first line of D computes an inner function select from the right
argument. The second line composes select with the left
argument, and this is the result-verb delivered by D.

Now this definition has an undesirable feature: we see that select
is defined as a global (with =:). It would be better if select were
local.

However, we can see, by looking at the value of the verb f above,
that select must be available when we apply f. If select is local
to D, it will not be available when needed.

We can in effect make select local by using the "Fix" adverb (f.)
(letter-f dot.) The effect of applying "Fix" to a verb is to produce
an equivalent verb in which names are replaced by by their
corresponding definitions. That is, "Fix" resolves a tacit verb into
its primitives. For example:

Chapter 13: Explicit Operators 198

p =: + q =: * r =: p,q r f.

+ * p , q + ,
*

Here is how we use Fix to enable select to be local. In the
example below, notice that we Fix the result-expression on the last
line:

 E =: 2 : 0
select =. v #]
(u @: select) f.
)

Now a verb to count greater-than-0 items can be written:

g =: # E (>&0) y g y

#@:(>&0 #]) 1 0 2 3 3

We see that g, unlike f, has no local names.

13.2 New Definitions from Old

Suppose we aim to develope a function which, given a list of
numbers, replaces each number by the mean of its two neighbours
in the list, the previous and the next. For the first or last, we
assume a neighbour is zero.

 199 Chapter 13: Explicit Operators

A suitable "data smoothing" function could be written

 sh =: |. !. 0 NB. shift, entering zero
 prev =: _1 & sh NB. right shift
 next =: 1 & sh NB. left shift
 halve =: -:

 smoo =: halve @: (prev + next)

so for a list of numbers N we might see :

N =: 6 2 8 2 4 prev N next N smoo N

6 2 8 2 4 0 6 2 8 2 2 8 2 4 0 1 7 2 6 1

Now suppose we also want another smoothing function which
rotates the data rather than shifting in zero. (The data might be,
say, samples of a repeated waveform.)

The only change needed from smoo is that the shift verb sh must
become a rotate verb, that is, (|.).

If the definition of smoo were large and complicated we might
prefer to avoid entering it again. Instead, we could re-evaluate the
definition we already have, in an environment in which the name
sh means "rotate". This environment can be conveniently provided
by a little adverb, SMOO say, with |. (rotate) for its argument:

 SMOO =: 1 : ('sh =. u' ; 'smoo f.')

so the rotating variant of smoo is given by

Chapter 13: Explicit Operators 200

 rv =: |. SMOO

 rv
-:@:(_1&|. + 1&|.)

N smoo N rv N

6 2 8 2 4 1 7 2 6 1 3 7 2 6 4

This example shows using an adverb to generalise an expression
(smoo) to a function In summary, since smoo is defined in terms of
sh, we have generalised it to a function taking sh as argument.

13.3 Operators Generating Explicit Verbs

Suppose we aim to define a conjunction H say, with the scheme:

 u H v is to be 3 : 0
 z =. v y
 y u z
)

There is a messy way and a neat way to do this. Let me show you
the messy way first, so that the merits of the neat way can be
appreciated.

The messy way: we can write H in the same style as the previous
examples. That is, the body of the definition computes a value
which is delivered when the operator is applied to arguments. In
this case the value is to be of the form 3 : string where string

 201 Chapter 13: Explicit Operators

must be built from the arguments. For example:

 H =: 2 : 0
 U =. 5!:5 < 'u'
 V =. 5!:5 < 'v'
 string =. 'z =. ', V , 'y', LF
 string =. string , 'y ', U , ' z', LF
 3 : string
)

and we see

 foo =: + H *:
 foo 5
30

The conjunction H is pretty ugly but the value of the generated
function foo is plain to see:

 foo
3 : 0
z =. *:y
y + z
)

Now we come to the neat way to define this conjunction. So far we
have seen operators where the body is executed to deliver the
result. Let us say they are operators of the first kind. Now we look
at operators of the second kind, where the body of the operator is
not executed but instead serves as a template for the verb to be
generated. For example:

Chapter 13: Explicit Operators 202

 K =: 2 : 0
z =. v y
y u z
)

Clearly the definition of K is neater than the definition of H but
nevertheless they are equivalent. Notice that the body of K
contains both the argument-variables u and v for the operator, and
also the argument-variable y of the generated verb. It is this
combination of argument variables which determines that the
operator is of the second kind.

 bar =: + K *:

 bar 5
30

The generated verb bar is equivalent to foo but it is displayed
differently.

 bar
+ (2 : 0) *:
z =. v y
y u z
)

Now we look in more detail at examples of operators of the second
kind.

13.3.1 Adverb Generating Monad
Consider the following explicit monadic verb, e. It selects items

 203 Chapter 13: Explicit Operators

greater than 0, by applying the test-verb >&0.

e =: 3 : '(>&0 y) # y' y e y

3 : '(>&0 y) # y' 1 0 2 3 1 2 3

We can generalise e to form an adverb, F say, which selects items
according to a supplied test-verb. The scheme we want is: for any
verb u:

 u F is to be 3 : '(u y) # y'

Adverb F is defined by:

 F =: 1 : '(u y) # y'

Now the verb >&1 F will select items greater than 1:

y >&1 F y

1 0 2 3 2 3

In the body of F the variable u stands for a verb to be supplied as
argument to adverb F. If this argument is say >&1, then y stands
for an argument to the generated explicit verb 3 : '(>&1 y) #
y'.

That is, our method of defining the generated verb is to write out
the body of an explicit definition, with u at places where a supplied
verb is to be substituted.

Chapter 13: Explicit Operators 204

13.3.2 Adverb Generating Explicit Dyad
Suppose we want an adverb W, say, with the scheme: for any verb
u

 u W is to be 4 : '(u x) + (u
y)'

Recall from Chapter 12 that there is another way to write an
explicit dyad. Rather than beginning with 4 : we can begin with 3
: and write a multi-line body in which a solo colon separates
monadic and dyadic cases. Here we have no monadic case, so the
scheme above can be equivalently written as:

 u W is to be 3 : 0

 :

 (u x) + (u y)

)

The explicit definition of adverb W follows straightforwardly:

 W =: 1 : 0
:
(u x) + (u y)
)

We see:

(*: 2) + (*: 16) 2 (*: W) 16

260 260

 205 Chapter 13: Explicit Operators

For another example, suppose we want an adverb, T say, to apply
a given verb u to every combination of a scalar in vector argument
x with a scalar in vector argument y. There is a built-in adverb /
called "Table" for this, but here is a home-made version. The
scheme is:

 u T is to be 4 : ' x (u " 0 0) " 0 1 y'

that is,

 u T is to be 3 : 0
 x (u " 0 0) " 0 1 y
)

and so T is defined by

 T =: 1 : 0
:
x ((u " 0 0) " 0 1) y
)

so we see:

 1 2 3 + T 4 5 6 7
5 6 7 8
6 7 8 9
7 8 9 10

Chapter 13: Explicit Operators 206

13.3.3 Conjunction Generating Explicit Monad
A conjunction takes two arguments, called u and v.

As before, we specify the generated verb by writing out the body
of an explicit verb. Here y stands for the argument of the
generated verb and u and v stand for argument-verbs to be
supplied to the conjunction. In this example the body is multi-line.
As before, u will be applied to items selected by v

 G =: 2 : 0
selected =. (v y) # y
u selected
)

Now a verb to count greater-than-zero items can be written as # G
(>&0):

y # G (>&0) y

1 0 2 3 3

13.3.4 Generating a Explicit Dyad
Suppose we want a conjunction H such that, schematically, for
verbs u and v

 u H v is to be 4 : '(u x) + (v y)'

or equivalently, as we saw above:

 u H v is to be 3 : 0
 : u x) + (v y)
)

 207 Chapter 13: Explicit Operators

The explicit definition of H follows straightforwardly:

 H =: 2 : 0
:
(u x) + (v y)
)

We see:

(*: 2) + (%: 16) 2 (*: H %:) 16

8 8

13.3.5 Alternative Names for Argument-Variables
For the sake of completeness, it should be mentioned that
arguments to operators may be named m and n rather than u and
v, to constrain arguments to be nouns, that is, to cause verbs to
be signalled as errors.

Furthermore, for historical reasons, if the only argument variables
are x or y or both, we get an operator of the first kind. That is, in
the absence of u or v or m or n then x and y are equivalent to u
and v.

These alternative names will not be further considered.

13.3.6 Review
So far, we have seen that for operators introduced with 1 : body
or 2 : body, there are two kinds of definition.

• With operators of the first kind, the body is executed (that,
is evaluated) to compute the value of the result. The result

Chapter 13: Explicit Operators 208

can be of any type. The argument-variables occurring in the
body are u or v or both.

• With operators of the second kind, the result is always an
explicit function. The body of the operator is not executed,
but rather becomes the body of the generated function. Here
x and y are arguments to the generated function in the
usual way, and u or v in this body are placeholders which
receive the values of arguments to the operator.

The J system recognises which kind is intended by determining
which of the argument-variables u v x y occur in the the body. If
we have BOTH (u or v) AND (x or y) then the operator is of the
second kind. Otherwise it is of the first kind.

13.3.7 Executing the Body (Or Not)
We said above that, for an operator of the first kind, the body is
executed (or evaluated) when arguments are supplied. This can be
demonstrated.

First, here is a utility verb which displays its argument on-screen.

 display =: (1 !: 2) & 2

Now insert display 'hello' into an operator of the first kind:

 R =: 2 : 0
display 'hello'
select =. v #]
(u @: select) f.
)

When R is applied to its argument, the body is demonstrably
executed:

 209 Chapter 13: Explicit Operators

 f =: # R (>&0)
hello

 f 1 0 2 0 3
3

By contrast, for an operator of the second kind, when arguments
are supplied, the body is not executed, but rather becomes the
body of the result function (after substituting the arguments). We
can demonstrate this by inserting display 'hello' into the body
of the operator, and observing that it becomes part of the result-
function.

 S =: 2 : 0
display 'hello'
selected =. (v y) # y
u selected
)

we see that the body of S is NOT executed when S is applied to its
argument, but it IS executed when the generated verb g is
applied.

 g =: # S (>&0)
 g 1 0 2 0 3
hello
3

13.4 Operators Generating Nouns

Operators can generate nouns as well as verbs. Here is an
example.

Chapter 13: Explicit Operators 210

A fixed point of a function f is a value p such that (f p) = p. If
we take f to be

 f =: 3 : '2.8 * y * (1-y)'

then we see that 0.642857 is a fixed-point of f

 f 0.642857
0.642857

Not every function has a fixed point, but if there is one we may be
able to find it. We can iterate the function until there is no change
(with ^: _ - see Chapter 10), choosing a suitable starting value. A
crude fixed-point-finder can be written as an adverb FPF which
takes the given function as argument, with 0.5 for a starting
value.

FPF =: 1 : '(u ^: _) 0.5' p =: f FPF f p

1 : '(u ^: _) 0.5' 0.642857 0.642857

13.5 Generating Noun or Verb

Consider two lines of J, such as

 sum =: +/

 mean =: sum % #

Sometimes a smoother presentation might be:

 mean =: sum % # where sum =: +/

 211 Chapter 13: Explicit Operators

provided we had available a suitable definition for where. How
about this?

 where =: 2 : 'u'

so we can say:

 mean =: sum % # where sum =: +/

with results as expected:

mean mean 1 2 3 4

sum % # 2.5

The right argument of where can be a verb or noun:

 (z+1) * (z-1) where z =: 7
48

where is a conjunction which ignores its right argument, but
evaluating the right argument makes it available to the left
through the assignment. Note that the assignments to sum and z
above are regular global assignments, so where does not localize
sum or z.

13.6 Operators Generating Operators

Here is an example of an adverb generating an adverb.

First note that (as covered in Chapter 15) if we supply one

Chapter 13: Explicit Operators 212

argument to a conjunction we get an adverb. The expression (@:
*:) is an adverb which means "composed with square". To
illustrate:

CS =: @: *: - CS - CS 2 3 - *: 2 3

@:*: -@:*: _4 _9 _4 _9

Now back to the main example of this section. We aim to define an
explicit adverb, K say, which generates an adverb according to the
scheme: for a verb u

 u K is to be @: u

Adverb K can be defined as below. We see that adverb K delivers
as a result adverb L:

K =: 1 : '@: u' L =: *: K - L - L 2 3

1 : '@: u' @:*: -@:*: _4 _9

This is the end of Chapter 13.

 213 Chapter 13: Explicit Operators

Chapter 14: Gerunds 214

Chapter 14: Gerunds

What is a gerund, and what is it good for? Briefly, a gerund
represents a list of verbs. It is useful mainly for supplying a list of
verbs as a single argument to an operator.

The plan for this chapter is:

• to introduce gerunds
• to look at some built-in operators which can take gerunds as

arguments
• to look at user-defined operators taking gerund arguments

14.1 Making Gerunds: The Tie Conjunction

Recall from Chapter 10 how we defined a verb with several cases.
Here is a small example as a reminder. To find the absolute value
of a number x we compute (+x), or (-x) if the number is
negative, thus:

abs =: + ` - @. (< & 0) abs _3

+`-@.(<&0) 3

The expression (+`-) looks like a list of verbs. Here the two verbs
+ and - are tied together with the "Tie" conjunction (`, backquote,
different from ') to produce a gerund.

 + ` -

 215 Chapter 14: Gerunds

+-+-+
|+|-|
+-+-+

We see that the gerund (+ ` -) is a list of two boxes, each of
which contains a representation of a verb. A gerund is a noun - a
list of boxes. Here is another gerund which represents three verbs:

 G =: + ` - ` abs
 G
+-+-+---+
|+|-|abs|
+-+-+---+

Inside each box there is a data structure which represents, or
encodes, a verb. Here we will not be concerned with the details of
this representation, which will be covered in Chapter 27.

14.2 Recovering the Verbs from a Gerund

The verbs packed into a gerund can be unpacked again with the
built-in adverb "Evoke Gerund" which is denoted by the expression
(`: 6). Let us call this EV.

 EV =: `: 6

Adverb EV applied to a gerund yields a train of all the verbs in the
gerund. In the next example, the result foo is a 3-train, that is a
fork.

 f =: 'f' & ,
 g =: 'g' & ,

Chapter 14: Gerunds 216

H=: f ` , ` g foo =: H EV foo 'o'

+-+-+-+
|f|,|g|
+-+-+-+

f , g fogo

Individual verbs can be unpacked by indexing the boxed list H and
then applying EV.

H 2{H vb =: (2{H) EV vb 'o'

+-+-+-+
|f|,|g|
+-+-+-+

+-+
|g|
+-+

g go

Shorter trains can be unpacked from a gerund, again by indexing.

H 1 2 { H tr =: (1 2 { H) EV tr 'a'

+-+-+-+
|f|,|g|
+-+-+-+

+-+-+
|,|g|
+-+-+

, g aga

Now we come to the uses of gerunds.

14.3 Gerunds As Arguments to Built-In Operators

A major use of gerunds is that they can be supplied to operators
as a single argument containing multiple verbs. We look first at
further built-in operators taking gerund arguments, and then at

 217 Chapter 14: Gerunds

examples of home-made operators.

14.3.1 Gerund as Argument to APPEND Adverb

There is a built-in adverb called "APPEND", denoted by the
expression (`: 0). It applies a list of verbs to a single argument
to give a list of results. For example:

 APPEND =: `: 0
 sum =: +/
 count =: #
 mean =: sum % count
 G1 =: count ` sum ` mean

G1 foo =: G1 APPEND foo 1 2 3

+-----+---+----+
|count|sum|mean|
+-----+---+----+

count`sum`mean`:0 3 6 2

The adverb is called APPEND because the results of the individual
verbs in the gerund are appended, that is formed into a list. The
general scheme is that for verbs u, v, w , ... then

 (u`v`w...) APPEND y means (u y),(v y),(w y), ...

Here is another example, showing that a gerund can be, not just a
one-dimensional list, but an array of verbs. The list of verbs G1
formed by "Tie" can be reshaped into an array, a table say, and the
shape of the result is the same.

Chapter 14: Gerunds 218

G2 =: 2 2 $ G1 G2 APPEND 4 5

+-----+-----+
|count|sum |
+-----+-----+
|mean |count|
+-----+-----+

 2 9
4.5 2

14.3.2 Gerund as Argument to Agenda Conjunction
Recall the abs verb defined above. Here is a reminder:

abs =: + ` - @. (< & 0) abs 6 abs _6

+`-@.(<&0) 6 6

Here, the "Agenda" conjunction (@.) takes a verb on the right. As
a variation, (@.) can also take a noun on the right. This noun can
be a single number or a list of numbers. A single number is taken
as an index selecting a verb from the gerund. For example.

G =: + ` - ` % f =: G @. 0 1 f 1

+-+-+-+
|+|-|%|
+-+-+-+

+ 2

A list of numbers is taken as a list of indices selecting verbs from
the gerund to form a train. In the following example the selected
two verbs form a hook.

 219 Chapter 14: Gerunds

G h =: G @. 0 2 h 4

+-+-+-+
|+|-|%|
+-+-+-+

+ % 4.25

The scheme is, for a gerund G and indices I :

 G @. I means (I { G) EV

For example:

G (G @. 0 2) 4 ((0 2 { G)) EV 4

+-+-+-+
|+|-|%|
+-+-+-+

4.25 4.25

This scheme gives us an abbreviation for the unpacking by
indexing we saw above. Next, we look at how to build trains with
more structure. Consider the train T:

T =: * (- 1:) T 3 T 4

* (- 1:) 6 12

which computes (T x) = x * (x -1) . The parentheses mean
that T is a hook where the second item is also a hook. Trains
structured with parentheses in this way can be built with Agenda,

Chapter 14: Gerunds 220

by indexing items from a gerund, using boxed indices to indicate
the parenthesisation.

 foo =: (* ` - ` 1:) @. (0 ; 1 2)

T foo foo 3

* (- 1:) * (-
1:)

6

14.3.3 Gerund as Argument to Insert

We have previously encountered the insert adverb applied to a
single verb: the verb is inserted between successive items of a list.
More generally, when insert is applied to a gerund it inserts
successive verbs from the gerund between successive items from
the list. That is, if G is the gerund (f`g`h`...) and and X is the
list (x0, x1, x2, x3, ...) then

 G/X means x0 f x1 g x2 h x3 ...

ger =: + ` % ger / 1 2 3 1 + 2 % 3

+-+-+
|+|%|
+-+-+

1.66667 1.66667

If the gerund is too short, it is re-used cyclically to make up the
needed number of verbs. This means that a one-verb gerund,
when inserted, behaves the same as a single inserted verb.

 221 Chapter 14: Gerunds

14.3.4 Gerund as argument to POWER conjunction

Recall from Chapter 10 that the POWER conjunction (^:) can take,
as right argument, a number which specifies the number of
iterations of the verb given as left argument. As a brief reminder, 3
doublings of 1 is 8:

 double =: +:
 (double ^: 3) 1
8

As a variation, the number of iterations can be computed by a verb
right-argument. The scheme is, for verbs u and v:

 (u ^: v) y means u ^: (v y) y

For example:

 decr =: <:

double ^: (decr 3) 3 (double ^: decr) 3

12 12

More generally, the right argument can be given as a gerund, and
the verbs in it do some computations at the outset of the iteration
process. The scheme is:

 u ^: (v1 ` v2) y means u ^: (v1
y) (v2 y)

To illustrate, we define a verb to compute a Fibonacci sequence.
Here each term is the sum of the preceding two terms. The verb

Chapter 14: Gerunds 222

will take an argument to specify the number of terms, so for
example we want FIB 6 to give 0 1 1 2 3 5

The verb to be iterated, u say, generates the next sequence from
the previous sequence by appending the sum of the last two. If we
define:

 u =: , sumlast2
 sumlast2 =: +/ @ last2
 last2 =: _2 & {.

then the iteration scheme beginning with the sequence 0 1 is
shown by

u 0 1 u u 0 1 u u u 0 1

0 1 1 0 1 1 2 0 1 1 2 3

Now we define the two verbs of the gerund. We see that to
produce a sequence with n terms the verb u must be applied (n-2)
times, so the verb v1, which computes the number of iterations
from the argument y is:

 v1 =: -&2

The verb v2, which computes the starting value from the argument
y, we want to be the constant function which computes 0 1
whatever the value of y.

 v2 =: 3 : '0 1'

Now we can put everything together:

 223 Chapter 14: Gerunds

FIB =: u ^: (v1 `v2) FIB 6

(, sumlast2)^:(v1`v2) 0 1 1 2 3 5

This example showed a monadic verb (u) with the two verbs in the
gerund (v1 and v2) performing some computations at the outset of
the iteration. What about dyadic verbs?

Firstly, recall that with an iterated dyadic verb the left argument is
bound at the outset to give a monad which is what is actually
iterated, so that the scheme is:

 x u ^: k y means (x&u) ^: k y

Rather than constant k, we can perform pre-computations with
three verbs U V and W presented as a gerund. The scheme is:

 x u ^: (U`V`W) y means (((x U y)&u) ^: (x V y)) (x W y)

or equivalently as a fork:

 u ^: (U`V`W) means U (u ^: V) W

For example, suppose we define::

 U =: [
 V =: 2:
 W =:]

Then we see that p and q below are equivalent. 3 added twice to 4
gives 10.

Chapter 14: Gerunds 224

p =: + ^: (U`V`W) 3 p 4 q =: U (+ ^: V) W 3 q 4

+^:(U`V`W) 10 U +^:V W 10

14.3.5 Gerund as Argument to Amend

Recall the "Amend" adverb from Chapter 06 . The expression (new
index } old) produces an amended version of old, having new as
items at index. For example:

 'o' 1 } 'baron'
boron

More generally, the "Amend" adverb can take an argument which
is a gerund of three verbs, say U`V`W. The scheme is:

 x (U`V`W) } y means (x U y) (x V y) } (x
W y)

That is, the new items, the index(es) and the "old" array are all to
be computed from the given x and y.

Here is an example (adapted from the Dictionary). Let us define a
verb, R say, to amend a matrix by multiplying its i'th row by a
constant k. The left argument of R is to be the list i k and the
right argument is to be the original matrix. R is defined as the
"Amend" adverb applied to a gerund of 3 verbs.

 i =: {. @ [NB. x i y is first of x
 k =: {: @ [NB. x k y is last of x
 r =: i {] NB. x r y is (x i y)'th row of y

 R =: ((k * r) ` i `]) }

 225 Chapter 14: Gerunds

For example:

 M =: 3 2 $ 2 3 4 5 6 7
 z =: 1 10 NB. row 1 times 10

z M z i M z k M z r M z R M

1 10 2 3
4 5
6 7

1 10 4 5 2 3
40 50
6 7

14.4 Gerunds as Arguments to User-Defined Operators

Previous sections showed supplying gerunds to the built-in
operators (adverbs or conjunctions). Now we look at defining our
own operators taking gerunds as arguments.

The main consideration with an operator is how to recover
individual verbs from the gerund argument. Useful here is the
agenda conjunction @. which we looked at above. Recall that it can
select one or more verbs from a gerund.

G G @. 0 G @. 0 2

+-+-+-+
|+|-|%|
+-+-+-+

+ + %

Now for the operator. Let us define an adverb A, say, to produce a
fork-like verb, so that

Chapter 14: Gerunds 226

 x (f `g ` h A) y is to mean (f x) g (h y)

 A =: 1 : 0
f =. u @. 0
g =. u @. 1
h =. u @. 2
((f @ [) g (h @])) f.
)

To demonstrate A, here is a verb to join the first item of x to the
last of y. The first and last items are yielded by the built-in verbs
{. (left-brace dot, called "Head") and {: (left-brace colon, called
"Tail").

H =: {. ` , ` {: zip =: H A 'abc' zip 'xyz'

+--+-+--+
|{.|,|{:|
+--+-+--+

{.@[,
{:@]

az

14.4.1 The Abelson and Sussman Accumulator

Here is another example of a user-defined explicit operator with a
gerund argument. Abelson and Sussman ("Structure and
Interpretation of Computer Programs", MIT Press 1985) describe
how a variety of computations all conform to the following general
plan, called the "accumulator":

Items from the argument (a list) are selected with a "filtering"
function. For each selected item, a value is computed from it with

 227 Chapter 14: Gerunds

a "mapping" function. The results of the separate mappings are
combined into the overall result with a "combining" function. This
plan can readily be implemented in J as an adverb, ACC say, as
follows.

 ACC =: 1 : 0
com =. u @. 0
map =. u @. 1
fil =. u @. 2
((com /) @: map @: (#~ fil)) f.
)

ACC takes as argument a gerund of three verbs, in order, the
combiner, the map and the filter. For an example, we compute the
sum of the squares of the odd numbers in a given list. Here the
filter, to test for an odd number, is (2&|)

 (+ ` *: ` (2&|)) ACC 1 2 3 4
10

This is the end of chapter 14.

Chapter 15: Tacit Operators 228

Chapter 15: Tacit Operators

15.1 Introduction

J provides a number of built-in operators - adverbs and
conjunctions. In Chapter 13 we looked at defining our own
operators explicitly. In this chapter we look at defining adverbs
tacitly.

15.2 Adverbs from Conjunctions

Recall from Chapter 07 the Rank conjunction, ("). For example,
the verb (< " 0) applies Box (<) to each rank-0 (scalar) item of
the argument.

 < " 0 'abc'
+-+-+-+
|a|b|c|
+-+-+-+

A conjunction takes two arguments. If we supply only one, the
result is an adverb. For example, an adverb to apply a given verb
to each scalar can be written as (" 0)

 229 Chapter 15: Tacit Operators

each =: " 0 < each z =: < each 'abc'

"0 <"0 +-+-+-+
|a|b|c|
+-+-+-+

The scheme is, that for a conjunction C and a noun N, the
expression (C N) denotes an adverb such that:

 x (C N) means x C N

The argument to be supplied to the conjunction can be a noun or a
verb, and on the left or on the right. Altogether there are four
similar schemes:

 x (C N) means x C N

 x (C V) means x C V

 x (N C) means N C x

 x (V C) means V C x

The sequences CN CV NC and CV are called "bidents". They are a
form of bonding whereby we take a two-argument function and fix
the value of one of its arguments to get a one-argument function.
However, there is a difference between bonding a dyadic verb (as
in + & 2 for example) and bonding a conjunction. With the
conjunction, there is no need for a bonding operator such as &. We
just write (" 0) with no intervening operator. The reason is that in
the case of + & 2, omitting the & would give + 2 which means:

Chapter 15: Tacit Operators 230

apply the monadic case of + to 2, giving 2. However, conjunctions
don't have monadic cases, so the bident (" 0) is recognised as a
bonding.

Recall the "Under" conjunction &. from Chapter 08 whereby f&.g
is a verb which applies g to its argument, then f then the inverse
of g. If we take f and g to be:

 f =: 'f' & ,
 g =: >

then we see that f is applied inside each box:

z (f &. g) z

+-+-+-+
|a|b|c|
+-+-+-+

+--+--+--+
|fa|fb|fc|
+--+--+--+

Now, using the form CV, we can define an adverb EACH to mean
"inside each box":

EACH =: &. > f EACH z f EACH z

&.> f&.> +-+-+-+
|a|b|c|
+-+-+-+

+--+--+--+
|fa|fb|fc|
+--+--+--+

15.3 Compositions of Adverbs

If A and B are adverbs, then the bident (A B) denotes an adverb

 231 Chapter 15: Tacit Operators

which applies A and then B. The scheme is:

 x (A B) means (x A) B

15.3.1 Example: Cumulative Sums and Products

There is a built-in adverb \ (backslash, called Prefix). In the
expression f \ y the verb f is applied to successively longer
leading segments of y. For example:

 < \ 'abc'
+-+--+---+
|a|ab|abc|
+-+--+---+

The expression +/ \ y produces cumulative sums of y:

 +/ \ 1 2 3
1 3 6

An adverb to produce cumulative sums, products, and so on can
be written as a bident of two adverbs:

 cum =: / \ NB. adverb adverb

z =: 2 3 4 + cum z * cum z

2 3 4 2 5 9 2 6 24

15.3.2 Generating Trains

Now we look at defining adverbs to generate trains of verbs, that

Chapter 15: Tacit Operators 232

is, hooks or forks.

First recall from Chapter 14 the Tie conjunction (`), which makes
gerunds, and the Evoke Gerund adverb (`: 6) which makes trains
from gerunds.

Now suppose that A and B are the adverbs:

 A =: * ` NB. verb conjunction
 B =: `: 6 NB. conjunction noun

Then the compound adverb

 H =: A B

is a hook-maker. Thus <: H generates the hook * <: , that is "x
times x-1"

<: A <: A B h =: <: H h 5

+-+--+
|*|<:|
+-+--+

* <: * <: 20

15.3.3 Rewriting

It is possible to rewrite the definition of a verb to an equivalent
form, by rearranging its terms. Suppose we start with a definition
of the factorial function f. Factorial 5 is 120.

 233 Chapter 15: Tacit Operators

 f =: (* ($: @: <:)) ` 1: @. (= 0:)
 f 5
120

The idea now is to rewrite f to the form $: adverb, by a sequence
of steps. Each step introduces a new adverb. The first new adverb
is A1, which has the form conj verb.

 A1 =: @. (= 0:)
 g =: (* ($: @: <:)) ` 1: A1
 g 5
120

Adverb A2 has the form conj verb

 A2 =: ` 1:
 h =: (* ($: @: <:)) A2 A1
 h 5
120

Adverb A3 has the form adv adv

 A3 =: (* `) (`: 6)
 i =: ($: @: <:) A3 A2 A1
 i 5
120

Adverb A4 has the form conj verb

 A4=: @: <:
 j =: $: A4 A3 A2 A1
 j 5
120

Chapter 15: Tacit Operators 234

Combining A1 to A4:

 A =: A4 A3 A2 A1
 k =: $: A
 k 5
120

Expanding A:

 m =: $: (@: <:) (* `) (`: 6) (` 1:) (@. (= 0:))
 m 5
120

We see that m and f are the same verb:

f m

(* $:@:<:)`1:@.(= 0:) (* $:@:<:)`1:@.(= 0:)

This is the end of Chapter 15.

 235 Chapter 15: Tacit Operators

Chapter 16: Rearrangements 236

Chapter 16: Rearrangements

This chapter covers rearranging the items of arrays: permuting,
sorting, transposing, reversing, rotating and shifting.

16.1 Permutations

A permutation of a vector is another vector which has all the items
of the first but not necessarily in the same order. For example, z is
a permutation of y where:

y =: 'abcde' z =: 4 2 3 1 0 { y

abcde ecdba

The index vector 4 2 3 1 0 is itself a permutation of the indices 0
1 2 3 4, that is, i. 5, and hence is said to be a permutation
vector of order 5.

Notice the effect of this permutation: the first and last items are
interchanged and the middle three rotate position amongst
themselves. Hence this permutation can be described as a
combination of cycling two items and cycling three items. After 6
(= 2 * 3) applications of this permutation we return to the original
vector.

 p =: 4 2 3 1 0 & {

 237 Chapter 16: Rearrangements

y p y p p y p p p p p p y

abcde ecdb
a

adbce abcde

The permutation 4 2 3 1 0 can be represented as a cycle of 2 and
a cycle of 3. The verb to compute this cyclic representation is
monadic C. .

 C. 4 2 3 1 0
+-----+---+
|3 1 2|4 0|
+-----+---+

Thus we have two representations of a permutation: (4 2 3 1 0)
is called a direct representation and (3 1 2 ; 4 0) is called a
cyclic representation. Monadic C. can accept either form and will
produce the other form:

C. 4 2 3 1 0 C. 3 1 2 ; 4 0

+-----+---+
|3 1 2|4 0|
+-----+---+

4 2 3 1 0

The dyadic verb C. can accept either form as its left argument,
and permutes its right argument.

Chapter 16: Rearrangements 238

y 4 2 3 1 0 C. y (3 1 2 ; 4 0) C. y

abcde ecdba ecdba

16.1.1 Abbreviated Permutations

Dyadic C. can accept a left argument which is an abbreviation for
a (direct) permutation vector. The effect is to move specified items
to the tail, one at a time, in the order given.

y 2 C. y 2 3 C. y

abcde abdec abecd

With the abbreviated form, successive items are taken from the
original vector: notice how the following two examples give
different results.

y 2 3 C. y 3 C. (2 C. y)

abcde abecd abdce

If the left argument is boxed, then each box in turn is applied as a
cycle:

y (<3 1 2) C. y (3 1 2 ; 4 0) C. y

abcde acdbe ecdba

 239 Chapter 16: Rearrangements

If a is an abbreviated permutation vector (of order n) then the full-
length equivalent of a is given by (a U n) where U is the utility
function:

 U =: 4 : 0
z =: y | x
((i. y) -. z), z
)

For example, suppose the abbreviated permutation a is (1 3) then
we see:

y a =: 1 3 a C. y f =: a U (#y) f C. y

abcde 1 3 acebd 0 2 4 1 3 acebd

16.1.2 Inverse Permutation

If f is a full-length permutation vector, then the inverse
permutation is given by (/: f). (We will look at the verb /: in the
next section.)

y f z =: f C. y /: f (/: f) C. z

abcde 0 2 4 1 3 acebd 0 3 1 4 2 abcde

16.1.3 Atomic Representations of Permutations

If y is a vector of length n, then there are altogether ! n different
permutations of y. A table of all permutations of order n can be
generated by the expression (tap n) where tap is a utility verb
defined by:

Chapter 16: Rearrangements 240

 tap =: i. @ ! A. i.
 tap 3
0 1 2
0 2 1
1 0 2
1 2 0
2 0 1
2 1 0

It can be seen that these permutations are in a well-defined order,
and so any permutation of order n can be identified simply by its
index in the table (tap n). This index is called the atomic
representation of the permutation. The monadic verb A. computes
the atomic representation. For example, given an order-3
permutation, e.g. 2 1 0, then A. 2 1 0 yields the index in the
table (tap 3).

A. 2 1 0 5 { tap 3

5 2 1 0

The dyadic verb A. applies an atomic representation of a
permutation.

2 1 0 { 'PQR' 5 A. 'PQR'

RQP RQP

Here is an example of the use of A.. The process of running
through all the permutations of something (say to search for
anagrams of a word) might take a very long time. Hence it might
be desirable to run through them say 100 at a time.

 241 Chapter 16: Rearrangements

Here is a verb which finds a limited number of permutations. The
argument is a boxed list: a vector to be permuted, followed by a
starting permutation-number (that is, atomic index) followed by a
count of the permutions to be found.

 LPerms =: 3 : 0
'arg start count' =. y
(start + i. count) A. " 0 1 arg
)

LPerms 'abcde'; 0; 4 LPerms 'abcde'; 4; 4

abcde
abced
abdce
abdec

abecd
abedc
acbde
acbed

16.2 Sorting

There is a built-in monad, /: (slash colon, called "Grade Up"). For
a list L, the expression (/: L) gives a set of indices into L, and
these indices are a permutation-vector.

L =: 'barn' /: L

barn 1 0 3 2

These indices select the items of L in ascending order. That is, the
expression ((/: L) { L) yields the items of L in order.

Chapter 16: Rearrangements 242

L /: L (/: L) { L

barn 1 0 3 2 abnr

For sorting into descending order, the monad \:(backslash colon,
called "Grade Down") can be used.

L (\: L) { L

barn rnba

Since L is a character list, its items are sorted into alphabetical
order. Numeric lists or boxed lists are sorted appropriately.

N =: 3 1 4 5 (/: N) { N

3 1 4 5 1 3 4 5

B =: 'pooh';'bah';10;5 (/: B) { B

+----+---+--+-+
|pooh|bah|10|5|
+----+---+--+-+

+-+--+---+----+
|5|10|bah|pooh|
+-+--+---+----+

Now consider sorting the rows of a table. Here is an example of a
table with 3 rows:

 243 Chapter 16: Rearrangements

 T =: (". ;. _2) 0 : 0
'WA' ;'Mozart'; 1756
'JS' ;'Bach' ; 1685
'CPE';'Bach' ; 1714
)

Suppose we aim to sort the rows of the table into order of date-of-
birth shown in column 2 (the third column). We say that column 2
contains the keys on which the table is to be sorted.

We extract the keys with the verb 2&{"1, generate the
permutation vector with /: applied to the keys, and then permute
the table.

T keys =: 2&{"1 T (/: keys) { T

+---+------+----+
|WA |Mozart|1756|
+---+------+----+
|JS |Bach |1685|
+---+------+----+
|CPE|Bach |1714|
+---+------+----+

+----+----+----+
|1756|1685|1714|
+----+----+----+

+---+------+----+
|JS |Bach |1685|
+---+------+----+
|CPE|Bach |1714|
+---+------+----+
|WA |Mozart|1756|
+---+------+----+

The expression (/: keys { T) can be abbreviated as (T /:
keys), using the dyadic case of /:, (called "Sort")

Chapter 16: Rearrangements 244

(/: keys) { T T /: keys

+---+------+----+
|JS |Bach |1685|
+---+------+----+
|CPE|Bach |1714|
+---+------+----+
|WA |Mozart|1756|
+---+------+----+

+---+------+----+
|JS |Bach |1685|
+---+------+----+
|CPE|Bach |1714|
+---+------+----+
|WA |Mozart|1756|
+---+------+----+

The dyadic case of \: is similar: it is also called "Sort".

Suppose now we need to sort on two columns, say by last name,
and then by initials. The keys are column 1 then column 0.

keys =: 1 0 & { " 1 T T /: keys

+------+---+
|Mozart|WA |
+------+---+
|Bach |JS |
+------+---+
|Bach |CPE|
+------+---+

+---+------+----+
|CPE|Bach |1714|
+---+------+----+
|JS |Bach |1685|
+---+------+----+
|WA |Mozart|1756|
+---+------+----+

These examples show that the keys can be a table, and the /:
verb yields the permutation-vector which puts the rows of the
table into order. In such a case, the first column of the table is the
most significant, then the second column, and so on.

 245 Chapter 16: Rearrangements

16.2.1 Predefined Collating Sequences

Characters are sorted into "alphabetical order", numbers into
"numerical order" and boxes into a well-defined order. The order
for sorting all possible keys of a given type is called a collating
sequence (for keys of that type). We have three predefined
collating sequences. The collating sequence for characters is the
ASCII character set. The built-in J noun a. gives the value of all
256 characters in "alphabetical" order. Note that upper-case letters
come before lower-case letters.

 65 66 67 97 98 99 { a.
ABCabc

With numerical arguments, complex numbers are ordered by the
real part then the imaginary part.

n=: 0 1 _1 2j1 1j2 1j1 n /: n

0 1 _1 2j1 1j2 1j1 _1 0 1 1j1 1j2 2j1

With boxed arrays, the ordering is by the contents of each box.
The precedence is firstly by type, with numerical arrays preceding
empty arrays preceding character arrays preceding boxed arrays:

k=: (< 'abc') ; 'pqr' ; 4 ; '' ;
3

k /: k

+-----+---+-++-+
+---+	pqr	4		3		
	abc					
+---+						
+-----+---+-++-+

+-+-++---+-----+
3	4		pqr	+---+		
					abc	
				+---+		
+-+-++---+-----+

Chapter 16: Rearrangements 246

Within arrays of the same type, low-rank precedes high-rank.

m=: 2 4 ; 3 ; (1 1 $ 1) m /: m

+---+-+-+
|2 4|3|1|
+---+-+-+

+-+---+-+
|3|2 4|1|
+-+---+-+

Within arrays of the same type and rank, in effect the arrays are
ravelled, and then compared element by element. In this case, 1 2
takes precedence over 1 3 (because 2 < 3), and 3 3 takes
precedence over 3 3 3 (because 3 3 is shorter than 3 3 3). If the
two arrays are the same, then the earlier takes precedence (that
is, their original order is not disturbed).

 a =: 2 3 $ 1 2 3 4 5 6
 b =: 3 2 $ 1 2 5 6 3 4
 c =: 1 3 $ 1 2 3
 d =: 1 3 $ 1 1 3

u=:a;b;c u /: u

+-----+---+-----+
1 2 3	1 2	1 2 3
4 5 6	5 6	
	3 4	
+-----+---+-----+

+---+-----+-----+
1 2	1 2 3	1 2 3
5 6		4 5 6
3 4		
+---+-----+-----+

 247 Chapter 16: Rearrangements

w=:a;b;c;d w /: w

+-----+---+-----+-----+
1 2 3	1 2	1 2 3	1 1 3
4 5 6	5 6		
	3 4		
+-----+---+-----+-----+

+-----+---+-----+-----+
1 1 3	1 2	1 2 3	1 2 3
	5 6		4 5 6
	3 4		
+-----+---+-----+-----+

16.2.2 User-Defined Collating Sequences

The keys are computed from the data. By choosing how to
compute the keys, we can choose a collating sequence.

For example, suppose a list of numbers is to be sorted into
ascending order of absolute value. A suitable key-computing
function would then be the "Magnitude" function, |.

x=: 2 1 _3 keys =: | x x /: keys

2 1 _3 2 1 3 1 2 _3

16.3 Transpositions

The monadic verb |: will transpose a matrix, that is, interchange
the first and second axes.

Chapter 16: Rearrangements 248

M =: 2 3 $ 'abcdef' |: M

abc
def

ad
be
cf

More generally, |: will reverse the order of the axes of a n-
dimensional array.

N =: 2 2 2 $ 'abcdefgh' |: N

ab
cd

ef
gh

ae
cg

bf
dh

Dyadic transpose will permute the axes according to the (full or
abbreviated) permutation-vector given as left argument. For a 3-
dimensional array, there are 6 possible permutations, with the first
being the identity-permutation

N 0 1 2 |: N 0 2 1 |: N 1 0 2 |: N

ab
cd

ef
gh

ab
cd

ef
gh

ac
bd

eg
fh

ab
ef

cd
gh

 249 Chapter 16: Rearrangements

1 2 0 |: N 2 0 1 |: N 2 1 0 |: N

ae
bf

cg
dh

ac
eg

bd
fh

ae
cg

bf
dh

A boxed abbreviated argument can be given. Two or more boxed
axis-numbers are run together to form a single axis. With two
dimensions, this is equivalent to taking the diagonal.

K =: i. 3 3 (< 0 1) |: K

0 1 2
3 4 5
6 7 8

0 4 8

16.4 Reversing, Rotating and Shifting

16.4.1 Reversing
Monadic |. will reverse the order of the items of its argument.

y |. y M |. M

abcde edcb
a

ab
c
de
f

def
abc

Chapter 16: Rearrangements 250

Notice that "reversing the items" means reversing along the first
axis. Reversal along other axes can be achieved with the rank
conjunction (").

N |. N |." 1 N |. " 2 N

ab
cd

ef
gh

ef
gh

ab
cd

ba
dc

fe
hg

cd
ab

gh
ef

16.4.2 Rotating

Dyadic |. rotates the items of y by an amount given by the
argument x. A positive value for x rotates to the left.

y 1 |. y _1 |. y

abcde bcdea eabcd

Successive numbers in x rotate y along successive axes:

 251 Chapter 16: Rearrangements

M 1 2 |. M N 1 2 |. N

abc
def

fde
cab

ab
cd

ef
gh

ef
gh

ab
cd

16.4.3 Shifting

The items which would be brought around by cyclic rotation can
instead be replaced with a fill-item. A shifting verb is written
(|. !. f) where f is the fill-item.

 ash =: |. !. '*' NB. alphabetic shift
 nsh =: |. !. 0 NB. numeric shift

y _2 ash y z =: 2 3 4 _1 nsh z

abcde **abc 2 3 4 0 2 3

This is the end of Chapter 16

Chapter 17: Patterns of Application 252

Chapter 17: Patterns of Application

In this chapter we look at applying a function to an array in various
patterns made up of selected elements of the array.

17.1 Scanning

17.1.1 Prefix Scanning

In the expression (f \ y) the result is produced by applying verb
f to successively longer leading sections ("prefixes") of y.

Choosing f as the box verb (<) gives easily visible results.

y =: 'abcde' < \ y

abcde +-+--+---+----+-----+
|a|ab|abc|abcd|abcde|
+-+--+---+----+-----+

Cumulative sums of a numeric vector can be produced:

 +/ \ 0 1 2 3
0 1 3 6

Various effects can be produced by scanning bit-vectors. The
following example shows "cumulative OR", which turns on all bits
after the first 1-bit.

 253 Chapter 17: Patterns of Application

 +./\ 0 1 0 1 0
0 1 1 1 1

17.1.2 Infix Scanning

In the expression (x f \ y) the verb f is applied to successive
sections ("infixes") of y, each of length x.

z =: 1 4 9 16 2 < \ z

1 4 9 16 +---+---+----+
|1 4|4 9|9 16|
+---+---+----+

If x is negative, then the sections are non-overlapping, in which
case the last section may not be full-length. For example:

z _3 < \ z

1 4 9 16 +-----+--+
|1 4 9|16|
+-----+--+

We can compute the differences between succesive items, by
choosing 2 for the section-length, and applying to each section a
verb "second-minus-first", that is, ({: - {.)

smf =: {: - {. smf 1 4

{: - {. 3

Chapter 17: Patterns of Application 254

 diff =: 2 & (smf\)

,. z ,. diff z ,. diff diff z

1
4
9
16

3
5
7

2
2

17.1.3 Suffix Scanning

In the expression (f \. y) the result is produced by applying f
to successively shorter trailing sections ("suffixes") of y .

y < \. y

abcde +-----+----+---+--+-+
|abcde|bcde|cde|de|e|
+-----+----+---+--+-+

17.1.4 Outfix

In the expression (x f \. y) the verb f is applied to the whole of
y with successive sections removed, each removed section being of
length x. If x is negative, then the removed sections are non-
overlapping, in which case the last removed section may not be
full-length.

 255 Chapter 17: Patterns of Application

y 2 < \. y _2 < \. y

abcde +---+---+---+---+
|cde|ade|abe|abc|
+---+---+---+---+

+---+---+----+
|cde|abe|abcd|
+---+---+----+

17.2 Cutting

The conjunction ;. (semicolon dot) is called "Cut". If u is a verb
and n a small integer, then (u ;. n) is a verb which applies u in
various patterns as specified by n. The possible values for n are _3
_2 _1 0 1 2 3. We will look some but not all of these cases.

17.2.1 Reversing

In the expression (u ;. 0 y), the verb u is applied to y reversed
along all axes. In the following example, we choose u to be the
identity-verb ([).

M =: 3 3 $ 'abcdefghi' [;. 0 M

abc
def
ghi

ihg
fed
cba

17.2.2 Blocking

Given an array, we can pick out a smaller subarray inside it, and
apply a verb to just the subarray.

Chapter 17: Patterns of Application 256

The subarray is specified by a two-row table. In the first row is the
index of the cell which will become the first of the subarray. In the
second row is the shape of the subarray.

For example, to specify a subarray starting at row 1 column 1 of
the original array, and of shape 2 2, we write:

 spec =: 1 1 ,: 2 2

Then we can apply, say, the identity-verb ([) to the specified
subarray as follows:

M spec spec [;. 0 M

abc
def
ghi

1 1
2 2

ef
hi

The general scheme is that for a verb u, the expression (x u ;. 0
y) applies verb u to a subarray of y as specified by x. In the
specifier x, a negative value in the shape (the second row) will
cause reversal of the elements of M along the corresponding axis.
For example:

 spec =: 1 1 ,: _2 2

M spec spec [;. 0 M

abc
def
ghi

1 1
_2 2

hi
ef

 257 Chapter 17: Patterns of Application

17.2.3 Fretting

Suppose that we are interested in dividing a line of text into
separate words. Here is an example of a line of text:

 y =: 'what can be said'

For the moment, suppose we regard a word as being terminated
by a space. (There are other possibilities, which we will come to.)
Immediately we see that in y above, the last word 'said' is not
followed by a space, so the first thing to do is to add a space at
the end:

 y =: y , ' '

Now if u is a verb, and y ends with a space, the expression (u ;.
_2 y) will apply verb u separately to each space-terminated word
in y. For example we can identify the words in y by applying <, the
box function:

y < ;. _2 y

what can be said +----+---+--+----+
|what|can|be|said|
+----+---+--+----+

We can count the letters in each word by applying the # verb:

y # ;. _2 y

what can be said 4 3 2 4

Chapter 17: Patterns of Application 258

The meaning of _2 for the right argument of ;. is that the words
are to be terminated by occurrences of the last character in y (the
space), and furthermore that the words do not include the spaces.

More generally, we say that a list may be divided into "intervals"
marked by the occurrence of "frets". The right argument (n) of ;.
specifies how we choose to define intervals and frets as follows.
There are four cases.

n = 1
Each interval begins with a fret. The first item of y is taken
to be a fret, as are any other items of y equal to the first.
Intervals include frets.

n = _1 As for n = 1 except that intervals exclude frets.

n = 2
Each interval ends with a fret. The last item of y is taken to
be a fret, as are any other items of y equal to the last.
Intervals include frets.

n = _2 As for n = 2 , except that intervals exclude frets.

For example, the four cases are shown by:

 z =: 'abdacd'

 259 Chapter 17: Patterns of Application

z < ;. 1 z < ;. _1 z < ;. 2 z < ;. _2 z

abdacd +---+---+
|abd|acd|
+---+---+

+--+--+
|bd|cd|
+--+--+

+---+---+
|abd|acd|
+---+---+

+--+--+
|ab|ac|
+--+--+

For another example, here is a way of entering tables of numbers.
We enter a table row by row following 0 : 0

 T =: 0 : 0
 1 2 3
 4 5 6
19 20 21
)

T is a character-string with 3 embedded line-feed characters, one
at the end of each line:

$ T +/ T = LF

30 3

The idea now is to cut T into lines. Each line is a character-string
representing a J expression (for example the characters '1 2 3').
Such character-strings can be evaluated by applying the verb ".
(double-quote dot, "Do" or "Execute"). The result is, for each line,
a list of 3 numbers.

Chapter 17: Patterns of Application 260

TABLE =: (". ;. _2) T $ TABLE

1 2 3
4 5 6
19 20 21

3 3

The verb (". ;. _2) was introduced as the utility-function
ArrayMaker in Chapter 2.

17.2.4 Punctuation

For processing text it would be useful to regard words as
terminated by spaces or by various punctuation-marks. Suppose
we choose our frets as any of four characters:

 frets =: ' ?!.'

Given some text we can compute a bit-vector which is true at the
location of a fret:

t =: 'How are you?' b =: t e. frets

How are you? 0 0 0 1 0 0 0 1 0 0 0 1

Here we make use of the built-in verb e. ("Member"). The
expression x e. y evaluates to true if x is a member of the list y.

Now the bitvector b can be used to specify the frets for cutting text
t into words:

 261 Chapter 17: Patterns of Application

t b b < ;. _2 t

How are you? 0 0 0 1 0 0 0 1 0 0 0 1 +---+---+---+
|How|are|you|
+---+---+---+

For another example, consider cutting a numeric vector into
intervals such that each is in ascending sequence, that is, an item
less than the previous must start a new interval. Suppose our data
is:

 data =: 3 1 4 1 5 9

Then a bitvector can be computed by scanning infixes of length 2,
applying >/ to each pair of items. Where we get 1, the second item
of the pair is the beginning of a new interval. We make sure the
first item of all is 1.

 bv =: 1 , 2 >/ \ data

data data ,: bv bv < ;. 1 data

3 1 4 1 5 9 3 1 4 1 5 9
1 1 0 1 0 0

+-+---+-----+
|3|1 4|1 5 9|
+-+---+-----+

17.2.5 Word Formation

There is a built-in function ;: (semicolon colon, called "Word
Formation"). It analyses a string as a J expression, according to
the rules of the J language, to yield a boxed list of strings, the
separate constituents of the J expression.

Chapter 17: Patterns of Application 262

For example:

y =: 'z =: (p+q) - 1' ;: y

z =: (p+q) - 1 +-+--+-+-+-+-+-+-+-+
|z|=:|(|p|+|q|)|-|1|
+-+--+-+-+-+-+-+-+-+

17.2.6 Lines in Files
Let us begin by creating a file, to serve in the examples which
follow. (See Chapter 26 for details of file-handling functions).

 text =: 0 : 0
What can be said
at all
can be said
clearly.
)

 text (1 !: 2) < 'foo.txt'

Now, if we are interested in cutting a file of text into lines, we can
read the file into a string-variable and cut the string. On the
assumption that each line ends with a line-terminating character,
then the last character in the file will be our fret. Here is an
example.

 263 Chapter 17: Patterns of Application

 string =: (1 !: 1) < 'foo.txt' NB. read the file

 lines =: (< ;. _2) string NB. cut into lines

 lines
+----------------+------+-----------+--------+
|What can be said|at all|can be said|clearly.|
+----------------+------+-----------+--------+

There are two things to be aware of when cutting files of text into
lines.

Firstly, in some systems lines in a file are terminated by a single
line-feed character (LF). In other systems each line may be
terminated by the pair of characters carriage-return (CR) followed
by line-feed (LF).

J follows the convention of the single LF regardless of the system
on which J is running. However, we should be prepared for CR
characters to be present in input data. To get rid of CR characters
from string, we can reduce it with the bitvector (string
notequal CR), where notequal is the built-in verb ~:, thus:

 string =: (string ~: CR) # string

Secondly, depending on how the file of text was produced, we may
not be able to guarantee that its last line is actually terminated.
Thus we should be prepared to supply the fret character (LF)
ourselves if necessary, by appending LF to the string.

A small function to tidy up a string, by supplying a fret and

Chapter 17: Patterns of Application 264

removing CR characters, can be written as:

 tidy =: 3 : 0
y =. y , (LF ~: {: y) # LF NB. supply LF
(y ~: CR) # y NB. remove CR
)

 (< ;. _2) tidy string
+----------------+------+-----------+--------+
|What can be said|at all|can be said|clearly.|
+----------------+------+-----------+--------+

17.2.7 Tiling

In the expression (x u ;. 3 y) the verb u is applied separately to
each of a collection of subarrays extracted from y. These subarrays
may be called tiles. The size and arrangement of the tiles are
defined by the value of x. Here is an example. Suppose that y is

 y =: 4 4 $ 'abcdefghijklmnop'

and our tiles are to be of shape 2 2, each offset by 2 along each
axis from its neighbour. That is, the offset is to be 2 2. We specify
the tiling with a table: the first row is the offset, the second the
shape'

 spec =: > 2 2 ; 2 2 NB. offset, shape

and so we see

 265 Chapter 17: Patterns of Application

y spec spec < ;. 3 y

abcd
efgh
ijkl
mnop

2 2
2 2

+--+--+
|ab|cd|
|ef|gh|
+--+--+
|ij|kl|
|mn|op|
+--+--+

The specified tiling may leave incomplete pieces ("shards") at the
edges. Shards can be included or excluded by giving a right
argument to "Cut" of 3 or _3 .

 sp =: > 3 3 ; 3 3

y sp sp < ;. 3 y sp < ;. _3 y

abcd
efgh
ijkl
mnop

3 3
3 3

+---+-+
abc	d
efg	h
ijk	l
+---+-+	
mno	p
+---+-+

+---+
|abc|
|efg|
|ijk|
+---+

This is the end of Chapter 17.

Chapter 18: Sets, Classes and Relations 266

Chapter 18: Sets, Classes and
Relations

In this chapter we look at more of the built-in functions of J. The
connecting theme is, somewhat loosely, working with set, classes
and relations.

Suppose that, for some list, for the purpose at hand, the order of
the items is irrelevant and the presence of duplicate items is
irrelevant. Then we can regard the list as (representing) a finite
set. In the abstract, the set 3 1 2 1 is considered to be the same
set as 1 2 3.

The word "class" we will use in the sense in which, for example,
each integer in a list belongs either to the odd class or to the even
class.

By "relation" is meant a table of two or more columns, expressing
a relationship between a value in one column and the
corresponding value in another. A relation with two columns, for
example, is a set of pairs.

18.1 Sets

18.1.1 Membership
There is a built-in verb e. (lowercase e dot, called "Member"). The
expresssion x e. y tests whether x matches any item of y, that is,
whether x is a member of the list y. For example:

 267 Chapter 18: Sets, Classes and Relations

y=: 'abcde' 'a' e. y 'w' e. y 'ef' e. y

abcde 1 0 1 0

Evidently the order of items in y is irrelevant and so is the
presence of duplicates in y.

z=: 'edcbad' 'a' e. z 'w' e. z 'ef' e. z

edcbad 1 0 1 0

We can test whether a table contains a particular row:

t =: 4 2 $ 'abcdef' 'cd' e. t

ab
cd
ef
ab

1

18.1.2 Less

There is a built-in verb -. (minus dot, called "Less"). The
expression x -. y produces a list of the items of x except those
which are members of y.

Chapter 18: Sets, Classes and Relations 268

x =: 'consonant' y =: 'aeiou' x -. y

consonant aeiou cnsnnt

Evidently the order of items in y is irrelevant and so is the
presence of duplicates in y.

18.1.3 Nub

There is a built-in verb ~. (tilde dot, called "Nub"). The expression
~. y produces a list of the items of y without duplicates.

nub =: ~. y =: 'hook' nub y

~. hook hok

We can apply nub to the rows of a table:

t nub t

ab
cd
ef
ab

ab
cd
ef

18.1.4 Nub Sieve

The verb "nub sieve" (~:) gives a boolean vector which is true
only at the nub.

 269 Chapter 18: Sets, Classes and Relations

y b =: ~: y b # y nub y

hook 1 1 0 1 hok hok

18.1.5 Functions for Sets

The customary functions on sets, such as set-union, set-
intersection or set-equality, are easily defined using the built-in
functions available. For example two sets are equal if all members
of one are members of the other, and vice versa.

 seteq =: *./ @: (e. , e.~)

1 2 3 seteq 3 1 2 1 1 2 3 seteq 1 2

1 0

18.2 The Table Adverb

Recall that the adverb / generates a verb; for example +/ is a verb
which sums lists. More precisely, it is the monadic case of +/ which
sums lists. The dyadic case of +/ generates a table:

x =: 0 1 2 y =: 3 4 5 6 z =: x +/ y

0 1 2 3 4 5 6 3 4 5 6
4 5 6 7
5 6 7 8

The general scheme is that if we have

Chapter 18: Sets, Classes and Relations 270

 z =: x f/ y

then z is a table such that the value at row i column j is given by
applying f dyadically to the pair of arguments i{x and j{y. That
is, z contains all possible pairings of an item of x with an item of y.
Here is another example:

x =: 'abc' y =: 'face' x =/ y

abc face 0 1 0 0
0 0 0 0
0 0 1 0

The result shows, in the first row, the value of 'a' = 'face', in
the second row the value of 'b' ='face' and so on.

18.3 Classes

18.3.1 Self-Classify
Consider the problem of finding the counts of letters occurring in a
string (the frequency-distribution of letters). Here is one approach.

We form a table testing each letter for equality with the nub.

 271 Chapter 18: Sets, Classes and Relations

y =: 'hook' nub y (nub y) =/ y

hook hok 1 0 0 0
0 1 1 0
0 0 0 1

The expression ((nub y) = / y) can be abbreviated as (= y).
The monadic case of the built-in verb = is called "Self-classify").

y nub y (nub y) =/ y = y

hook hok 1 0 0 0
0 1 1 0
0 0 0 1

1 0 0 0
0 1 1 0
0 0 0 1

If we sum each row of = y we obtain the counts, in the order of
the letters in the nub.

y = y +/ " 1 =y

hook 1 0 0 0
0 1 1 0
0 0 0 1

1 2 1

The counts can be paired with the letters of the nub:

Chapter 18: Sets, Classes and Relations 272

y nub y (nub y) ;" 0 (+/ " 1 =y)

hook hok +-+-+
|h|1|
+-+-+
|o|2|
+-+-+
|k|1|
+-+-+

18.3.2 Classification Schemes

Gardeners classify soil-types as acid, neutral or alkaline,
depending on the pH value. Suppose that a pH less than 6 is
classed as acid, 6 to 7 is neutral, and more than 7 as alkaline.
Here now is a verb to classify a pH value, returning A for acid, N for
neutral and L for alkaline (or limy).

 classify =: ({ & 'ANL') @: ((>: & 6) + (> & 7))

classify 6 classify 4.8 5.1 6 7 7.1 8

N AANNLL

The classify function we can regard as defining a classification
scheme. The letters ANL, which are in effect names of classes, are
called the keys of the scheme.

18.3.3 The Key Adverb
Given some data (a list, say), we can classify each item to produce

 273 Chapter 18: Sets, Classes and Relations

a list of corresponding keys.

data =: 7 5 6 4 8 k =: classify data

7 5 6 4 8 NANAL

We can select and group together all the data in, say, class A (all
the data with key A):

data k k = 'A' (k = 'A') # data

7 5 6 4 8 NANAL 0 1 0 1 0 5 4

Now suppose we wish to count the items in each class. That is, we
aim to apply the monadic verb # separately to each group of items
all of the same key. To do this we can use the built-in adverb /.
(slash dot, called "Key").

data k =: classify data k # /. data

7 5 6 4 8 NANAL 2 2 1

For another example, instead of counting the members we could
exhibit the members, by applying the box verb <.

Chapter 18: Sets, Classes and Relations 274

data k =: classify data k < /. data

7 5 6 4 8 NANAL +---+---+-+
|7 6|5 4|8|
+---+---+-+

The verb we apply can discover for itself the class of each separate
argument, by classifying the first member: Here the verb u
produces a boxed list: the key and count:

 u =: (classify @: {.) ; #

data k =: classify data k u /. data

7 5 6 4 8 NANAL +-+-+
|N|2|
+-+-+
|A|2|
+-+-+
|L|1|
+-+-+

The general scheme for the "Key" adverb is as follows. In the
expression x u /. y, we take y to be a list, and x is a list of keys
of corresponding items of y according to some classification
scheme, and u is the verb to be applied separately to each class.
The scheme is:

 x u /. y means (= x) (u @ #) y

 275 Chapter 18: Sets, Classes and Relations

To illustrate:

 y =: 4 5 6 7 8
 x =: classify y
 u =: <

y x = x (= x) (u @ #) y x u /. y

4 5 6 7 8 AANNL 1 1 0 0 0
0 0 1 1 0
0 0 0 0 1

+---+---+-+
|4 5|6 7|8|
+---+---+-+

+---+---+-+
|4 5|6 7|8|
+---+---+-+

We see that each row of =x selects items from y, and u is applied
to this selection.

18.3.4 Letter-Counts Revisited
Recall the example of finding the counts of letters in a string.

y =: 'LETTUCE' = y (nub y) ; " 0 +/ "1 (= y)

LETTUCE 1 0 0 0 0 0 0
0 1 0 0 0 0 1
0 0 1 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

+-+-+
|L|1|
+-+-+
|E|2|
+-+-+
|T|2|
+-+-+
|U|1|
+-+-+
|C|1|
+-+-+

Here is a variation. We note that we have in effect a classification
scheme where we have as many different classes as different
letters: each letter is (the key of) its own class. Thus we can write

Chapter 18: Sets, Classes and Relations 276

an expression of the form y u /. y.

The applied verb u will see, each time, a list of letters, all the
same. It counts them, with #, and takes the first, with {., to be a
label for the class.

 u =: {. ; #

y = y y u /. y

LETTUCE 1 0 0 0 0 0 0
0 1 0 0 0 0 1
0 0 1 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

+-+-+
|L|1|
+-+-+
|E|2|
+-+-+
|T|2|
+-+-+
|U|1|
+-+-+
|C|1|
+-+-+

18.4 Relations

Suppose there are a number of publications, such as:

• "Pigs" by Smith, on the subject of pigs
• "Pets" by Brown, on cats and dogs
• "Dogs" by Smith and James, on dogs

and we aim to catalog such publications. A suitable data structure
for such a catalog might be a table relating authors to titles and

 277 Chapter 18: Sets, Classes and Relations

another table relating titles to subjects. For example:

author title

Smith "Pigs"

Brown "Pets"

Smith "Dogs"

James "Dogs"

title subject

"Pigs" pigs

"Pets" dogs

"Pets" cats

"Dogs" dogs

 Such tables we may call "relations". The order of the rows is not
significant. Here,for the sake of simplicity, we will stick to relations
with two columns.

Now we choose a representation for our relations. For a first
approach, we choose tables of boxed strings. The authors-titles
relation is:

] AT =: (". ;. _2) 0 : 0
'Smith' ; 'Pigs'
'Brown' ; 'Pets'
'Smith' ; 'Dogs'
'James' ; 'Dogs'
)

Chapter 18: Sets, Classes and Relations 278

+-----+----+
|Smith|Pigs|
+-----+----+
|Brown|Pets|
+-----+----+
|Smith|Dogs|
+-----+----+
|James|Dogs|
+-----+----+

and the titles-subjects relation is:

] TS =: (". ;. _2) 0 : 0
'Pigs' ; 'pigs'
'Pets' ; 'cats'
'Pets' ; 'dogs'
'Dogs' ; 'dogs'
)
+----+----+
|Pigs|pigs|
+----+----+
|Pets|cats|
+----+----+
|Pets|dogs|
+----+----+
|Dogs|dogs|
+----+----+

18.4.1 Join of Relations

From the authors-titles relation AT and the titles-subjects relation
TS we can compute an authors-subjects relation showing which
author has written a title on which subject. We say that AT and TS

 279 Chapter 18: Sets, Classes and Relations

are to be joined with respect to titles, and we would expect the
join to look like this:

+-----+----+
|Smith|pigs|
+-----+----+
|Brown|cats|
+-----+----+
|Brown|dogs|
+-----+----+
|Smith|dogs|
+-----+----+
|James|dogs|
+-----+----+

The plan for this section is to look at a function for computing
joins, then at an improved version, and then at the advantage of
representing relations as tables of symbols rather than boxed
strings. Finally we look at some performance comparisons.

A method is as follows. We consider all possible pairs consisting of
a row at from table AT and a row ts from table TS. Each pair
at,ts is of the form:

 author; title; title; subject

If title matches title, that is, item 1 matches item 2, then we
extract author and subject, that is, items 0 and 3. Verbs for testing
and extracting from at,ts pairs can be written as:

 test =: 1&{ = 2&{
 extr =: 0 3 & {

and these verbs can be plugged into a suitable conjunction to do

Chapter 18: Sets, Classes and Relations 280

the pairing. In writing this conjunction, we aim to avoid requiring
the whole set of possible pairs to be present at the same time,
since this set may be large. We also aim to avoid any duplicates in
the result. Here is a first attempt.

 PAIR =: 2 : 0
:
z =. 0 0 $ ''
for_at. x do.
 for_ts. y do.
 if. u at,ts do. z =. z, v at,ts end.
 end.
end.
~. z
)

The join verb can now be written as:

 join =: test PAIR extr

and we see:

 281 Chapter 18: Sets, Classes and Relations

AT TS AT join TS

+-----+----+
|Smith|Pigs|
+-----+----+
|Brown|Pets|
+-----+----+
|Smith|Dogs|
+-----+----+
|James|Dogs|
+-----+----+

+----+----+
|Pigs|pigs|
+----+----+
|Pets|cats|
+----+----+
|Pets|dogs|
+----+----+
|Dogs|dogs|
+----+----+

+-----+----+
|Smith|pigs|
+-----+----+
|Brown|cats|
+-----+----+
|Brown|dogs|
+-----+----+
|Smith|dogs|
+-----+----+
|James|dogs|
+-----+----+

The join verb as defined above is slow, because the test and
extr verbs are applied to a single x,y pair at a time - they are
scalar computations. Performance will be better if we can give
these verbs as much data as possible to work on at one time. (This
is a universal rule in J). Vector or array arguments are better. Here
is a revised vector-oriented version of PAIR and join, which still
avoids building the entire set of pairs.

 VPAIR =: 2 : 0
:
z =. 0 0 $ ''
for_at. x do.
 z =. z , |: v (#~"1 u) |: at , "1 y
end.
~. z
)

 vjoin =: test VPAIR extr

Chapter 18: Sets, Classes and Relations 282

giving the same result as before:

AT join TS AT vjoin TS

+-----+----+
|Smith|pigs|
+-----+----+
|Brown|cats|
+-----+----+
|Brown|dogs|
+-----+----+
|Smith|dogs|
+-----+----+
|James|dogs|
+-----+----+

+-----+----+
|Smith|pigs|
+-----+----+
|Brown|cats|
+-----+----+
|Brown|dogs|
+-----+----+
|Smith|dogs|
+-----+----+
|James|dogs|
+-----+----+

Representing relations as tables of boxed strings, as above, is less
than efficient. For a repeated value, the entire string is repeated.
Values are compared by comparing entire strings.

Now we look at another possibility. Rather than boxed strings, a
relation can be represented by a table of symbols.

18.4.2 What are Symbols?

Symbols are for efficient computation with string data. Symbols
are a distinct data-type, in the same way that characters, boxes
and numbers are distinct data-types. A symbol is a scalar which
identifies, or refers to, a string.

A symbol can be created by applying the built-in verb s:
(lowercase s colon) to a boxed string.

 283 Chapter 18: Sets, Classes and Relations

 a =: s: <'hello'

Now the variable a has a value of type symbol. We inspect this
value in the usual way:

 a
`hello

and see that the value is displayed as the original string preceded
by a left-quote. Even though a looks like a string when displayed,
it is a scalar.

a $ a # $ a

`hello 0

The original string is stored in a data-structure, maintained
automatically by the J system, called the symbol-table. Strings are
not duplicated within the symbol-table. Hence if another symbol b
is created from the same string as a, then b is equal to a.

a b =: s: <'hello' b = a

`hello `hello 1

Notice that the comparison is simple scalar equality, with no need
to compare the original strings.

Our relations above can be converted to arrays of symbols, and
joined as before.

Chapter 18: Sets, Classes and Relations 284

sAT =: s: AT sTS =: s: TS sAT vjoin sTS

`Smith `Pigs
`Brown `Pets
`Smith `Dogs
`James `Dogs

`Pigs `pigs
`Pets `cats
`Pets `dogs
`Dogs `dogs

`Smith `pigs
`Brown `cats
`Brown `dogs
`Smith `dogs
`James `dogs

Symbols are lexicographically ordered to reflect the ordering of the
original strings. Hence tables of symbols can be sorted:

sAT /:~ sAT

`Smith `Pigs
`Brown `Pets
`Smith `Dogs
`James `Dogs

`Brown `Pets
`James `Dogs
`Smith `Dogs
`Smith `Pigs

18.4.3 Measurements Compared

Here is a utility verb giving time in seconds to evaluate an
expression, averaged over say 4 executions.

 time =: (8j5 & ":) @: (4 & (6!:2))

The examples of relations above are too small for meaningful
performance measurements, so we make larger relations by
replicating each say 100 times.

 AT =: 100 $ AT
 TS =: 100 $ TS
 sAT =: 100 $ sAT

 285 Chapter 18: Sets, Classes and Relations

 sTS =: 100 $ sTS

There are 4 cases to compare:

 t1 =: time 'AT join TS' NB. scalar method, boxed strings
 t2 =: time 'sAT join sTS' NB. scalar method, symbols
 t3 =: time 'AT vjoin TS' NB. vector method, boxed strings
 t4 =: time 'sAT vjoin sTS' NB. vector method, symbols

and we see:

 3 3 $ ' '; 'strings'; 'symbols';'scalar';t1;t2; 'vector';t3;t4
+------+--------+--------+
| |strings |symbols |
+------+--------+--------+
|scalar| 1.78752| 0.04552|
+------+--------+--------+
|vector| 0.02507| 0.00199|
+------+--------+--------+

In Chapter 31 we will return to the topic of performance in
computing join of relations.

18.4.4 Saving and Restoring the Symbol Table
Suppose that data is an array of symbols.

] data =: s: 2 2 $ 'hello';
'blah';'blah';'goodbye'
`hello `blah
`blah `goodbye

For a symbol in data its original string ('hello' for example) is
stored only in the symbol table, not in data itself. The original
string is needed to display the value of the symbol.

Chapter 18: Sets, Classes and Relations 286

Suppose that we write data to a file, aiming to read it back in a
new session. At the beginning of a new session, the symbol table
is empty. Thus we must save the symbol table from the earlier
session, and reinstate it at the beginning of the new session.

First, here are two utility functions to save a value to a file and
retrieve it. (See Chapter 27 and Chapter 28 for more about data in
files.)

 save =: 4 : '(3!:1 x) 1!:2 < y '
 retr =: 3 : '3!:2 (1!:1 < y)'

Save the data to a file named, say, data.xyz

 data save 'data.xyz'

The symbol table is not itself a variable, but the expression 0 s:
10 gives a value for it. We save this value to a file named, say,
symtab.xyz

 (0 s: 10) save 'symtab.xyz'

Start a new J session. The symbol table is initially empty, so begin
by reinstating it from the file saved in the earlier session:

 10 s: (retr 'symtab.xyz')
1

Now, with the correct symbol table in place, we can retrieve the
array of symbols data from its file:

 DATA =: retr 'data.xyz'

 287 Chapter 18: Sets, Classes and Relations

and we see that the symbols are correctly interpreted:

 DATA
`hello `blah
`blah `goodbye

This is the end of Chapter 18

Chapter 19: Numbers 288

Chapter 19: Numbers

The topics covered in this chapter are:

• The different kinds of numbers available in J
• Special numbers (infinities and indeterminates)
• Notations for writing numbers
• How numbers are displayed and formatted
• Number bases
• Random numbers

19.1 Numbers of Six Different Kinds

J supports computation with numbers of these kinds:

• booleans (or truth-values)
• integers
• real (or floating-point) numbers
• complex numbers
• extended integers (that is, arbitrarily large integers exactly

represented)
• rationals (that is, pairs of extended integers)

Each kind of number has its own internal representation in
memory. For example, an array containing only the truth-values 0
and 1 is stored in a compact internal form, called "boolean", rather
than in the floating-point form. Similarly an array containing only
(relatively small) whole numbers is stored in a compact form called
"integer".

 289 Chapter 19: Numbers

The choice of appropriate representation is managed entirely
automatically by the J system, and is not normally something the
programmer must be aware of. However, there is a means of
testing the representation of a number. Here is a utility function for
the purpose.

 types =: 'bool';'int';'float';'complex';'ext int';'rational'

 type =: > @: ({ & types) @: (1 4 8 16 64 128 & i.) @: (3 !: 0)

type 0=0 type 37 type 2.5 type 12345678901

bool int float float

19.1.1 Booleans
There are built-in functions for logical computation with boolean
values. Giving conventional names to these functions:

 and =: *.
 or =: +.
 not =: -.
 notand =: *:
 notor =: +:

we can show their truth-tables:

 p =: 4 1 $ 0 0 1 1
 q =: 4 1 $ 0 1 0 1

Chapter 19: Numbers 290

p q p and q p or q not p p notand q

0
0
1
1

0
1
0
1

0
0
0
1

0
1
1
1

1
1
0
0

1
1
1
0

Further logical functions can be defined in the usual way. For
example, logical implication, with the scheme

 p implies q means not (p and not q)

is defined by not composed with the hook and not

 implies =: not @ (and not)

p q p implies q

0
0
1
1

0
1
0
1

1
1
0
1

Notice that in the truth-table above the rows are given in an order
such that p,q = successively 00 01 10 11 in binary or 0 1 2 3. Call
this the standard order.

With the rows of a truth-table in standard order, the result-column
can be read as a 4-bit number, 1 1 0 1 in this example. This

 291 Chapter 19: Numbers

means that there are altogether only 16 possible logical functions
of two arguments, and that any of them can be specified by giving
its 4-bit result.

There is a built-in adverb b. (lowercase b dot, called "Boolean"),
which can take an integer in the range 0-15, expressing a 4-bit
result, and produces the corresponding logical function.

For example, we saw above that for logical implication its 4-bit
specification is 1 1 0 1 or 13, giving us another way to define
implication as 13 b. We see:

p q p implies q p (13 b.) q

0
0
1
1

0
1
0
1

1
1
0
1

1
1
0
1

We regard the booleans as numbers because they can be
interpreted as having arithmetic values. To illustrate, implication
has the same truth-table as less-than-or-equal:

p implies q p <: q

1
1
0
1

1
1
0
1

For another example of booleans as numbers, the sum of the
positive numbers in a list is shown by:

Chapter 19: Numbers 292

z =: 3 _1 4 b =: z > 0 b * z +/ b * z

3 _1 4 1 0 1 3 0 4 7

19.1.2 Integers
On a 32-bit machine integers range between _2147483648 and
2147483647.

The result of arithmetic with integers is converted to floating-point
if larger than the maximum integer.

maxint=:2147483647 type maxint z =: 1+maxint type z

2147483647 int 2.14748e9 float

19.1.3 Bitwise Logical Functions on Integers

J provides all the expected functions on integers, so not much
need be said here. However, this might be a good place to mention
that bitwise logical functions on integers are available through the
built-in adverb b. we met above. To begin, here is a utility function
to show the last 8 bits of an integer.

 bits =: ('... ' & ,) @: ({&'01')@:((8#2) & #:)

bits 0 bits 1 bits 5

... 00000000 ... 00000001 ... 00000101

 293 Chapter 19: Numbers

Recall that logical function k is given by k b. where k is in the
range 0-15. The function (k+16) b. is logically the same, but
applies, not to booleans, but to integers bitwise, that is, on
machine words.

For example (1 b.) is logical-and on booleans, while (17 b.) is
logical-and on integers.

 BLAND =: 17 b. NB. bit-wise logical and

bits 45 bits 7 bits 45 BLAND 7

... 00101101 ... 00000111 ... 00000101

The verb (32 b.) rotates the bits of y leftward by x places, or
rightward for negative x. Similarly (33 b.) shifts and (34 b.)
performs a "signed shift" that is, propagating the sign bit on a
rightward move. For example:

] a =: 1
1

] b =: _1 (32 b.) a NB. rotating rightwards
_2147483648

] c =: _1 (34 b.) b NB. shifting right,
propagating sign-bit
_1073741824

] d =: 2 (34 b.) c NB. shifting left,
removing sign-bits
0

Chapter 19: Numbers 294

For one more example, recall the Collatz function from Chapter 10
: halve if even, otherwise triple and add one. Here is a bitwise
version.

 odd =: (17 b.) & 1
 halve =: _1 & (33 b.) NB. OK for an even number !
 triple =: + (1 & (33 b.))

 collatz =: halve ` (1 + triple) @. odd

 collatz ^: (i. 10) 5
5 16 8 4 2 1 4 2 1 4

19.1.4 Floating-Point Numbers

A floating-point number is a number represented in the computer
in such a way that: (1) there may be a a fractional part as well as
a whole-number part. (2) a fixed amount of computer storage is
occupied by the number, whatever the value of the number. and
therefore (3) the precision with which the number is represented is
limited to at most about 17 significant decimal digits (on a PC).

Examples of floating-point numbers are 0.25 2.5 12345678901

We will use the term "real" more or less interchangeably with
"floating-point".

19.1.5 Scientific Notation

What is sometimes called "scientific notation" is a convenient way
of writing very large or very small numbers. For example, 1500000
may be written as 1.5e6, meaning 1.5 * 10^6. The general
scheme is that a number written in the form XeY, where Y is a
(positive or negative) integer means (X * 10^Y).

 295 Chapter 19: Numbers

3e2 1.5e6 1.5e_4

300 150000
0

0.00015

Note that in 3e2 the letter e is not any kind of function; it is part of
the notation for writing numbers, just as a decimal point is part of
the notation.

We say that the string of characters 3 followed by e followed by 2
is a numeral which denotes the number 300. The string of
characters 3 followed by 0 followed by 0 is another numeral
denoting the same number. Different forms of numerals provide
convenient ways to express different numbers. A number
expressed by a numeral is also called a "constant" (as opposed to
a variable.)

We will come back to the topic of numerals: now we return to the
topic of different kinds of numbers.

19.1.6 Comparison of Floating-Point Numbers

Two numbers are regarded as equal if their difference is relatively
small. For example, we see that a and b have a non-zero
difference, but even so the expression a = b produces "true".

a =: 1.001 b =: a - 2^_45 a - b a = b

1.001 1.001 2.84217e_14 1

If we say that the "relative difference" of two numbers is the
magnitude of the difference divided by the larger of the

Chapter 19: Numbers 296

magnitudes:

 RD =: (| @: -) % (>. &: |)

then for a=b to be true, the relative difference (a RD b) must not
exceed a small value called the "comparison tolerance" which is by
default 2^_44

a RD b 2^_44 a = b

2.83933e_14 5.68434e_14 1

Thus to compare two numbers we need to compare relative
difference with tolerance. The latter comparison is itself strict, that
is, does not involve any tolerance.

Zero is not tolerantly equal to any non-zero number, no matter
how small, because the relative difference must be 1, and thus
greater than tolerance.

tiny =: 1e_300 tiny = 0 tiny RD 0

1e_300 0 1

However, 1+tiny is tolerantly equal to 1.

tiny tiny = 0 1 = tiny + 1

1e_300 0 1

The value of the comparison tolerance currently in effect is given

 297 Chapter 19: Numbers

by the built-in verb 9!:18 applied to a null argument. It is
currently 2^_44.

9!:18 '' 2^_44

5.68434e_14 5.68434e_14

Applying the built-in verb 9!:19 to an argument y sets the
tolerance to y subsequently. The following example shows that
when the tolerance is 2^_44, then a = b but when the tolerance is
set to zero it is no longer the case that a = b.

(9!:19) 2^_44 a = b (9!:19) 0 a = b

 1 0

The tolerance queried by 9!:18 and set by 9!:19 is a global
parameter, influencing the outcome of computations with =. A verb
to apply a specified tolerance t, regardless of the global
parameter, can be written as = !. t. For example, strict (zero-
tolerance) equality can be defined by:

 streq =: = !. 0

Resetting the global tolerance to the default value, we see:

(9!:19) 2^_44 a - b a = b a streq b

 2.84217e_14 1 0

Chapter 19: Numbers 298

Comparison with = is tolerant, and so are comparisons with <, <:,
>, >:, ~: and -:. For example, the difference a-b is positive but
too small to make it true that a>b

a - b a > b

2.84217e_14 0

Permissible tolerances range between 0 and 2^_35. That is, an
attempt to set the tolerance larger than 2^_35 is an error:

(9!:19) 2^_35 (9!:19) 2^_34

 error

The effect of disallowing large tolerances is that no two different
integers compare equal when converted to floating-point.

19.1.7 Complex Numbers

The square root of -1 is the imaginary number conventionally
called "i". A complex number which is conventionally written as, for
example, 3+i4 is in J written as 3j4.

In J an imaginary number is represented as a complex number
with real part zero. Thus "i", the square root of -1, can be written
0j1.

i =: %: _1 i * i 0j1 * 0j1

0j1 _1 _1

 299 Chapter 19: Numbers

A complex number can be built from two separate real numbers by
arithmetic in the ordinary way, or more conveniently with the built-
in function j. (lowercase j dot, called "Complex").

3 + (%: _1) * 4 3 j. 4

3j4 3j4

Some more examples of arithmetic with complex numbers:

2j3 * 5j7 10j21 % 5j7 2j3 % 2

_11j29 2.66216j0.47297
3

1j1.5

A complex number such as 3j4 is a single number, a scalar. To
extract its real part and imaginary part separately we can use the
built-in verb +.(plus dot, called "Real/Imaginary"). To extract
separately the magnitude and angle (in radians) we can use the
built-in verb *. (asterisk dot, called "Length/Angle").

+. 3j4 *. 3j4

3 4 5 0.927295

Given a magnitude and angle, we can build a complex number by
taking sine and cosine, or more conveniently with the built-in
function r. (lowercase r dot, called "Polar").

 sin =: 1 & o.
 cos =: 2 & o.

Chapter 19: Numbers 300

 mag =: 5
 ang =: 0.92729522 NB. radians

mag * (cos ang) + 0j1 * sin ang mag r. ang

3j4 3j4

A complex constant with magnitude X and angle (in radians) Y can
be written in the form XarY, meaning X r. Y. Similarly, if the
angle is given in degrees, we can write XadY.

5ar0.9272952 5ad53.1301

3j4 3j4

19.1.8 Extended Integers

A floating-point number, having a limited storage space in the
computer's memory, can represent an integer exactly only up to
about 17 digits. For exact computations with longer numbers,
"extended integers" are available. An "extended integer" is a
number which exactly represents an integer no matter how many
digits are needed. An extended integer is written with the digits
followed with the letter 'x'. Compare the following:

a =: *: 10000000001 b =: *: 10000000001x

1e20 100000000020000000001

Here a is an approximation while b is an exact result.

 301 Chapter 19: Numbers

type a type b

float ext int

We can see that adding 1 to a makes no difference, while adding 1
to b does make a difference:

(a + 1) - a (b + 1) - b

0 1

19.1.9 Rational Numbers

A "rational number" is a single number which represents exactly
the ratio of two integers, for example, two-thirds is the ratio of 2
to 3. Two-thirds can be written as a rational number with the
notation 2r3.

The point of rationals is that they are are exact representations
using extended integers. Arithmetic with rationals gives exact
results.

2r3 + 1r7 2r3 * 4r7 2r3 % 5r7

17r21 8r21 14r15

Rationals can be constructed by dividing extended integers.
Compare the following:

Chapter 19: Numbers 302

2 % 3 2x % 3x

0.666667 2r3

A rational can be constructed from a given floating-point number
with the verb x:

x: 0.3 x: 1 % 3

3r10 1r3

A rational number can be converted to a floating-point
approximation with the inverse ofx: , that is, verb x: ^: _1

float =: x: ^: _1 float 2r3

+--+--+--+
|x:|^:|_1|
+--+--+--+

0.666667

Given a rational number, its numerator and denominator can be
recovered with the verb 2 & x:, which gives a list of length 2.

nd =: 2 & x: nd 2r3

+-+-+--+
|2|&|x:|
+-+-+--+

2 3

 303 Chapter 19: Numbers

19.1.10 Type Conversion

We have numbers of six different types: boolean, integer, extended
integer, rational, floating-point and complex.

Arithmetic can be done with a mixture of types. For example an
integer plus an extended gives an extended, and a rational times a
float gives a float.

1 + 10^19x 1r3 * 0.75

10000000000000000001 0.25

The general scheme is that the six types form a progression: from
boolean to integer to extended to rational to floating-point to
complex. We say that boolean is the simplest or "lowest" type and
complex as the most general or "highest" type

Where we have two numbers of different types, the one of lower
type is converted to match the type of the higher. and the result is
of the "higher".

type 1r3 type 1%3 z =: 1r3, 1%3 type z

rational float 0.333333 0.333333 float

19.2 Special Numbers

19.2.1 "Infinity"

A floating-point number can (on a PC) be no larger than about

Chapter 19: Numbers 304

1e308, because of the way it is stored in the computer's memory.
Any arithmetic which attempts to produce a larger result will in
fact produce a special number called "infinity" and written _
(underscore). For example:

1e308 * 0 1 2 1e40
0

1 % 0

0 1e308 _ _ _

There is also "negative infinity" written as __ (underscore
underscore). Infinity is a floating-point number:

 type _
float

19.2.2 "Indeterminate" Numbers

A floating-point number is a 64-bit value, but not all 64-bit values
are valid as floating-point numbers. Any which is not valid is said
to be "Not a Number", or a "NaN". Such a value might occur, for
example, in data imported into a J program from an unreliable
external source.

When displaying the values of numbers, the J system reports any
supposed floating-point number, which is in fact "Not a Number",
as the symbol _. (underbar dot, called "Indeterminate").

Floating-point arithmetic on _. arguments cannot be relied upon
to produce meaningful results. Thus _. is best regarded solely as a

 305 Chapter 19: Numbers

mark of error.

The sole reliable test for _. is the verb 128 !: 5 . In the following
example note the difference between results of the unreliable test
X = _. and the reliable test 128 !: 5 X .

X =: 1.5 _. 2.5 X = _. 128!:5 X

1.5 _. 2.5 0 0 0 0 1 0

19.3 Number Bases

The number 5 is represented in binary as 1 0 1. There is a built-
in function, monadic #: (hash colon, called "Antibase Two") to
compute the binary digits. Note that the result is a list.

 #: 5
1 0 1

We say that the binary digits are the base-2 representation. More
generally, a base-n representation can be produced. The left
argument of dyadic #: (called "Antibase") specifies the both the
base and the number of digits. To get four binary digits we can
write:

 2 2 2 2 #: 5
0 1 0 1

63 as two base-8 (octal) digits:

 8 8 #: 63
7 7

Chapter 19: Numbers 306

A mixed-base representation is possible. How many hours,
minutes and seconds are there in 7265 seconds?

 24 60 60 #: 7265
2 1 5

The inverse functions produce numbers from lists of digits in
specified bases. Monadic #. is called "Base Two". Binary 1 0 1 is 5

 #. 1 0 1
5

Dyadic #. is called "Base". Its left argument specifies a number-
base for the digits of the right argument.

 2 #. 1 0 1
5

Equivalently:

 2 2 2 #. 1 0 1
5

There must be a base specified on the left for each digit on the
right, otherwise an error is signalled

 2 2 #. 1 0 1
|length error
| 2 2 #.1 0 1
|[-531] c:\users\homer\13\js\19.ijs

 307 Chapter 19: Numbers

Again, mixed bases are possible: 2 hours 1 minute 5 seconds is
7265 seconds

 24 60 60 #. 2 1 5
7265

19.4 Notations for Numerals

We have seen above numerals formed with the letters e, r and j,
for example: 1e3, 2r3, and 3j4. Here we look at more letters for
forming numerals.

A numeral written with letter p, of the form XpY means X * pi ^
Y where pi is the familiar value 3.14159265....

pi =: 1p1 twopi =: 2p1 2p_1

3.14159 6.28319 0.63662

Similarly, a numeral written with letter x, of the form XxY means X
* e ^ Y where e is the familiar value 2.718281828....

e =: 1x1 2x_1 2 * e ^ _1

2.71828 0.735759 0.735759

These p and x forms of numeral provide a convenient way of
writing constants accurately without writing out many digits.
Finally, we can write numerals with a base other than 10. For
example the binary or base-2 number with binary digits 101 has

Chapter 19: Numbers 308

the value 5 and can be written as 2b101.

 2b101
5

The general scheme is that NbDDD.DDD is a numeral in number-
base N with digits DDD.DDD . With bases larger than 10, we will
need digits larger than 9, so we take letter 'a' as a digit with
value 10, 'b' with value 11, and so on up to 'z' with value 35.

For example, letter 'f' has digit-value 15, so in hexadecimal (base
16) the numeral written 16bff has the value 255. The number-
base N is given in decimal.

16bff (16 * 15) + 15

255 255

One more example. 10b0.9 is evidently a base-10 number
meaning "nine-tenths" and so, in base 20, 20b0.f means "fifteen
twentieths"

 10b0.9 20b0.f
0.9 0.75

19.4.1 Combining the Notations
The notation-letters e, r, j ar ad p x and b may be used in
combination. For example we can write 1r2p1 to mean "pi over
two". Here are some further examples of possible combinations.

A numeral in the form XrY denotes the number X%Y. A numeral in
the form XeYrZ denotes the number (XeY) % Z because e is
considered before r.

 309 Chapter 19: Numbers

1.2e2 (1.2e2) % 4 1.2e2r4

120 30 30

A numeral in the form XjY denotes the complex number (X j. Y)
(that is, (X + (%: _1) * Y). A numeral in the form XrYjZ
denotes the number (XrY) j. Z because r is considered before j

3r4 (3r4) j. 5 3r4j5

3r4 0.75j5 0.75j5

A numeral in the form XpY denotes the number X*pi^Y. A numeral
in the form XjYpZ denotes (XjY) *pi^Z because j is considered
before p.

3j4p5 (3j4) * pi ^ 5

918.059j1224.08 918.059j1224.08

A numeral in the form XbY denotes the number Y-in-base-X. A
numeral in the form XpYbZ denotes the number Z-in-base-(XpY)
because p is considered before b.

(3*pi)+5 1p1b35

14.4248 14.4248

Chapter 19: Numbers 310

19.5 How Numbers are Displayed

A number is displayed by J with, by default, up to 6 or 7 significant
digits. This means that, commonly, small integers are shown
exactly, while large numbers, or numbers with many significant
digits, are shown approximately.

10 ^ 3 2.7182818285 2.718281828 * 10 ^ 7

1000 2.71828 2.71828e7

The number of significant digits used for display is determined by a
global variable called the "print-precision". If we define the two
functions:

 ppq =: 9 !: 10 NB. print-precision query
 pps =: 9 !: 11 NB. print-precision set

then the expression ppq '' gives the value of print-precision
currently in effect, while pps n will set the print-precision to n.

ppq '' e =: 2.718281828 pps 8 e

6 2.71828 2.7182818

19.5.1 The "Format" Verb

There is a built-in verb ": (doublequote colon, called "Format").
Monadic Format converts a number into a string representing the
number with the print-precision currently in effect. In the following
example, note that a is a scalar, while the formatted
representation of a is a list of characters.

 311 Chapter 19: Numbers

a =: 1 % 3 ": a $ ": a

0.33333333 0.33333333 10

The argument can be a list of numbers and the result is a single
string.

b =: 1 % 3 4 ": b $ b $ ": b

0.33333333 0.25 0.33333333
0.25

2 15

Dyadic Format allows more control over the representation. The
left argument is complex: a value of say, 8j4 will format the
numbers in a width of 8 characters and with 4 decimal places.

c =: % 1 + i. 2 2 w =: 8j4 ": c $ w

 1 0.5
0.33333333 0.25

 1.0000 0.5000
 0.3333 0.2500

2 16

If the width is specified as zero (as in say 0j3) then sufficient
width is allowed. If the number of decimal places is negative (as in
10j_3) then numbers are shown in "scientific notation"

c 0j3 ": c 10j_3 ": c

 1 0.5
0.33333333 0.25

1.000 0.500
0.333 0.250

1.000e0 5.000e_1
3.333e_1 2.500e_1

Chapter 19: Numbers 312

Note that monadic format shows a complex number in the usual
way, but dyadic format shows only the real part of a complex
number.

z =: 3.14j2.72 ": z 6j2 ": z

3.14j2.72 3.14j2.72 3.14

More formatting options are provided by the built-in verbs 8!:n.
Here is a small example to show a few of the many options
described in the J dictionary.

Suppose our table of numbers to be formatted is N

] N =: 3 2 $ 3.8 _2000 0 123.45 _3.14 15000
 3.8 _2000
 0 123.45
_3.14 15000

We can format each column of N separately. Suppose numbers in
the first column are to be presented as blank when zero, 6
characters wide with 0 decimal places. We write a "formatting
phrase" like this

 fp1 =: 'b6.0'

Here the 'b' means blank when zero.

Suppose for the second column we require a comma between each
3 digits. We require negative numbers to be shown with a following
"CR" and therefore non-negative numbers should be followed by
two blank characters, so that decimal points line up vertically. We
require a 12-character width with 2 decimal places.

 313 Chapter 19: Numbers

A suitable formatting phrase is like this:

 fp2 =: 'cn{CR}q{ }12.2'

Here the 'c' means commas, n{CR} means CR after a negative
number and q{ } means 2 spaces after a non-negative.

Applying the formatting verb 8!:2 we see

N (fp1;fp2) (8!:2) N

 3.8 _2000
 0 123.45
_3.14 15000

 4 2,000.00CR
 123.45
 -3 15,000.00

The formatted result is a character table of dimensions 3 by 18,
because N has 3 rows, and we specified widths of 6 and 12 for first
and second columns.

 $ (fp1;fp2) (8!:2) N
3 18

19.6 Random Numbers

19.6.1 Roll

There are built-in functions for generating random numbers.
Monadic ? is called "Roll", because ? n gives the result of rolling a
die with n faces marked 0 to n-1.

Chapter 19: Numbers 314

 ? 6
4

That is, ? n is selected from the items of i. n randomly with equal
probability.

A list of random numbers is generated by repeating the n-value.
For example, four rolls of a six-sided die is given by

 ? 6 6 6 6
3 4 5 2

or more conveniently by:

 ? 4 $ 6
2 3 5 3

19.6.2 Uniform Distribution

With an argument of zero, monadic ? generates random reals
uniformly distributed, greater than 0 and less than 1.

 ? 0 0 0 0
0.14112615 0.083891464 0.41388488 0.055053198

19.6.3 Other Distributions

The built-in verb ? generates equiprobable numbers. Various other
distributions are provided by the J Application Library stats/distribs
Addon

 315 Chapter 19: Numbers

19.6.4 Deal

Dyadic ? is called "Deal". x ? y is a list of x integers randomly
chosen from i. y without replacement, that is, the x integers are
all different.

Suppose that cards in a deck are numbered 0 to 51, then 13 ? 52
will deal a single hand of 13 randomly selected cards, all different.

 13 ? 52
44 2 36 30 0 6 43 26 28 1 34 48 41

A shuffle of the whole deck is given by 52 ? 52. To shuffle and
then deal four hands:

 4 13 $ 52 ? 52
15 18 3 8 11 25 27 51 20 31 50 48 35
45 39 21 29 10 33 32 41 36 0 34 16 22
19 14 37 2 24 42 6 7 30 46 47 28 26
38 23 40 13 4 9 5 12 49 1 44 43 17

This brings us to the end of Chapter 19.

Chapter 20: Scalar Numerical Functions 316

Chapter 20: Scalar Numerical
Functions

In this chapter we look at built-in scalar functions for computing
numbers from numbers. This chapter is a straight catalog of
functions, with links to the sections as follows:

Ceiling Conjugate cos cos -1 cosh cosh -1

Decrement divide Double Exponential Factorial Floor

GCD Halve Increment LCM Logarithm
Log,
Natural

Magnitude Minus multiply Negate OutOf PiTimes

Plus power Pythagorean Reciprocal Residue Root

Signum sin sin -1 sinh sinh -1 Square

SquareRoot tan tan -1 tanh tanh -1

20.1 Plus and Conjugate

Dyadic + is arithmetic addition.

 317 Chapter 20: Scalar Numerical Functions

2 + 2 1.5 + 0.25 3j4 + 5j4 2r3 + 1r6

4 1.75 8j8 5r6

Monadic + is "Conjugate". For a real number y, the conjugate is y.
For a complex number xjy (that is, x + 0jy), the conjugate is x -
0jy.

+ 2 + 3j4

2 3j_4

20.2 Minus and Negate

Dyadic - is arithmetic subtraction.

2 - 2 1.5 - 0.25 3 - 0j4 2r3 - 1r6

0 1.25 3j_4 1r2

Monadic - is "Negate".

- 2 - 3j4

_2 _3j_4

Chapter 20: Scalar Numerical Functions 318

20.3 Increment and Decrement

Monadic >: is called "Increment". It adds 1 to its argument.

>: 2 >: 2.5 >: 2r3 >: 2j3

3 3.5 5r3 3j3

Monadic <: is called "Decrement". It subtracts 1 from its
argument.

<: 3 <: 2.5 <: 2r3 <: 2j3

2 1.5 _1r3 1j3

20.4 Times and Signum

Dyadic * is multiplication.

2 * 3 1.5 * 0.25 3j1 * 2j2 2r3 * 7r11

6 0.375 4j8 14r33

Monadic * is called "Signum". For a real number y, the value of (*
y) is _1 or 0 or 1 as y is negative, zero or positive.

 319 Chapter 20: Scalar Numerical Functions

* _2 * 0 * 2

_1 0 1

More generally, y may be real or complex, and the signum is
equivalent to y % | y. Hence the signum of a complex number
has magnitude 1 and the same angle as the argument.

y =: 3j4 | y y % | y * y | * y

3j4 5 0.6j0.8 0.6j0.8 1

20.5 Division and Reciprocal

Dyadic % is division.

2 % 3 1.4 % 0.25 3j4 % 2j1 12x % 5x

0.666667 5.6 2j1 12r5

1 % 0 is "infinity" but 0 % 0 is 0

1 % 0 0 % 0

_ 0

Chapter 20: Scalar Numerical Functions 320

Monadic % is the "reciprocal" function.

% 2 % 0j1

0.5 0j_1

20.6 Double and Halve

Monadic +: is the "double" verb.

+: 2.5 +: 3j4 +: 3x

5 6j8 6

Monadic -: is the "halve" verb:

-: 6 -: 6.5 -: 3j4 -: 3x

3 3.25 1.5j2 3r2

20.7 Floor and Ceiling

Monadic <. (left-angle-bracket dot) is called "Floor". For real y the
floor of y is y rounded downwards to an integer, that is, the largest
integer not exceeding y.

 321 Chapter 20: Scalar Numerical Functions

<. 2 <. 3.2 <. _3.2 <. 4r3

2 3 _4 1

For complex y, the floor lies within a unit circle center y, that is,
the magnitude of (y - <. y) is less than 1.

y =: 3.4j3.4 z =: <. y y - z | y-z

3.4j3.4 3j3 0.4j0.4 0.565685

This condition (magnitude less than 1) means that the floor of say
3.8j3.8 is not 3j3 but 4j3 because 3j3 does not satisfy the
condition.

y =: 3.8j3.8 z =: <. y | y-z | y - 3j3

3.8j3.8 4j3 0.824621 1.13137

Monadic >. is called "Ceiling". For real y the ceiling of y is y
rounded upwards to an integer, that is, the smallest integer
greater than or equal to y. For example:

>. 3.0 >. 3.1 >. _2.5

3 4 _2

Ceiling applies to complex y

Chapter 20: Scalar Numerical Functions 322

>. 3.4j3.4 >. 3.8j3.8

3j4 4j4

20.8 Power and Exponential

Dyadic ^ is the "power" verb: (x^y) is x raised-to-the-power y

10 ^ 2 10 ^ _2 100 ^ 1%2

100 0.01 10

Monadic ^ is exponentiation (or antilogarithm): ^y means (e^y)
where e is Euler's constant, 2.71828...

^ 1 ^ 1.5 ^ 3r2 ^ 0j1

2.71828 4.48169 4.48169 0.540302j0.841471

Euler's equation, supposedly engraved on his tombstone is:
 e i π +1 = 0

 (^ 0j1p1) + 1
0j1.22465e_16

The example of ^ 3r2 above shows that rationals are in the
domain of ^ , but the result is real, not rational. A rational
argument is in effect first converted to real.

 323 Chapter 20: Scalar Numerical Functions

20.9 Square

Monadic *: is "Square".

*: 4 *: 2j1

16 3j4

20.10 Square Root

Monadic %: is "Square Root".

%: 9 %: 3j4 2j1 * 2j1

3 2j1 3j4

20.11 Root

If x is integral, then x %: y is the "x'th root" of y:

3 %: 8 _3 %: 8

2 0.5

More generally, (x %: y) is an abbreviation for (y ^ % x)

Chapter 20: Scalar Numerical Functions 324

x =: 3 3.1 x %: 8 8 ^ % x

3 3.1 2 1.95578 2 1.95578

20.12 Logarithm and Natural Logarithm

Dyadic ^. is the base-x logarithm function, that is, (x ^. y) is the
logarithm of y to base x :

10 ^. 1000 2 ^. 8 10 ^. 2j3 10 ^. 2r3

3 3 0.556972j0.426822 _0.176091

Monadic ^. is the "natural logarithm" function.

e =: ^ 1 ^. e ^. 2j3 ^. 2r3

2.71828 1 1.28247j0.982794 _0.405465

The example of ^. 2r3 above shows that rationals are in the
domain of ^. but the result is real, not rational. A rational
argument is in effect first converted to real.

20.13 Factorial and OutOf

The factorial function is monadic !.

 325 Chapter 20: Scalar Numerical Functions

! 0 1 2 3 4 ! 5x 6x 7x 8x

1 1 2 6 24 120 720 5040 40320

The number of combinations of x objects selected out of y objects
is given by the expression x ! y

1 ! 4 2 ! 4 3 ! 4

4 6 4

20.14 Magnitude and Residue

Monadic | is called "Magnitude". For a real number y the
magnitude of y is the absolute value:

| 2 | _2

2 2

More generally, y may be real or complex, and the magnitude is
equivalent to (%: y * + y).

y =: 3j4 y * + y %: y * + y | y

3j4 25 5 5

The dyadic verb | is called "Residue". the remainder when y is

Chapter 20: Scalar Numerical Functions 326

divided by x is given by (x | y).

10 | 12 3 | _2 _1 0 1 2 3 4 5 1.5 | 3.7

2 1 2 0 1 2 0 1 2 0.7

If x | y is zero, then x is a divisor of y:

4 | 12 12 % 4

0 3

The "Residue" function applies to complex numbers:

a =: 1j2 b=: 2j3 a | b a | (a*b) (b-1j1) % a

1j2 2j3 0j_1 0 1

20.15 GCD and LCM

The greatest common divisor (GCD) of x and y is given by (x +.
y). Reals and rationals are in the domain of +..

6 +. 15 _6 +. _15 2.5 +. 3.5 6r7 +. 15r7

3 3 0.5 3r7

Complex numbers are also in the domain of +..

 327 Chapter 20: Scalar Numerical Functions

a=: 1j2 b=:2j3 c=:3j5 (a*b) +. (b*c)

1j2 2j3 3j5 2j3

The Least Common Multiple of x and y is given by (x *. y).

(2 * 3) *. (3 * 5) 2*3*5

30 30

20.16 Pi Times

There is a built-in verb o. (lower-case o dot). Monadic o. is called
"Pi Times"; it multiplies its argument by 3.14159...

o. 1 o. 2 o. 1r6 o. 2j3

3.14159 6.28319 0.523599 6.28319j9.42478

The example of o. 1r6 above shows that rationals are in the
domain of sin but the result is real, not rational. A rational
argument is in effect first converted to real.

A result with arbitrary precision can be be produced by giving an
argument of an extended integer to the verb <. @ o. for which
there is special code in the J interpreter

http://www.jsoftware.com/help/dictionary/special.htm

Chapter 20: Scalar Numerical Functions 328

] z =: (<. & o.) 10^40x
31415926535897932384626433832795028841971
 datatype z
extended

20.17 Trigonometric and Other Functions

If y is an angle in radians, then the sine of y is given by the
expression 1 o. y. The sine of (π over 6) is 0.5

y =: o. 1r6 1 o. y

0.523599 0.5

The general scheme for dyadic o. is that (k o. y) means: apply
to y a function selected by k. Here y is an angle in radians.

Giving conventional names to the available functions, we have:

 sin =: 1 & o. NB. sine
 cos =: 2 & o. NB. cosine
 tan =: 3 & o. NB. tangent

 sinh =: 5 & o. NB. hyperbolic sine
 cosh =: 6 & o. NB. hyperbolic cosine
 tanh =: 7 & o. NB. hyperbolic tangent

 asin =: _1 & o. NB. inverse sine

 329 Chapter 20: Scalar Numerical Functions

 acos =: _2 & o. NB. inverse cosine
 atan =: _3 & o. NB. inverse tangent

 asinh =: _5 & o. NB. inverse hyperbolic sine
 acosh =: _6 & o. NB. inverse hyperbolic cosine
 atanh =: _7 & o. NB. inverse hyperb. tangent

y sin y asin sin y sin 1r4

0.523599 0.5 0.523599 0.247404

The example of sin 1r4 above shows that rationals are in the
domain of sin but the result is real, not rational. A rational
argument is in effect first converted to real.

20.18 Pythagorean Functions

There are also the "pythagorean"functions:

 0 o. y means %: 1 - y^2

 4 o. y means %: 1 + y^2

 8 o. y means %: - 1 + y^2

 _4 o. y means %: _1 + y^2

 _8 o. y means - %: - 1 + y^2

Chapter 20: Scalar Numerical Functions 330

y =: 0.6 0 o. y %: 1 - y^2

0.6 0.8 0.8

and a further group of functions on complex numbers:

 9 o. xjy means x (real part)

 10 o. xjy means %: (x^2) + (y^2) (magnitude)

 11 o. xjy means y (imag part)

 12 o. xjy means atan (y % x) (angle)

9 o. 3j4 10 o. 3j4 11 o. 3j4 12 o. 3j4

3 5 4 0.927295

and finally

 _9 o. xjy means xjy (identity)

 _10 o. xjy means x j -y (conjugate)

 _11 o. xjy means 0j1 * xjy (j. xjy)

 _12 o. a means (cos a)+(j. sin a) (inverse
 angle)

For example:

 331 Chapter 20: Scalar Numerical Functions

a =: 12 o. 3j4 _12 o. a

0.927295 0.6j0.8

This is the end of chapter 20

Chapter 21: Factors and Polynomials 332

Chapter 21: Factors and Polynomials

In this chapter we look at the built-in functions:

• monadic q: which computes the prime factors of a number
• dyadic q: which represents a number as powers of primes
• monadic p: which generates prime numbers
• dyadic p. which evaluates polynomials
• monadic p. which finds roots of polynomials

21.1 Primes and Factors

The built-in function monadic q: computes the prime factors of a
given number.

q: 6 q: 8 q: 17 * 31 q: 1 + 2^30

2 3 2 2 2 17 31 5 5 13 41 61 1321

The number 0 is not in the domain of q: The number 1 is in the
domain of q:, but is regarded as having no factors, that is, its list
of factors is empty.

q: 0 q: 1 # q: 1

error 0

 333 Chapter 21: Factors and Polynomials

For a large number (greater than about 2^53), its value should be
specified as an extended integer to ensure all its significant digits
are supplied to q: ..

 q: 1 + 2 ^ 53x
3 107 28059810762433

A prime number is the one and only member of its list of factors.
Hence a test for primality can readily be written as the hook:
member-of-its-factors

pr =: e. q: pr 8 pr 17 pr 1

e. q: 0 1 0

Any positive integer can be written as the product of powers of
successive primes. Some of the powers will be zero. For example
we have:

 9 = (2^0) * (3^2) * (5^0) * (7^0)
1

The list of powers, here 0 2 0 0 ... can be generated with dyadic
q:. The left argument x specifies how many powers we choose to
generate.

4 q: 9 3 q: 9 2 q: 9 1 q: 9 6 q: 9

0 2 0 0 0 2 0 0 2 0 0 2 0 0 0 0

Giving a left argument of "infinity" (_) means that the number of

Chapter 21: Factors and Polynomials 334

powers generated is just enough, in which case the last will be
non-zero.

_ q: 9 _ q: 17 * 31

0 2 0 0 0 0 0 0 1 0 0 0 1

There is a built-in function, monadic p: (lowercase p colon) which
generates prime numbers. For example (p: 17) is the 18th prime.

p: 0 1 2 3 4 5 6 p: 17

2 3 5 7 11 13 17 61

On my computer the largest prime which can be so generated is
between p: 2^26 and p: 2^27.

p: 2^26 p: 2^27 p: 2^27x

1339484207 error error

21.2 Polynomials

21.2.1 Coefficients
If x is a variable, then an expression in conventional notation such
as

a + bx + cx2 + dx3 + ...

 335 Chapter 21: Factors and Polynomials

is said to be a polynomial in x. If we write C for the list of
coefficients a,b,c,d ..., for example,

 C =: _1 0 1

and assign a value to x, for example,

 x=:2

then the polynomial expression can be written in J in the form +/
C * x ^ i. # C

C #C i.#C x x^i.#C C*x^i.#C +/C*x^i.# C

_1 0 1 3 0 1 2 2 1 2 4 _1 0 4 3

The dyadic verb p. allows us to abbreviate this expression to C p.
x,

+/C*x^i.# C C p. x

3 3

The scheme is that, for a list of coefficients C:

 C p. x means +/ C * x ^ i. # C

A polynomial function is conveniently written in the form C&p.

Chapter 21: Factors and Polynomials 336

p =: _1 0 1 & p. p x

_1 0 1&p. 3

This form has a number of advantages: compact to write, efficient
to evaluate and (as we will see) easy to differentiate.

21.2.2 Roots
Given a list of coefficients C, we can compute the roots of the
polynomial function C&p. by applying monadic p. to C.

C p =: C & p. Z =: p. C

_1 0 1 _1 0 1&p. +-+----+
|1|1 _1|
+-+----+

We see that the result Z is a boxed structure, of the form M;R, that
is, multiplier M followed by list-of-roots R. We expect to see that p
applied to each root in R gives zero.

'M R' =: Z R p R

+-+----+
|1|1 _1|
+-+----+

1 _1 0 0

The significance of the multiplier M is as follows. If we write
r,s,t... for the list of roots R,

 337 Chapter 21: Factors and Polynomials

 'r s' =: R

then M is such that the polynomial C p. x can be written
equivalently as

 M * (x-r)*(x-s)
3

or more compactly as

 M * */x-R
3

We saw that monadic p., given coefficients C computes multiplier-
and-roots M;R. Furthermore, given M;R then monadic p. computes
coefficients C

C MR =: p. C p. MR

_1 0 1 +-+----+
|1|1 _1|
+-+----+

_1 0 1

21.2.3 Multiplier and Roots
We saw above that the left argument of p. can be a list of
coefficents, with the scheme

 C p. x is +/ C * x ^ i. # C

The left argument of p. can also be of the form multiplier;list-
of-roots. In this way we can generate a polynomial function with
specified roots. Suppose the roots are to be 2 3

Chapter 21: Factors and Polynomials 338

p =: (1; 2 3) & p. p 2 3

(1;2 3)&p. 0 0

The scheme is that

 (M;R) p. x means M * */ x - R

When M;R is p. C then we expect (M;R) p. x to be the same as C
p. x

C MR=: p.C MR p. x C p. x

_1 0 1 +-+----+
|1|1 _1|
+-+----+

3 3

21.2.4 Multinomials

Where there are many zero coefficients in a polynomial, it may be
more convenient to write functions in the "multinomial" form, that
is, omitting terms with zero coefficents and instead specifying a list
of coefficient-exponent pairs. Here is an example. With the
polynomial _1 0 1 & p., the nonzero coefficents are the first and
third, _1 1, and the corresponding exponents are 0 2. We form
the pairs thus:

coeffs =: _1 1 exps=: 0 2 pairs =: coeffs ,. exps

_1 1 0 2 _1 0
1 2

 339 Chapter 21: Factors and Polynomials

Now the pairs can be supplied as boxed left argument to p. We
expect the results to be the same as for the original polynomial.

x pairs (< pairs) p. x _1 0 1 p. x

2 _1 0
1 2

3 3

With the multinomial form, exponents are not limited to non-
negative integers. For example, with exponents and coefficients
given by:

 E =: 0.5 _1 2j3
 C =: 1 1 1

then the multinomial form of the function is:

 f =: (< C,.E) & p.

and for comparison, an equivalent function:

 g =: 3 : '+/ C * y ^ E'

We see

x=: 2 f x g x

2 _0.0337641j3.4936
2

_0.0337641j3.49362

This is the end of Chapter 21.

Chapter 22: Vectors and Matrices 340

Chapter 22: Vectors and Matrices

In this chapter we look at built-in functions which support
computation with vectors and matrices.

22.1 The Dot Product Conjunction

Recall the composition of verbs, from Chapter 08. A sum-of-
products verb can be composed from sum and product with the @:
conjunction.

P =: 2 3 4 Q =: 1 0 2 P * Q +/ P * Q P (+/ @: *) Q

2 3 4 1 0 2 2 0 8 10 10

There is a conjunction . (dot, called "Dot Product"). It can be used
instead of @: to compute the sum-of-products of two lists.

P Q P (+/ @: *) Q P (+/ . *) Q

2 3 4 1 0 2 10 10

Evidently, the . conjunction is a form of composition, a variation of
@: or @. We will see below that it is more convenient for working
with vectors and matrices.

 341 Chapter 22: Vectors and Matrices

22.2 Scalar Product of Vectors

Recall that P is a list of 3 numbers. If we interpret these numbers
as coordinates of a point in 3-dimensional space, then P can be
regarded as defining a vector, a line-segment with length and
direction, from the origin at 0 0 0 to the point P. We can refer to
the vector P.

With P and Q interpreted as vectors, then the expression P (+/ .
*) Q gives what is called the "scalar product" of P and Q. Other
names for the same thing are "dot product", or "inner product", or
"matrix product", depending on context. In this chapter let us stick
to the neutral term "dot product", for which we define a function
dot:

dot =: +/ . * P Q P dot Q

+/ .* 2 3 4 1 0 2 10

A textbook definition of scalar product of vectors P and Q may
appear in the form:

 (magnitude P) * (magnitude Q) * (cos alpha)

where the magnitude (or length) of a vector is the square root of
sum of squares of components, and alpha is the smallest non-
negative angle between P and Q. To show the equivalence of this
form with P dot Q, we can define utility-verbs ma for magnitude-
of-a-vector and ca for cos-of-angle-between-vectors.

 ma =: %: @: (+/ @: *:)
 ca =: 4 : '(-/ *: b,(ma x-y),c) % (2*(b=.ma x)*(c=.ma y))'

Chapter 22: Vectors and Matrices 342

We expect the magnitude of vector 3 4 to be 5, and expect the
angle between P and itself to be zero, and thus cosine to be 1.

ma 3 4 P ca P

5 1

then we see that the dot verb is equivalent to the textbook form
above

P Q P dot Q (ma P)*(ma Q)*(P ca Q)

2 3 4 1 0 2 10 10

22.3 Matrix Product

The verb we called dot is "matrix product" for vectors and
matrices.

M =: 3 4 ,: 2 3 V =: 3 5 V dot M M dot V M dot M

3 4
2 3

3 5 19 27 29 21 17 24
12 17

To compute Z =: A dot B the last dimension of A must equal the
first dimension of B.

 A =: 2 5 $ 1
 B =: 5 4 $ 2

 343 Chapter 22: Vectors and Matrices

$ A $ B Z =: A dot B $ Z

2 5 5 4 10 10 10 10
10 10 10 10

2 4

The example shows that the last-and-first dimensions disappear
from the result. If these two dimensions are not equal then an
error is signalled.

$ B $ A B dot A

5 4 2 5 error

22.4 Generalizations

22.4.1 Various Verbs

The "Dot Product" conjunction forms the dot-product verb with (+/
. *). Other verbs can be formed on the pattern (u . v).

For example, consider a relationship between people: person i is a
child of person j, represented by a square boolean matrix true at
row i column j. Using verbs +. (logical-or) and *. (logical-and), we
can compute a grandchild relationship with the verb (+./ . *.).

 g =: +. / . *.

Taking the "child" relationship to be the matrix C:

 C =: 4 4 $ 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0

Chapter 22: Vectors and Matrices 344

Then the grandchild relationship is, so to speak, the child
relationship squared.

C G =: C g C

0 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

We can see from C that person 3 is a child of person 1, and person
1 is a child of person 0. Hence, as we see in G person 3 is a
grandchild of person 0.

22.4.2 Symbolic Arithmetic

By 'symbolic arithmetic' is meant, for example, symbolically adding
the strings 'a' and 'b' to get the string 'a+b'. Here is a small
collection of utility functions to do some limited symbolic
arithmetic on (boxed) strings.

 pa =: ('('&,) @: (,&')')
 cp =: [` pa @. (+./ @: ('+-*' & e.))
 symbol =: (1 : (':';'< (cp > x), u, (cp > y)'))(" 0 0)

 splus =: '+' symbol
 sminus =: '-' symbol
 sprod =: '*' symbol

 a =: <'a'
 b =: <'b'
 c =: <'c'

 345 Chapter 22: Vectors and Matrices

a b c a splus b a sprod b splus c

+-+
|a|
+-+

+-+
|b|
+-+

+-+
|c|
+-+

+---+
|a+b|
+---+

+-------+
|a*(b+c)|
+-------+

As a variant of the symbolic product, we could elide the
multiplication symbol to give an effect more like conventional
notation:

 sprodc =: '' symbol

a sprod b a sprodc b

+---+
|a*b|
+---+

+--+
|ab|
+--+

As arguments to the "Dot Product" conjunction we could supply
verbs to perform symbolic arithmetic. For the dot verb, which we
recall is (+/ . *), a symbolic version is:

 sdot =: splus / . sprodc

To illustrate:

 S =: 3 2 $ < "0 'abcdef'
 T =: 2 3 $ < "0 'pqrstu'

Chapter 22: Vectors and Matrices 346

S T S sdot T

+-+-+
|a|b|
+-+-+
|c|d|
+-+-+
|e|f|
+-+-+

+-+-+-+
|p|q|r|
+-+-+-+
|s|t|u|
+-+-+-+

+-----+-----+-----+
|ap+bs|aq+bt|ar+bu|
+-----+-----+-----+
|cp+ds|cq+dt|cr+du|
+-----+-----+-----+
|ep+fs|eq+ft|er+fu|
+-----+-----+-----+

22.4.3 Matrix Product in More than 2 Dimensions

An example in 3 dimensions will be sufficiently general.
Symbolically:

 A =: 1 2 3 $ <"0 'abcdef'
 B =: 3 2 2 $ <"0 'mnopqrstuvwx'

 347 Chapter 22: Vectors and Matrices

A B Z =: A sdot B

+-+-+-+
|a|b|c|
+-+-+-+
|d|e|f|
+-+-+-+

+-+-+
|m|n|
+-+-+
|o|p|
+-+-+

+-+-+
|q|r|
+-+-+
|s|t|
+-+-+

+-+-+
|u|v|
+-+-+
|w|x|
+-+-+

+----------+----------+
|am+(bq+cu)|an+(br+cv)|
+----------+----------+
|ao+(bs+cw)|ap+(bt+cx)|
+----------+----------+

+----------+----------+
|dm+(eq+fu)|dn+(er+fv)|
+----------+----------+
|do+(es+fw)|dp+(et+fx)|
+----------+----------+

The last dimension of A must equal the first dimension of B. The
shape of the result Z is the leading dimensions of A followed by the
trailing dimensions of B.

$A $B $Z

1 2 3 3 2 2 1 2 2 2

The last-and-first dimension of A and B have disappeared, because
each dimensionless scalar in Z combines a "row" of A with a

Chapter 22: Vectors and Matrices 348

"column" of B. We see in the result Z that each row of A is
combined separately with the whole of B.

22.4.4 Dot Compared With @:

Recall from Chapter 07 that a dyadic verb v has a left and right
rank. Here are some utility functions to extract the ranks from a
given verb.

 RANKS =: 1 : 'u b. 0'
 LRANK =: 1 : '1 { (u RANKS)' NB. left rank only

* RANKS * LRANK

0 0 0 0

The general scheme defining dyadic verbs of the form (u . v) is:

 u . v means u @ (v " (1+L, _)) where L = (v LRANK)

or equivalently,

 u . v means (u @: v) " (1+L, _)

 and hence

 +/.* means (+/ @: *)" 1 _

and so we see the difference between . and @:. For simple vector
arguments they are the same, in which case the dimensions of the
arguments must be the same, but this is not the condition we
require for matrix multiplication in general, where (in the example
above) each row of A is combined with the whole of B.

 349 Chapter 22: Vectors and Matrices

22.5 Determinant

The monadic verb (- / . *) computes the determinant of a
matrix.

 det =: - / . *

M det M (3*3)-(2*4)

3 4
2 3

1 1

Symbolically:

 sdet =: sminus / . sprodc

S sdet S

+-+-+
|a|b|
+-+-+
|c|d|
+-+-+
|e|f|
+-+-+

+----------------------------+
|(a(d-f))-((c(b-f))-(e(b-d)))|
+----------------------------+

22.5.1 Singular Matrices

A matrix is said to be singular if the rows (or columns) are not
linearly independent, that is, if one row (or column) can be
obtained from another by multiplying by a constant. A singular
matrix has a zero determinant.

Chapter 22: Vectors and Matrices 350

In the following example A is a (symbolic) singular matrix, with m
the constant multiplier.

A =: 2 2 $ 'a';'b';'ma';'mb' sdet A

+--+--+
|a |b |
+--+--+
|ma|mb|
+--+--+

+-------+
|amb-mab|
+-------+

We see that the resulting term (amb-mab) must be zero for all a, b
and m.

22.6 Matrix Divide

22.6.1 Simultaneous Equations

The built-in verb %. (percent dot) is called "Matrix Divide". It can
be used to find solutions to systems of simultaneous linear
equations. For example, consider the equations written
conventionally as:

 3x + 4y = 11

 2x + 3y = 8

Rewriting as a matrix equation, we have, informally,

 M dot U = R

where M is the matrix of coefficients U is the vector of unknowns

 351 Chapter 22: Vectors and Matrices

x,y and R is the vector of right-hand-side values:

M =: 3 4 ,: 2 3 R =: 11 8

3 4
2 3

11 8

The vector of unknowns U (that is, x,y) can be found by dividing R
by matrix M.

M R U =: R %. M M dot U

3 4
2 3

11 8 1 2 11 8

We see that M dot U equals R, that is, U solves the equations.

22.6.2 Complex, Rational and Vector Variables

The equations to be solved may be in complex variables. For
example:

M R =: 15j22 11j16 U =: R %. M M dot U

3 4
2 3

15j22 11j16 1j2 3j4 15j22 11j16

or in rationals. In this case both M and R must be rationals to give
a rational result.

 M =: 2 2 $ 3x 4x 2x 3x

Chapter 22: Vectors and Matrices 352

 R =: 15r22 11r16

M R U =: R %. M M dot U

3 4
2 3

15r22 11r16 _31r44 123r176 15r22 11r16

In the previous examples the unknowns in U were scalars. Now
suppose the unknowns are vectors and our equations for solving
are:

 3x + 4y = 15 22

 2x + 3y = 11 16

so we write:

 M =: 2 2 $ 3 4 2 3
 R =: 2 2 $ 15 22 11 16

M R U =: R %. M M dot U

3 4
2 3

15 22
11 16

1 2
3 4

15 22
11 16

The unknowns x and y are the rows of U, that is, vectors.

22.6.3 Curve Fitting

Suppose we aim to plot the best straight line fitting a set of data
points. If the data points are x,y pairs given as:

 353 Chapter 22: Vectors and Matrices

 x =: 10 20 30
 y =: 31 49 70

we aim to find a and b for the equation:

 y = a + bx

The 3 data points give us 3 equations in the 2 unknowns a and b.
Conventionally:

 1 . a + 10 . b = 31

 1 . a + 20 . b = 49

 1 . a + 30 . b = 70

so we take the matrix of coefficients M to be

 M =: 3 2 $ 1 10 1 20 1 30

and divide y by matrix M to get the vector of unknowns U, (that is,
a,b)

M y U =: y %. M M dot U

1 10
1 20
1 30

31 49 70 11 1.95 30.5 50 69.5

Here we have more equations than unknowns, (more rows than
columns in M) and so the solutions U are the best fit to all the
equations together. We see that M dot U is close to, but not
exactly equal to, y.

Chapter 22: Vectors and Matrices 354

"Best fit" means that the sum of the squares of the errors is
minimized, where the errors are given by y - M dot U. If the sum
of squares is minimized, then we expect that by perturbing U
slightly, the sum of squares is increased.

+/ *: y - M dot U +/ *: y - M dot (U + 0.01)

1.5 1.6523

The method extends straightforwardly to fitting a polynomial to a
set of data points. Suppose we aim to fit

 y = a + bx + cx2

to the data points:

 x =: 0 1 2 3
 y =: 1 6 17 34.1

The four equations to be solved are:

 1.a + bx0 + cx0
2 = y0

 1 a + bx1 + cx1
2 = y1

 1.a + bx2 + cx2
2 = y2

 1.a + bx3 + cx3
2 = y3

and so the columns of matrix M are 1, x, x^2, conveniently given
by: x ^/ 0 1 2

 M =: x ^/ 0 1 2

 355 Chapter 22: Vectors and Matrices

and the unknowns a, b, c are given by vector U as follows:

M y U =: y %. M M dot U

1 0 0
1 1 1
1 2 4
1 3 9

1 6 17 34.1 1.005 1.955 3.025 1.005 5.985 17.02 34.09

There may be more equations than unknowns, as this example
shows, but evidently there cannot be fewer. That is, in R %. M
matrix M must have no more columns than rows.

22.6.4 Dividing by Higher-Rank Arrays

Here is an example of U =: R %. M, in which the divisor M is of
rank 3.

 M =: 3 2 2 $ 3 4 2 3 0 3 1 2 3 1 2 3
 R =: 21 42

M R U =: R %. M M dot U M dot"2 1 U

3 4
2 3

0 3
1 2

3 1
2 3

21 42 _105 84
 28 7
 3 12

error 21 42
21 42
21 42

The dyadic rank of %. is _ 2,

Chapter 22: Vectors and Matrices 356

 %. b. 0
2 _ 2

and so in this example the whole of R is combined separately with
each of the 3 matrices in M. That is, we have 3 separate sets of
equations, each with the same right-hand-side R Thus we have 3
separate solutions (the rows of U).

The condition R=M dot U evidently does not hold (because the last
dimension of M is not equal to the first of U), but it does hold
separately for each matrix in M with corresponding row of U.

22.7 Identity Matrix

A (non-singular) square matrix M divided by itself yields an
"identity matrix", I say, such that (M dot I) = M.

 M =: 3 3 $ 3 4 7 0 0 4 6 0 3

M I =: M %. M M dot I

3 4 7
0 0 4
6 0 3

1 0 0
0 1 0
0 0 1

3 4 7
0 0 4
6 0 3

22.8 Matrix Inverse

The monadic verb %. computes the inverse of a matrix That is, %.
M is equivalent to I %. M for a suitable identity matrix I:

 357 Chapter 22: Vectors and Matrices

M I =: M %. M I %. M %. M

3 4 7
0 0 4
6 0 3

1 0 0
0 1 0
0 0 1

 0 _0.125 0.1667
0.25 _0.3438 _0.125
 0 0.25 0

 0 _0.125 0.1667
0.25 _0.3438 _0.125
 0 0.25 0

For a vector V, the inverse W has the reciprocal magnitude and the
same direction. Thus the product of the magnitudes is 1 and the
cosine of the angle between is 1.

V W =: %. V (ma V) * (ma W) V ca W

3 5 0.08824 0.1471 1 1

This is the end of Chapter 22.

Chapter 22: Vectors and Matrices 358

 359 Chapter 23: Calculus

Chapter 23: Calculus

This chapter covers J operators for differentiation and integration.
It covers

• The conjunction d. which differentiates and integrates
analytically, that is, it transforms expressions denoting
functions into expressions denoting functions.

• The conjunction D. which differentiates numerically, and
thus broadens the range of functions which can be
differentiated. It also covers partial derivatives.

• A library script with functions for numerical integration.

23.1 Differentiation

There is a built-in conjunction d.(lowercase d dot). Its left
argument is a function to be differentiated. Its right argument is 1
if the first derivative is required, or 2 for the second derivative,
and so on. The first derivative of the "cube" function ^&3 is "3
times the square".

 ^&3 d. 1
3&*@(^&2)

The general scheme is that if e is (an expression denoting) a
function, then e d. n is (an expression denoting) the n'th
derivative of e. Here is another example, expressing the cube

Chapter 23: Calculus 360

function as the polynomial 0 0 0 1 & p.

 0 0 0 1 &p. d. 1
0 0 3&p.

Suppose we define a verb cube:

cube =: 0 0 0 1 & p. cube 2

0 0 0 1&p. 8

Differentiating with d., we see that the derivative is, as expected,
3-times-the-square, but the expression for the derivative is not
very informative.

(cube d. 1) 2 cube d. 1

12 cube d.1

The reason is that cube is a name denoting a verb, and such
names are in general not evaluated until the verb is applied. (See
Appendix 1 .) If we want to inspect the derivative of cube, we can
force evaluation of the name cube by applying the f. adverb.

cube d. 1 (cube f.) d. 1

cube d.1 0 0 3&p.

Alternatively, we could force evaluation of the expression for the
derivative, again by applying f.

 361 Chapter 23: Calculus

cube d. 1 (cube d. 1) f.

cube d.1 0 0 3&p.

23.2 Integration

With a right argument of _1, the conjunction d. integrates the left
argument. The integral of "3 times the square" is "cube".

 0 0 3 & p. d. _1
0 0 0 1&p.

23.3 The Domain of d.

Functions which are differentiable or integrable with d. must firstly
be scalar. That is, they must take scalar arguments and deliver
scalar results, and all intermediate quantities must be scalars.
Here is an example. The function "(x-1)*(x-2)" can be written in
several different ways. Here are two:

f =: -&1 * -&2 g =: (*/) @: (- & 1 2) f 3 g 3

-&1 * -&2 */@:(-&1 2) 2 2

f is scalar, and in the domain of d. However, g is not scalar,
because it forms the intermediate quantity x - 1 2 which is a
vector. Thus g is not in the domain of d.. To demonstrate this, we
force evaluation of the derivatives.

Chapter 23: Calculus 362

(f d. 1) f. (g d. 1) f.

_3 2x&p. error

Secondly, d. can differentiate constant functions, polynomials,
exponentials ^x and integral powers x^n.

3: d. 1 0 2 &p. d. 1 ^ d. 1 ^&4 d. 1

0"0 2"0 ^ 4&*@(^&3)

If f and g are differentiable with d., then so are the forks (f+g),
(f-g), (f*g) and f%g.

f =: ^&3 g =: 0 2 & p. ((f + g) d. 1) f.

^&3 0 2&p. 2 0 3x&p.

Trigonometric functions are differentiable with d. The derivative of
the fork (sin + cos) is (cos - sin).

sin =: 1&o. cos =: 2&o. (sin + cos) f. d. 1

1&o. 2&o. 2&o. + -@(1&o.)

If f and g are differentiable with d., then so are the compositions
f@g and f@:g

 363 Chapter 23: Calculus

f g (f @ g d. 1) f.

^&3 0 2&p. 0 0 24x&p.

23.4 The Conjunction D.

The conjunction D. (uppercase D dot) computes derivatives. It
differs from d. in two ways.

• By using numerical methods it can differentiate arbitrary
functions, that is, it is not limited to the domain of d.

• It is not limited to scalar functions: it can differentiate
functions with vector arguments to produce partial
derivatives.

23.4.1 The Domain of D.

Since D. can use numerical methods, its arguments can be
arbitrary functions. For example, recall the function g above, to
compute "(x-1)*(x-2)",which was demonstrated above to be
outside the domain of d. . However it is within the domain of D..
Its derivative is "2x-3"

g =: (*/) @: (- & 1 2) (g d. 1) 3 (g D. 1) 3

*/@:(-&1 2) error 3

23.4.2 Partial Derivatives with D.

Chapter 23: Calculus 364

Next we look at functions which compute a scalar from a vector
argument. For example consider a surface where the height at a
point (x,y) is given by

 (sin x) * (cos y)

The height-function, with the vector argument (x,y) might be
written:

 h =: (sin @ {.) * (cos @ {:)

The expression (h D.1)(x,y) computes the numerical values of
the two slopes, in the x-direction and the y-direction, of the
function h at the point (x,y).

x=: 0.4 y =: 0.5 p =: h D. 1 x,y

0.4 0.5 0.8083071 _0.1866971

The result p gives the values of the partial derivatives with respect
to x and with respect to y.

We can check this result. Suppose we define a function q say, for
the height along the line y=0.5. We want q(x) to be h(x,0.5) and
thus

 q =: h @: (, & 0.5)

The idea now is that the derivative of q applied to argument x
should be the same as the first partial derivative of h at x,0.5.

 365 Chapter 23: Calculus

h D.1 x,y q D. 1 x

0.8083071 _0.1866971 0.8083071

Now we look at partial derivatives of functions which compute
vectors from vectors. Here is an example, a function which takes
the point (x,y,z) in 3-space to the point (2x,3y) in 2-space.

foo =: (2 3 & *) @: (1 1 0 & #) foo 1 1 1

2 3&*@:(1 1 0&#) 2 3

In general such a function will take an argument-vector of length m
and produce a result-vector of length n. Hence there will be m*n
partial derivatives, one for each element of the result with respect
to each element of the argument. The six partial derivatives of foo
at the point xyz = 1 1 1 are shown by:

pd =: foo D. 1 pd 1 1 1

foo D.1 2 0
0 3
0 0

Consider now a function such as cube which produces scalars from
scalars. Given a vector argument, it will produce a vector result of
the same length, where an element of the result depends only on
the corresponding element of the argument.

Chapter 23: Calculus 366

cube cube a =: 1 2 3

0 0 0 1&p. 1 8 27

Therefore, for a scalar function, all partial derivatives are zero
except those for elements of the result with respect to the
corresponding elements of the argument.

pd =: cube D. 1 pd 2 3 4

cube D.1 12 0 0
0 27 0
0 0 48

If a scalar function is given in fully-evaluated form, and is in the
domain of d., the D. conjunction will produce an analytic
expression for the partial derivatives function:

PD =: (0 0 0 1 & p.) D.1 PD 2 3 4

(* =/~@(i.@$))@:(0 0 3&p.) 12 0 0
0 27 0
0 0 48

23.5 Numerical Integration

There is a library script-file called integrat.ijs . It contains
several different operators for integration. Documentation is given
in the script file.

 367 Chapter 23: Calculus

It can be be downloaded from the JSoftware website: here is a link
to integrat.ijs

Assuming that we have downloaded into a directory, say C:\temp
for example, then we load it into the J session with:

 load 'c:\temp\integrat.ijs'

One of the integration operators provided is the conjunction adapt
("numeric integration by adaptive quadrature"). The expression f
adapt (L,U) computes the numeric value of the definite integral
of f between limits L and U. For example, we expect the integral of
3&* between 0 and 1 to be 1.5

f =: 3&* f adapt 0 1

3&* 1.5

This is the end of Chapter 23.

http://www.jsoftware.com/svn/addons/trunk/math/misc/integrat.ijs
http://www.jsoftware.com/svn/addons/trunk/math/misc/integrat.ijs

Chapter 23: Calculus 368

 369 Chapter 24: Names and Locales

Chapter 24: Names and Locales

In this chapter we look at locales. The interest of locales is
twofold: as a way of organizing large programs, and (as we will
come to in the next chapter) as the basis of object-oriented
programming in J.

24.1 Background

It is generally agreed that a large program is best developed in
several parts which are, as much as possible, independent of each
other. For example, an independent part of a larger program might
be a collection of statistical functions, with its own script-file.

For the things defined in an independent script, we expect to
choose names for those things more or less freely, without regard
for what names may be defined in other scripts. Clearly there may
be a problem in combining independent scripts: what if the same
name accidentally receives different definitions in different scripts?
The J facility of the "locale" gives a way to deal with this problem.

24.2 What are Locales?

After entering an assignment of the form (name =: something)
we say we have a definition of name. Every definition is stored in
some region of the memory of the J system called a "locale".
Roughly speaking, locales are to definitions as directories are to
files. The important features of locales are:

Chapter 24: Names and Locales 370

• There can be several different locales existing at the same
time.

• Each locale stores a collection of definitions.
• The same name can occur at the same time in different

locales with different definitions.

Hence a name of the form "name N as defined in locale L" is
uniquely defined, without conflict. Such a name can be written as
N_L_ (N underbar L underbar) and is called a "locative name".
Finally

• At any one time, only one locale is current. The current
locale is the one whose definitions are available for
immediate use.

Hence a plain name N commonly means "N as defined in the
current locale".

Locales are neither nouns, verbs, adverbs nor conjunctions: that
is, locales are not values which can be assigned to variables or be
passed as arguments to functions. They do have names, but
whenever we need to refer to a locale by name we do so either
with special syntactic forms, (locative names such as N_L_) or by
quoting the name to form a string.

24.3 Example

Suppose we are interested in the correlation between the price of
whisky and the general level of employee salaries. Suppose also
that we have available two scripts, of independent origin, one with
economic data and the other with statistical functions. These
script-files might have been created like this:

 371 Chapter 24: Names and Locales

 (0 : 0) (1 !: 2) < 'economic.ijs'
y =: 1932 1934 1957 1969 1972 NB. years
s =: 1000 1000 3000 9000 11000 NB. salaries
p =: 1.59 1.68 2.00 4.50 5.59 NB. prices
)

 (0 : 0) (1 !: 2) < 'statfns.ijs'
m =: +/ % # NB. Mean
n =: - m NB. Norm
v =: m @: *: @: n NB. Variance
s =: %: @: v NB. Standard Deviation
c =: m @: (*&n) NB. Covariance
r =: c % (*&s) NB. Correlation Coefficient
)

We aim to load these two scripts, and then hope to compute the
coefficient of correlation between prices p and salaries s as the
value of the expression (p r s).

Unfortunately we can see that the name s means different things
in the different scripts. If we were to load both scripts into the
same locale, one definition of s would overwrite the other. The
remedy is to load the two scripts into different locales.

There is always a locale named base, and by default this is usually
current. We load economic.ijs into the current locale (base) with
the built-in verb (0 !: 0).

 (0 !: 0) < 'economic.ijs'

Next we load statfns.ijs into another locale which we choose to
call, say, stat. To do this with the minimum of new apparatus we

Chapter 24: Names and Locales 372

can use the built-in verb (18 !: 4).

 (18 !: 4) < 'stat'
 (0 !: 0) < 'statfns.ijs'
 (18 !: 4) < 'base'

The first line creates the stat locale and makes it current. The
second line loads statfns.ijs into the now-current locale stat.
The third line makes the base locale current again, to restore the
status quo.

At this point our data variables s and p are available because they
are in base which is current. The correlation-coefficient function r
is not yet available, because it is in stat which is not current. The
next step is to define the correlation-coefficient function to be r-
as-defined-in-locale- stat, using the locative form of name
r_stat_

 corr =: r_stat_

corr is available because it has just been defined in base (because
base is current). Everything we need is now available. We can
compute the correlation between salaries and prices.

s corr p p corr s p corr p

0.993816 0.993816 1

24.3.1 Review
What we have seen is the use of locative names to resolve name-
conflicts between independent scripts. What it took was a relatively
small amount of ad-hoc further definition.

 373 Chapter 24: Names and Locales

In this tiny example the conflict was easily identified and could be
easily fixed by editing one of the scripts. However, the point is that
we aim to avoid tampering with independent scripts to get them to
work together.

24.4 The Current Locale

Several locales may coexist, but at any one time only one is
current. There is a built-in verb (18 !: 5) which tells us the name
of the current locale.

 (18 !: 5) '' NB. show name of current locale
+----+
|base|
+----+

The significance of the current locale is that it is in the current
locale that simple names are evaluated:

 s
1000 1000 3000 9000 11000

Notice that we get the value of s as defined in script economic.ijs
which we loaded into base, and not the value of s in statfns.ijs
which was loaded into locale stat.

It is the current locale in which new definitions are stored. To see what names
are defined in the current locale we can use the built-in verb (4 !: 1) with
an argument of 0 1 2 3. The resulting long list of names can be
conveniently displayed with the library-verb list .

Chapter 24: Names and Locales 374

 list (4 !: 1) 0 1 2 3 NB. show all names in current locale

ASSERTING CH IP RUN RUNR TD THIS
and cd corr dir drop e first
fst hello implies indexfile indexing is_bool is_box
is_char is_cmplx is_extint is_float is_int is_list is_number
is_rat is_real is_scalar is_string last most not
p print pwd rest run s snd
take thd y

We can define a new verb, and see its name appear in the list:

 foo =: +/
 list (4 !: 1) 0 1 2 3

ASSERTING CH IP RUN RUNR TD THIS
and cd corr dir drop e first
foo fst hello implies indexfile indexing is_bool
is_box is_char is_cmplx is_extint is_float is_int is_list
is_number is_rat is_real is_scalar is_string last most
not p para print pwd rest run
s snd take thd y

As we saw above, we can change the current locale with the built-
in verb (18 !: 4). We can make the stat locale current with:

 (18 !: 4) < 'stat'

and now we can see what names are defined in this locale with:

 (4 !: 1) 0 1 2 3
+-+-+-+-+-+-+
|c|m|n|r|s|v|
+-+-+-+-+-+-+

and return to base again

 (18 !: 4) < 'base'

 375 Chapter 24: Names and Locales

24.5 The z Locale Is Special

The locale named z is special in the following sense. When a name
is evaluated, and a definition for that name is not present in the
current locale, then the z locale is automatically searched for that
name. Here is an example. We put into localez a definition of a
variable q, say.

 (18 !: 4) < 'z'
 q =: 99
 (18 !: 4) < 'base'

Now we see that q is not present in the current locale (base)

 (4 !: 1) 0 1 2 3

 list (4 !: 1) 0 1 2 3
ASSERTING CH IP RUN RUNR TD THIS
and cd corr dir drop e first
foo fst hello implies indexfile indexing is_bool
is_box is_char is_cmplx is_extint is_float is_int is_list
is_number is_rat is_real is_scalar is_string last most
not p para print pwd rest run
s snd take thd y

but nevertheless we can evaluate the simple name q to get its
value as defined in locale z.

 q
99

Since we can find in z things which are not in base, locale z is the
natural home for functions of general utility. On starting a J
session, locale z is automatically populated with a collection of
useful predefined "library" functions.

Chapter 24: Names and Locales 376

The names of these functions in the z locale are all available for
immediate use, and yet the names, of which there are more than
100, do not clutter the base locale. We saw above the use of built-
in verbs such as (18 !: 4) and (4 !: 1). However the library
verbs of locale z are often more convenient. Here is a small
selection:

coname '' show name of current locale

conl 0 show names of all locales

names '' show all names in current locale

nl '' show all names in current locale (as a
boxed list)

cocurrent 'foo' locale foo becomes current

clear 'foo' remove all defns from locale foo

coerase
'A';'B';'C' erase locales A B and C

We have seen that when a name is not found in the current locale,
the search proceeds automatically to the z locale. In other words,
there is what is called a "path" from every locale to the z locale.
We will come back to the subject of paths below.

 377 Chapter 24: Names and Locales

24.6 Locative Names and the Evaluation of Expressions

24.6.1 Assignments
An assignment of the form n_L_ =: something assigns the value
of something to the name n in locale L. Locale L is created if it
does not already exist. For example:

 n_L_ =: 7

creates the name n in locale L with value 7. At this point it will be
helpful to introduce a utility-function to view all the definitions in a
locale. We put this view function into locale z :

 VIEW_z_ =: 3 : '(> ,. ('' =: ''&,)@:(5!:5)"0) nl '''''
 view_z_ =: 3 : 'VIEW__lo '''' [lo =. < y'

If we make a few more definitions:

 k_L_ =: 0
 n_M_ =: 2

we can survey what we have in locales L and M:

view 'L' view 'M'

k =: 0
n =: 7

n =: 2

Returning now to the theme of assignments, the scheme is: if the
current locale is L, then (foo_M_ =: something) means:

1. evaluate something in locale L to get value V say.
2. cocurrent 'M'

Chapter 24: Names and Locales 378

3. foo =: V
4. cocurrent 'L'

For example:

 cocurrent 'L'

view 'L' view 'M' k_M_ =: n-1 view 'M'

k =: 0
n =: 7

n =: 2 6 k =: 6
n =: 2

24.6.2 Evaluating Names

Now we look at locative names occurring in expressions. The
scheme (call this scheme 2) is: if the current locale is L then
(n_M_) means

1. cocurrent 'M'
2. evaluate the name n to get a value V
3. cocurrent 'L'
4. V

For example:

 cocurrent 'L'

view 'L' view 'M' n_M_

k =: 0
n =: 7

k =: 6
n =: 2

2

 379 Chapter 24: Names and Locales

24.6.3 Applying Verbs

Consider the expression (f_M_ n). This means: function f (as
defined in locale M) applied to an argument n (as defined in the
current locale) In this case, the application of f to n takes place in
locale M. Here is an example:

 u_M_ =: 3 : 'y+k'

 cocurrent 'L'

view 'L' view 'M' u_M_ n

k =: 0
n =: 7

k =: 6
n =: 2
u =: 3 : 'y+k'

13

We see that the argument n comes from the current locale L, but
the constant k comes from the locale (M) from which we took verb
u. The scheme (call it scheme 3) is: if the current locale is L , then
(f_M_ something) means:

1. evaluate something in L to get a value V say
2. cocurrent 'M'
3. in locale M, evaluate the expression f V to get a value R say
4. cocurrent 'L'
5. R

Here is another example. The verb g is taken from the same locale
in which f is found:

Chapter 24: Names and Locales 380

 g_L_ =: +&1
 g_M_ =: +&2
 f_M_ =: g

 cocurrent 'L'

view 'L' view 'M' f_M_ k

g =: +&1
k =: 0
n =: 7

f =: g
g =: +&2
k =: 6
n =: 2
u =: 3 : 'y+k'

2

24.6.4 Applying Adverbs
Suppose A_X_ is an adverb in locale X. The application of A_X_ to
an argument takes place in locale X rather than in the current
locale.

To demonstrate this, we start by entering definitions in fresh
locales X and Y.

 A_X_ =: 1 : 'u & k' NB. an adverb
 k_X_ =: 17
 k_Y_ =: 6

now make Y the current locale:

 cocurrent 'Y'

 381 Chapter 24: Names and Locales

and apply adverb A_X_ to argument + .

view 'X' view 'Y' + A_X_

A =: 1 : 'u & k'
k =: 17

k =: 6 +&17

Evidently the result is produced by taking k from locale X rather
than from the current locale which is Y.

The scheme is that if the current locale is Y, and A is an adverb,
the expression f A_X_ means:

1. evaluate f in locale Y to get a value F say.
2. cocurrent X
3. evaluate F A in locale X to get a result G say.
4. cocurrent Y
5. G

24.7 Paths

Recall that the z locale contains useful "library" functions, and that
we said there is a path from any locale to z.

We can inspect the path from a locale with the library verb copath;
we expect the path from locale base to be just z.

 copath 'base' NB. show path
+-+
|z|
+-+

Chapter 24: Names and Locales 382

A path is represented as a (list of) boxed string(s). We can build
our own structure of search-paths between locales. We will give
base a path to stat and then to z, using dyadic copath.

 ('stat';'z') copath 'base'

and check the result is as expected:

 copath 'base'
+----+-+
|stat|z|
+----+-+

With this path in place, we can, while base is current, find names
in base, stat and z.

 cocurrent 'base'

 s NB. in base
1000 1000 3000 9000 11000

 r NB. in stat
c % *&s

 q NB. in z
99

Suppose we set up a path from L to M. Notice that we want every
path to terminate at locale z, (otherwise we may lose access to the
useful stuff in z) so we make the path go from L to M to z.

 ('M';'z') copath 'L'

If we access a name along a path, there is no change of current

 383 Chapter 24: Names and Locales

locale. Compare the effects of referring to verb u via a locative
name and searching for u along a path.

 cocurrent 'L'

view 'L' view 'M' u_M_ 0 u 0

g =: +&1
k =: 0
n =: 7

f =: g
g =: +&2
k =: 6
n =: 2
u =: 3 : 'y+k'

6 0

We see that in evaluating (u_M_ 0) there is a change of locale to
M, so that the variable k is picked up with its value in M of 6. In
evaluating (u 0), where u is found along the path, the variable k
is picked up from the current locale, with its value in L of 0.

When a name is found along a path, it is as though the definition
were temporarily copied into the current locale. Here is another
example.

view 'L' view 'M' f_M_ 0 f 0

g =: +&1
k =: 0
n =: 7

f =: g
g =: +&2
k =: 6
n =: 2
u =: 3 : 'y+k'

2 1

Chapter 24: Names and Locales 384

24.8 Combining Locatives and Paths

We sometimes want to populate a locale with definitions from a
script-file. We saw above one way to do this: in three steps:

(1) use cocurrent (or 18 !: 4) to move to the specified locale.

(2) execute the script-file with 0!:0

(3) use cocurrent (or 18 !: 4) to return to the original locale.

A neater way is as follows. We first define:

 POP_z_ =: 0 !: 0

and then to populate locale Q say, from file economic.ijs, we can
write:

 POP_Q_ < 'economic.ijs'

which works like this:

1. The POP verb is defined in locale z.
2. Encountering POP_Q_ < ... the system makes locale Q

temporarily current, creating Q if it does not already exist.
3. The system looks for a definition of POP. It does not find it in

Q , because POP is of course defined in locale z.
4. The system then looks along the path from Q to z and finds

POP. Note that the current locale is still (temporarily) Q.
5. The POP verb is applied to its argument, in temporarily-

current locale Q.
6. The current locale is automatically restored to whatever it

was beforehand.

 385 Chapter 24: Names and Locales

Back to base. (If we are nipping about between locales it is
advisable to keep track of where we are.)

 cocurrent <'base'

24.9 Indirect Locatives

A variable can hold the name of a locale as a boxed string. For
example, given that M is a locale,

 loc =: < 'M'

Then a locative name such as k_M_ can be written equivalently in
the form k__loc (u underscore underscore loc)

 k_M_
6

 k__loc
6

The point of this indirect form is that it makes it convenient to
supply locale-names as arguments to functions.

 NAMES =: 3 : 0
locname =. < y
names__locname ''
)

 NAMES 'L'
g k n

Chapter 24: Names and Locales 386

24.10 Erasing Names from Locales

Suppose we create a variable with the name var, say,

 var =: 'hello'

and demonstrate that it exists, that is, that the name var is one of
the names in the namelist of the base locale:

 (<'var') e. nl_base_ ''
1

Now we can erase it with the erase library verb:

 erase <'var'
1

and demonstrate that it no longer exists

 (<'var') e. nl_base_ ''
0

Now suppose that we create a variable foo, say, in the base locale,
and another, also called foo, in the z locale. Recall that there is
always a path from base to z

 foo =: 'hello'
 foo_z_ =: 'goodbye'

we demonstrate they both exist:

 387 Chapter 24: Names and Locales

 (<'foo') e. nl_base_ ''
1
 (<'foo') e. nl_z_ ''
1

erase foo from base, demonstrate that it has gone but that foo in
z is still there:

erase <'foo' (<'foo') e. nl_base_ '' (<'foo') e. nl_z_ ''

1 0 1

Now if we erase again, foo will be found along the path and erased
from z.

erase <'foo' (<'foo') e. nl_base_ '' (<'foo') e. nl_z_ ''

1 0 0

This is the end of Chapter 24

Chapter 24: Names and Locales 388

 389 Chapter 25: Object-Oriented Programming

Chapter 25: Object-Oriented
Programming

25.1 Background and Terminology

In this chapter "OOP" will stand for "object-oriented
programming". Here is the barest thumbnail sketch of OOP.

On occasion, a program needs to build, maintain and use a
collection of related data, where it is natural to consider the
collection to be, in some sense, a whole. For example, a "stack" is
a sequence of data items, such that the most-recently added item
is the first to be removed. If we intend to make much use of
stacks, then it might be a worthwhile investment to write some
functions dedicated to building and using stacks.

The combination of some data and some dedicated functions is
called an object. Every object belongs to some specific class of
similar objects. We will say that a stack is an object of the Stack
class.

The dedicated functions for objects of a given class are called the
"methods" of the class. For example, for objects of the Stack class
we will need a method for adding a new item, and a method for
retrieving the last-added item.

An object needs one or more variables to represent its data. Such
variables are called fields. Thus for a stack we may choose to have
a single field, a list of items.

Chapter 25: Object-Oriented Programming 390

In summary, OOP consists of identifying a useful class of objects,
and then defining the class by defining methods and fields, and
then using the methods.

By organizing a program into the definitions of different classes,
OOP can be viewed as a way of managing complexity. The simple
examples which follow are meant to illustrate the machinery of the
OOP approach, but not to provide much by way of motivation for
OOP.

We will be using a number of library functions, mostly with names
beginning "co", meaning "class and object". A brief summary of
them is given at the end of this chapter.

25.2 Defining a Class

25.2.1 Introducing the Class
For a simple example, we look at defining a class which we choose
to call "Stack". A new class is introduced with the library function
coclass.

 coclass 'Stack'

coclass is used for its effect, not its result. The effect of coclass
is to establish and make current a new locale called Stack. To
verify this, we can inspect the name of the current locale:

 coname ''
+-----+
|Stack|
+-----+

25.2.2 Defining the Methods
A new object comes into being in two steps. The first step uses

 391 Chapter 25: Object-Oriented Programming

library verb conew to create a rudimentary object, devoid of fields,
a mere placeholder. The second step gives a new object its
structure and initial content by creating and assigning values to
the field-variables.

We will deal with the first step below. The second step we look at
now. It is done by a method conventionally called create
(meaning "create fields", not "create object"). This is the first of
the methods we must define.

For example, we decide that a Stack object is to have a single field
called items, initially an empty list.

 create =: 3 : 'items =: 0 $ 0'

The connection between this method and the Stack class is that
create has just been defined in the current locale, which is Stack.

This create method is a verb. In this example, it ignores its
argument, and its result is of no interest: it is executed purely for
its effect. Its effect will be that the (implicitly specified) object will
be set up to have a single field called items as an empty list.

Our second method is for pushing a new value on to the front of
the items in a stack.

 push =: 3 : '# items =: (< y) , items'

The push method is a verb. Its argument y is the new value to be
pushed. We made a design-decision here that y is to be boxed and
then pushed. The result is of no interest, but there must be some
result, so we chose to return (# items) rather than just items.

Next, a method for inspecting the "top" (most-recently added)

Chapter 25: Object-Oriented Programming 392

item on the stack. It returns that value of that item. The stack is
unchanged.

 top =: 3 : '> {. items'

Next a method to remove the top item of the stack.

 pop =: 3 : '# items =: }. items'

Finally, a method to "destroy" a Stack object, that is, eliminate it
when we are finished with it. For this purpose there is a library
function codestroy.

 destroy =: codestroy

This completes the definition of the Stack class. Since we are still
within the scope of the coclass 'Stack' statement above, the
current locale is Stack. To use this class definition we return to our
regular working environment, the base locale.

 cocurrent 'base'

25.3 Making New Objects

Now we are in a position to create and use Stack objects. A new
Stack is created in two steps. The first step uses the library verb
conew.

 S =: conew 'Stack'

The result of conew which we assigned to S is not the newly-
created object itself. Rather, the value of S is in effect a unique
reference-number which identifies the newly-created Stack object.

 393 Chapter 25: Object-Oriented Programming

For brevity we will say "Stack S" to mean the object referred to by
S.

Stack S now exists but its state is so far undefined. Therefore the
second step in making the object is to use the create method to
change the state of S to be an empty stack. Since create ignores
its argument, we supply an argument of 0

 create__S 0

Now we can push values onto the stack S and retrieve them in
last-in-first-out order. In the following, the expression (push__S
'hello' means: the method push with argument 'hello' applied
to object S.

 push__S 'hello'
1
 push__S 'how are you?'
2
 push__S 'goodbye'
3
 pop__S 0
2
 top__S 0
how are you?

25.3.1 Dyadic Conew
The two steps involved in creating a new object, conew followed by
create, can be collapsed into one using dyadic conew. The scheme
is that:

 o =: conew 'Class'

Chapter 25: Object-Oriented Programming 394

 create__o arg

can be abbreviated as:

 o =: arg conew 'Class'

That is, any left argument of conew is passed to create, which is
automatically invoked. In this simple Stack class, create ignores
its argument, but even so one step is neater than two. For
example:

 T =: 0 conew 'Stack'
 push__T 77
1
 push__T 88
2
 top__T 0
88

25.4 Listing the Classes and Objects

In this section we look at inspecting the population of objects and
classes we have created. The expression (18!:1) 0 1 produces a
list of all existing locales.

 (18!:1) 0 1
+-+-+-----+----+----+-+-------+--------+------+-----+-+
|0|1|Stack|base|ctag|j|jadetag|jcompare|jregex|jtask|z|
+-+-+-----+----+----+-+-------+--------+------+-----+-+

We see here the names of locales of 3 different kinds. Firstly, there
are ordinary locales such as base, and z, described in Chapter 24.
These are created automatically by the J system. Depending on

 395 Chapter 25: Object-Oriented Programming

the version of J you are using, you may see a list different from
the one shown here.

Secondly, there are locales such as Stack. The Stack locale
defines the Stack class. If we view this locale (with the view utility
function from Chapter 24)

 view 'Stack'
IP =: 1
create =: 3 : 'items =: 0 $ 0'
destroy =: codestroy
pop =: 3 : '# items =: }. items'
push =: 3 : '# items =: (< y) , items'
top =: 3 : '> {. items'

we see a variable IP (created automatically) and our methods
which we defined for Stack.

Thirdly, we have locales such as 0. Here the name is a string of
numeric digits (that is, '0'). Such a locale is an object. The
variable S has the value <'0', so that here object S is locale '0'.

S view >S

+-+
|0|
+-+

COCREATOR =: <'base'
items =: <;._1 '|how are you?|hello'

We see a variable COCREATOR, which identifies this locale as an
object, and the field(s) of the object.

The path from an object is given by the verb 18!:2

Chapter 25: Object-Oriented Programming 396

 18!:2 S
+-----+-+
|Stack|z|
+-----+-+

Since S is a Stack object, the first locale on its path is Stack.
Recall from Chapter 24 that, since S = <'0' then the expression
push__S 99 means:

1. change the current locale to '0'. Now the fields of object S,
(that is, the the items variable of locale '0') are available.

2. apply the push verb to argument 99. Since push is not in
locale '0', a search is made along the path from locale '0'
which takes us to locale Stack whence push is retrieved
before it is applied.

3. Restore the current locale to the status quo.

Here is a utility function to list all the existing objects and their
classes.

 obcl =: 3 : '(, ({. @: (18!:2)))"0 (18!:1) 1'

Currently we have variables S and T each referring to a Stack
object.

S T obcl ''

+-+
|0|
+-+

+-+
|1|
+-+

+-+-----+
|0|Stack|
+-+-----+
|1|Stack|
+-+-----+

 397 Chapter 25: Object-Oriented Programming

(Again, depending on the version of J you are using, you may see
further objects and classes automatically generated by the J
system for its own use.)

A Stack, S say, can be removed using the destroy method of the
Stack class.

 destroy__S ''
1

We see it has gone.

 obcl ''
+-+-----+
|1|Stack|
+-+-----+

25.5 Inheritance

Here we look at how a new class can build on an existing class.
The main idea is that, given some class, we can develop a new
class as a specialized version of the old class.

For example, suppose there is a class called Collection where the
objects are collections of values. We could define a new class
where, say, the objects are collections without duplicates, and this
class could be called Set. Then a Set object is a special kind of a
Collection object.

In such a case we say that the Set class is a child of the parent
class Collection. The child will inherit the methods of the parent,
perhaps modifying some and perhaps adding new methods, to

Chapter 25: Object-Oriented Programming 398

realize the special properties of child objects.

For a simple example we begin with a parent-class called
Collection,

 coclass 'Collection'
 create =: 3 : 'items =: 0 $ 0'
 add =: 3 : '# items =: (< y) , items'
 remove =: 3 : '# items =: items -. < y'
 inspect =: 3 : 'items'
 destroy =: codestroy

Here the inspect method yields a boxed list of all the members of
the collection.

A quick demonstration:

 cocurrent 'base'
 C1 =: 0 conew 'Collection'
 add__C1 'foo'
1
 add__C1 37
2
 remove__C1 'foo'
1
 inspect__C1 0
+--+
|37|
+--+

Now we define the Set class, specifying that Set is to be a child of
Collection with the library verb coinsert.

 coclass 'Set'
 coinsert 'Collection'

 399 Chapter 25: Object-Oriented Programming

To express the property that a Set has no duplicates, we need to
modify only the add method. Here is something that will work:

 add =: 3 : '# items =: ~. (< y) , items'

All the other methods needed for Set are already available,
inherited from the parent class Collection. We have finished the
definition of Set and are ready to use it.

 cocurrent 'base'
 s1 =: 0 conew 'Set' NB. make new Set object.
 add__s1 'a'
1
 add__s1 'b'
2
 add__s1 'a'
2
 remove__s1 'b'
1
 inspect__s1 0 NB. should have just one
'a'
+-+
|a|
+-+

25.5.1 A Matter of Principle

Recall the definition of the add method of class Set.

 add_Set_
3 : '# items =: ~. (< y) , items'

It has an objectionable feature: in writing it we used our

Chapter 25: Object-Oriented Programming 400

knowledge of the internals of a Collection object, namely that
there is a field called items which is a boxed list.

Now the methods of Collection are supposed to be adequate for
all handling of Collection objects. As a matter of principle, if we
stick to the methods and avoid rummaging around in the internals,
we hope to shield ourselves, to some degree, from possible future
changes to the internals of Collection. Such changes might be,
for example, for improved performance.

Let's try redefining add again, this time sticking to the methods of
the parent as much as possible. We use our knowledge that the
parent inspect method yields a boxed list of the membership. If
the argument y is not among the membership, then we add it with
the parent add method.

 add_Set_ =: 3 : 0
if. (< y) e. inspect 0
do. 0
else. add_Collection_ f. y NB. see below !
end.
)

Not so nice, but that's the price we pay for having principles.
Trying it out on the set s1:

 inspect__s1 0
+-+
|a|
+-+
 add__s1 'a'
0
 add__s1 'z'
2

 401 Chapter 25: Object-Oriented Programming

 inspect__s1 0
+-+-+
|z|a|
+-+-+

25.6 Using Inherited Methods

Let us review the definition of the add method of class Set.

 add_Set_
3 : 0
if. (< y) e. inspect 0
do. 0
else. add_Collection_ f. y NB. see below !
end.
)

There are some questions to be answered.

25.6.1 First Question

How are methods inherited? In other words, why is the inspect
method of the parent Collection class available as a Set method?
In short, the method is found along the path, that is,

• a Set object such as s1 is a locale. It contains the field-
variable(s) of the object.

• when a method of a class is executed, the current locale is
(temporarily) the locale of an object of that class. This
follows from the way we invoke the method, with an
expression of the form method__object argument.

• the path from an object-locale goes to the class locale and
thence to any parent locale(s). Hence the method is found
along the path.

Chapter 25: Object-Oriented Programming 402

. We see that a Set object such as s1 has a path to Set and then
to Collection.

 copath > s1
+---+----------+-+
|Set|Collection|z|
+---+----------+-+

25.6.2 Second Question

In the definition of add_Set_

 add_Set_
3 : 0
if. (< y) e. inspect 0
do. 0
else. add_Collection_ f. y NB. see below !
end.
)

Given that the parent method inspect is referred to as simply
inspect, why is the parent method add referred to as
add_Collection_? Because we are defining a method to be called
add and inside it a reference to add would be a fatal circularity.

25.6.3 Third Question

why is the parent add method specified as add_Collection_ f. ?

Because add_Collection_ is a locative name, and evaluating
expressions with locative names will involve a change of locale.
Recall from Chapter 24 that add_Collection_ 0 would be
evaluated in locale Collection, which would be incorrect: we need

 403 Chapter 25: Object-Oriented Programming

to be in the object locale when applying the method.

Since f. is built-in, by the time we have finished evaluating
(add_Collection_ f.) we are back in the right locale with a fully-
evaluated value for the function which we can apply without
change of locale.

 add_Collection_ f.
3 : '# items =: (< y) , items'

25.7 Library Verbs

Here is a brief summary of selected library verbs.

coclass 'foo' introduce new class foo

coinsert 'foo' this class to be a child of foo

conew 'foo' introduce a new object of class foo

conl 0 list locale names

conl 1 list ids of object locales

names_foo_ '' list the methods of class foo

copath <'foo' show path of class foo

coname '' show name of current locale

Chapter 25: Object-Oriented Programming 404

This brings us to the end of Chapter 25

 405 Chapter 26: Script Files

Chapter 26: Script Files

A file containing text in the form of lines of J is called a script-file,
or just a script. By convention a script has a filename terminating
with .ijs . The process of executing the lines of J in a script-file is
called "loading" a script.

We write our own scripts for our particular programming projects.
In addition, the J system comes supplied with a library of
predefined scripts of general utility.

The plan for this chapter is to look at

• built-in verbs for loading scripts
• the load verb and its advantages, including convenient

loading of library scripts
• the "profile" script automatically loaded at the beginning of a

J session

26.1 Creating Scripts

It will be useful to identify a directory where we intend to store our
own scripts.

There is a directory j701-user convenient for the purpose. It is
installed automatically as part of a J installation. Its full pathname
is given by

 jpath '~user'
c:/users/homer/j701-user

Chapter 26: Script Files 406

A variable, scriptdir say, can hold the name of our chosen script
directory together with a trailing '/'

] scriptdir =: (jpath '~user') , '/'
c:/users/homer/j701-user/

Scripts are usually created using a text editor, but we can use J to
create small examples of scripts as we need them. Here is an
example of creating a tiny script, with a filename of say
example.ijs, using the built-in verb 1!:2 thus:

 (0 : 0) (1!:2) < scriptdir,'example.ijs'
plus =: +
k =: 2 plus 3
k plus 1
)

26.2 Loading Scripts

There is a built-in verb 0!:1 to load a script. The argument is a
filename as a boxed string.

 0!:1 < scriptdir,'example.ijs'
 plus =: +
 k =: 2 plus 3
 k plus 1
6

We see on the screen a display of the lines of the script as they
were executed, together with the result-values of any

 407 Chapter 26: Script Files

computations. The definitions of plus and k are now available:

plus k

+ 5

The verb 0!:1, as we saw, loads a script with a display. If there is
an error in the script, 0!:1 will stop. We can choose whether or
not to display, and whether to stop or to continue loading after an
error. There are four similar verbs:

0!:0 no display stopping on error

0!:1 with display stopping on error

0!:10 no display
continuing on
error

0!:11 with display
continuing on
error

For example:

 0!:0 < scriptdir,'example.ijs'

We see nothing on the screen. The value computed in the script for
k plus 1 is discarded.

Chapter 26: Script Files 408

26.3 The load Verb

There is a verb load which is predefined, that is, automatically
available in the standard J setup. It can be used just like 0!:0 to
load a script

 load < scriptdir,'example.ijs'

The script is loaded without a display and stopping on error. There
is a companion verb loadd which loads with a display, stopping on
error.

 loadd < scriptdir, 'example.ijs'
 plus =: +
 k =: 2 plus 3
 k plus 1
6

load and loadd have several advantages compared with 0!:n .
The first of these is that the filename need not be boxed.

 loadd scriptdir, 'example.ijs'
 plus =: +
 k =: 2 plus 3
 k plus 1
6

26.4 Local Definitions in Scripts

Now we look at the treatment of local variables in scripts. Here is
an example of a script.

 409 Chapter 26: Script Files

 (0 : 0) (1!:2) < scriptdir, 'ex1.ijs'
w =: 1 + 1
foo =: + & w
)

Suppose that variable w has the sole purpose of helping to define
verb foo and otherwise w is of no interest. It would be better to
make w a local variable.

Firstly, we need to assign to w with =. in the same way that we
assign to local variables in explicit functions. Our revised script
becomes:

 (0 : 0) (1!:2) < scriptdir, 'ex2.ijs'
w =. 1 + 1
foo =: + & w
)

Secondly, we need something for w to be local to, that is, an
explicit function, because outside any explicit function (that is, "at
the top level") =. is the same as =: All that would be needed is the
merest wrapper of explicit definition around 0!:n, such as:

 LL =: 3 : '0!:0 y'

If we now load our script

 LL < scriptdir, 'ex2.ijs'

and then look at the results:

foo w

+&2 error

Chapter 26: Script Files 410

we see that foo is as expected, and, as intended, there is no value
for w. Therefore w was local to the execution of the script, or
strictly speaking, local to the execution of LL.

An advantage of the load verb is that it provides the explicit
function needed to make w local.

 erase 'foo';'w'
1 1

 load scriptdir, 'ex2.ijs'

foo w

+&2 error

26.4.1 Local Verbs in Scripts

In the previous example, the local variable w was a noun. With a
local verb, there is a further consideration. Here is an example of a
script which tries to use a local verb (sum) to assist the definition
of a global verb (mean).

 (0 : 0) (1!:2) < scriptdir, 'ex3.ijs'
sum =. +/
mean =: sum % #
)

 load < scriptdir, 'ex3.ijs'

We see that this will not work, because mean needs sum and sum,

 411 Chapter 26: Script Files

being local, is no longer available.

mean sum

sum % # error

The remedy is to "fix" the definition of mean, with the adverb f.
(as we did in Chapter 12). Our revised script becomes

 (0 : 0) (1!:2) < scriptdir, 'ex4.ijs'
sum =. +/
mean =: (sum % #) f.
)

Now mean is independent of sum

 load < scriptdir, 'ex4.ijs'

mean sum

+/ % # error

26.5 Loading Into Locales

We looked at locales in Chapter 24. When we load a script with
0!:n or load it is the current locale that becomes populated with
definitions from the script.

By default, the current locale is base. In general, we may wish to
load a script into a specified locale, say locale one.

Chapter 26: Script Files 412

Here is one way:

 load_one_ scriptdir, 'example.ijs'

 plus_one_
+

Another way is to let the script itself specify the locale. For
example,

 (0 : 0) (1!:2) < scriptdir, 'ex5.ijs'
18!:4 < 'two'
w =. 1 + 1
foo =: + & w
)

and then the script steers itself into locale two

 load scriptdir, 'ex5.ijs'

 foo_two_
+&2

Here is a further advantage of load compared with 0!:n. Notice
that the current locale is base.

 18!:5 '' NB. current locale before loading
+----+
|base|
+----+

If we now load ex5.ijs, the current locale is still base afterwards,
regardless of the fact that the script visited locale two.

 413 Chapter 26: Script Files

 load scriptdir,'ex5.ijs'
 18!:5 '' NB. current locale after loading
+----+
|base|
+----+

However, loading the same script with 0!:n does NOT restore the
previously current locale.

 18!:5 '' NB. current locale before loading
+----+
|base|
+----+
 0!:0 < scriptdir,'ex5.ijs'
 18!:5 '' NB. current locale after loading
+---+
|two|
+---+

so we conclude that self-steering scripts should be loaded with
load and not with 0!:n.

We return to base.

 18 !: 4 < 'base'

26.6 Repeated Loading, and How to Avoid It

Another advantage of load is this. Suppose one script depends on
(definitions in) a second script. If the first includes a line such as
load 'second' then the second is automatically loaded when the
first is loaded.

Chapter 26: Script Files 414

If we load the first script again (say, after correcting an error) then
the second will be loaded again. This may be unnecessary or
undesirable. The predefined verb require is like load but does not
load a script if it is already loaded.

Here is a demonstration. Suppose we have these two lines for the
first script:

 (0 : 0) (1!:2) < scriptdir,'first.ijs'
 require scriptdir, 'second.ijs'
 a =: a + 1
)

Here the variable a is a counter: every time first.ijs is loaded, a
will be incremented. Similarly for a second script:

 (0 : 0) (1!:2) < scriptdir, 'second.ijs'
 b =: b + 1
)

We set the counters a and b to zero, load the first script and
inspect the counters:

(a =: 0),(b =: 0) load scriptdir, 'first.ijs' a,b

0 0 1 1

Evidently each script has executed once. If we now load the first
again, we see that it has executed again, but the second has not:

load scriptdir,'first.ijs' a,b

 2 1

 415 Chapter 26: Script Files

26.7 Load Status

The J system keeps track of ALL scripts loaded in the session,
whether with load or with 0!:0. The built-in verb 4!:3 with a null
argument gives a report as a boxed list of filenames. Here are the
last few entries in this report for the current session.

 ,. _4 {. 4!:3 ''
+-----------------------------------+
|c:\users\homer\j701-user\ex4.ijs |
+-----------------------------------+
|c:\users\homer\j701-user\ex5.ijs |
+-----------------------------------+
|c:\users\homer\j701-user\first.ijs |
+-----------------------------------+
|c:\users\homer\j701-user\second.ijs|
+-----------------------------------+

Recall that we defined plus in the script example.ijs which we
loaded above. The built-in verb 4!:4 keeps track of which name
was loaded from which script. The argument is a name (plus for
example) and the result is an index into the list of scripts
generated by 4!:3. We see that plus was indeed defined by
loading the script example.ijs

i =: 4!:4 < 'plus' i { 4!:3 ''

14 +------------------------------------+
|c:\users\homer\j701-user\example.ijs|
+------------------------------------+

Chapter 26: Script Files 416

26.8 Library Scripts

26.8.1 The Standard Library

The J system comes supplied with script files containing a useful
collection of predefined functions.

We can look at the list of scripts loaded automatically at the
beginning of the session. For this we use the built-in verb 4!:3 to
generate a boxed list of file-names. Here are the first 9 scripts:

 ,. 9 {. 4 !: 3 ''
+---+
|C:\users\homer\j701\bin\profile.ijs |
+---+
|C:\users\homer\j701\system\util\boot.ijs |
+---+
|C:\users\homer\j701\system\main\stdlib.ijs |
+---+
|C:\users\homer\j701\system\util\scripts.ijs |
+---+
|C:\users\homer\j701\system\main\regex.ijs |
+---+
|C:\users\homer\j701\system\main\task.ijs |
+---+
|C:\users\homer\j701\system\util\configure.ijs|
+---+
|c:\users\homer\j701-user\config\recent.dat |
+---+
|c:\users\homer\j701\system\main\ctag.ijs |
+---+

 417 Chapter 26: Script Files

We see that among these is the script-file stdlib.ijs

Functions defined in stdlib.ijs end up in the z locale where they
are conveniently available to the programmer. There are more than
300 things defined in the z locale:

 # nl_z_ ''
369

For example, the file-handling utility functions documented in the J
User Manual are found in the z locale with names beginning with
the letter 'f'.

 6 6 $ 'f' nl_z_ ''
+--------+----------+--------+-----------+---------+--------------+
|f2utf8 |fappend |fappends|fapplylines|fboxname |fc |
+--------+----------+--------+-----------+---------+--------------+
|fcompare|fcompares |fcopynew|fdir |ferase |fetch |
+--------+----------+--------+-----------+---------+--------------+
|fexist |fexists |fgets |fi |flatten |fliprgb |
+--------+----------+--------+-----------+---------+--------------+
|fmakex |foldpara |foldtext|fpathcreate|fpathname|fputs |
+--------+----------+--------+-----------+---------+--------------+
|fread |freadblock|freadr |freads |frename |freplace |
+--------+----------+--------+-----------+---------+--------------+
|fsize |fss |fssrplc |fstamp |fstring |fstringreplace|
+--------+----------+--------+-----------+---------+--------------+

26.8.2 The J Application Library

There is an extensive collection of script-files forming the J
Application Library (JAL). The JAL is documented here

http://www.jsoftware.com/jwiki/JAL
http://www.jsoftware.com/user/contents.htm
http://www.jsoftware.com/user/contents.htm

Chapter 26: Script Files 418

26.9 User-Defined Startup Script

Suppose we have a collection of our own definitions which we wish
to be loaded automatically at the beginning of every J session. To
achieve this we can put our definitions into a script-file which must
be named startup.ijs. The full pathname for this file is given by
the expression

 jpath '~config/startup.ijs'
c:/users/homer/j701-user/config/startup.ijs

Here is an example. We create the script-file with a few definitions.
For this example we could define a few verbs useful for type-
checking.

 (0 : 0) (1 !: 2) < jpath '~config/startup.ijs'
is_int =: 4 = 3 !: 0
is_char =: 2 = 3 !: 0
is_number =: 1 4 8 16 64 128 e.~ 3!:0
is_scalar =: 0 = # @: $
is_list =: 1 = # @: $
is_string =: is_char *. is_list
)

With this script-file in place, the next session should automatically
load it. We verify this by looking at the list of scripts loaded at the
beginning of the new session.

 ,. 11 {. 4 !: 3 ''

 419 Chapter 26: Script Files

+---+
|C:\users\homer\j701\bin\profile.ijs |
+---+
|C:\users\homer\j701\system\util\boot.ijs |
+---+
|C:\users\homer\j701\system\main\stdlib.ijs |
+---+
|C:\users\homer\j701\system\util\scripts.ijs |
+---+
|C:\users\homer\j701\system\main\regex.ijs |
+---+
|C:\users\homer\j701\system\main\task.ijs |
+---+
|C:\users\homer\j701\system\util\configure.ijs|
+---+
|c:\users\homer\j701-user\config\recent.dat |
+---+
|c:\users\homer\j701\system\main\ctag.ijs |
+---+
|c:\users\homer\j701\system\util\jadetag.ijs |
+---+
|c:\users\homer\j701-user\config\startup.ijs |
+---+

We see that startup.ijs has been loaded and its definitions are
available.

 is_string 'hello'
1

This is the end of Chapter 26.

Chapter 26: Script Files 420

 421 Chapter 27: Representations and Conversions

Chapter 27: Representations and
Conversions

In this chapter we look at various transformations of functions and
data.

27.1 Classes and Types

If we are transforming things into other things, it is useful to begin
with functions which tell us what sort of thing we are dealing with.

27.1.1 Classes
Given an assignment, name =: something, then something is an
expression denoting a noun or a verb or an adverb or a
conjunction. That is, there are 4 classes to which something may
belong.

There is a built-in verb 4!:0 which here we can call class.

 class =: 4!:0

We can discover the class of something by applying class to the
argument <'name'. For example,

n =: 6 class < 'n'

6 0

Chapter 27: Representations and Conversions 422

The result of 0 for the class of n means that n is a noun. The cases
are:

 0 noun

 1 adverb

 2 conjunction

 3 verb

and two more cases: the string 'n' is not a valid name, or n is
valid as a name but no value is assigned to n.

 _2 invalid

 _1 unassigned

For example:

C =: & class <'C' class <'yup' class <'1+2'

& 2 _1 _2

The argument of class identifies the object of interest by quoting
its name to make a string, such as 'C'.

Why is the argument not simply the object? Because, by the very
purpose of the class function, the object may be a verb, noun,
adverb or conjunction, and an adverb or conjunction cannot be
supplied as argument to any other function.

Why not? Suppose the object of interest is the conjunction C. No

 423 Chapter 27: Representations and Conversions

matter how class is defined, whether verb or adverb, any
expression of the form (class C) or (C class) is a bident or a
syntax error. In no case is function class applied to argument C.
Hence the need to identify C by quoting its name.

27.1.2 Types
A noun may be an array of integers, or of floating-point numbers
or of characters, and so on. The type of any array may be
discovered by applying the built-in verb 3!:0

 type =: 3!:0

For example

type 0.1 type 'abc'

8 2

The result of 8 means floating-point and the result 2 means
character. Possible cases for the result are (amongst others):

 1 boolean
 2 character (that is, 8-bit characters)
 4 integer
 8 floating point
 16 complex
 32 boxed
 64 extended integer
 128 rational
 65536 symbol
 131072 wide character (16-bit)

Chapter 27: Representations and Conversions 424

27.2 Execute

There is a built-in verb ". (doublequote dot, called "Execute"). Its
argument is a character-string representing a valid J expression,
and the result is the value of that expression.

 ". '1+2'
3

The string can represent an assignment, and the assignment is
executed:

". 'w =: 1 + 2' w

3 3

If the string represents a verb or adverb or conjunction, the result
is null, because Execute is itself a verb and therefore its results
must be nouns. However we can successfully Execute assignments
to get functions.

". '+' ". 'f =: +' f

 +

27.3 On-Screen Representations

When an expression is entered at the keyboard, a value is
computed and displayed on-screen. Here we look at how values
are represented in on-screen displays. For example, if we define a
function foo:

 425 Chapter 27: Representations and Conversions

 foo =: +/ % #

and then view the definition of foo:

 foo
+-----+-+-+
+-+-+	%	#			
	+	/			
+-+-+					
+-----+-+-+

we see on the screen some representation of foo. What we see
depends on which of several options is currently in effect for
representing functions on-screen.

By default the current option is the "boxed representation", so we
see above foo depicted graphically as a structure of boxes. Other
options are available, described below. To select and make current
an option for representing functions on-screen, enter one of the
following expressions:

 (9!:3) 2 NB. boxed (default)

 (9!:3) 5 NB. linear

 (9!:3) 6 NB. parenthesized

 (9!:3) 4 NB. tree

 (9!:3) 1 NB. atomic

The current option remains in effect until we choose a different
option.

Chapter 27: Representations and Conversions 426

27.3.1 Linear Representation
If we choose the the linear representation, and look at foo again:

 (9!:3) 5 NB. linear

 foo
+/ % #

we see foo in a form in which it could be typed in at the keyboard,
that is, as an expression.

Notice that the linear form is equivalent to the original definition,
but not necessarily textually identical: it tends to minimize
parentheses.

 bar =: (+/) % #

 bar
+/ % #

Functions, that is, verbs, adverbs and conjunctions, are shown in
the current representation. By contrast, nouns are always shown in
the boxed representation, regardless of the current option. Even
though linear is current, we see:

 noun =: 'abc';'pqr'

 noun
+---+---+
|abc|pqr|
+---+---+

27.3.2 Parenthesized
The parenthesized representation is like linear in showing a
function as an expression. Unlike linear, the parenthesized form

 427 Chapter 27: Representations and Conversions

helpfully adds parentheses to make the logical structure of the
expression more evident.

 (9!:3) 6 NB. parenthesized

 zot =: f @: g @: h

 zot
(f@:g)@:h

27.3.3 Tree Representation
Tree representation is another way of displaying structure
graphically:

 (9!:3) 4 NB. tree

 zot
 +- f
 +- @: -+- g
-- @: -+- h

27.3.4 Atomic Representation
See below

Before continuing, we return the current representation option to
linear.

 (9!:3) 5

27.4 Representation Functions

Regardless of the current option for showing representations on-

Chapter 27: Representations and Conversions 428

screen, any desired representation may be generated as a noun by
applying a suitable built-in verb.

If y is a name with an assigned value, then a representation of y is
a noun produced by applying one of the following verbs to the
argument <'y'

 br =: 5!:2 NB. boxed
 lr =: 5!:5 NB. linear
 pr =: 5!:6 NB. parenthesized
 tr =: 5!:4 NB. tree
 ar =: 5!:1 NB. atomic

For example, the boxed and parenthesized forms of zot are shown
by:

br < 'zot' pr < 'zot'

+--------+--+-+
+-+--+-+	@:	h				
	f	@:	g			
+-+--+-+						
+--------+--+-+

(f@:g)@:h

We can get various representations of a noun, for example the
boxed and the linear:

br <'noun' lr <'noun'

+---+---+
|abc|pqr|
+---+---+

<;._1 ' abc pqr'

 429 Chapter 27: Representations and Conversions

Representations produced by 5!:n are themselves nouns. The
linear form of verb foo is a character-string of length 6.

foo s =: lr <'foo' $ s

+/ % # +/ % # 6

The 6 characters of s represent an expression denoting a verb. To
capture the verb expressed by string s, we could prefix the string
with characters to make an assignment, and Execute the
assignment.

s $
s

a =: 'f =: ' , s ". a f 1 2

+/ % # 6 f =: +/ % # 1.5

27.4.1 Atomic Representation

We saw in Chapter 10 and Chapter 14, that it is useful to be able
to form sequences of functions. By this we mean, not trains of
verbs, but gerunds. A gerund, regarded as a sequence of verbs,
can for example be indexed to find a verb applicable in a particular
case of the argument.

To be indexable, a sequence must be an array, a noun. Thus we
are interested in transforming a verb into a noun representing that
verb, and vice versa. A gerund is a list of such nouns, containing
atomic representations. The atomic representation is suitable for
this purpose because it has an inverse. None of the other
representation functions have true inverses.

Chapter 27: Representations and Conversions 430

The atomic representation of anything is a single box with inner
structure. For an example, suppose that h is a verb defined as a
hook. (A hook is about the simplest example of a verb with non-
trivial structure.)

 h =: + %

compare the boxed and the atomic representations of h

br <'h' ar < 'h'

+-+-+
|+|%|
+-+-+

+---------+
|+-+-----+|
	2	+-+-+				
			+	%		
		+-+-+				
+-+-----+						
+---------+

The inner structure is an encoding which allows the verb to be
recovered from the noun efficiently without reparsing the original
definition. It mirrors the internal form in which a definition is
stored. It is NOT meant as yet another graphic display of structure.

The encoding is described in the Dictionary. We will not go into
much detail here. Very briefly, in this example we see that h is a
hook (because 2 is an encoding of "hook") where the first verb is +
and the second is %.

The next example shows that we can generate atomic
representations of a noun, a verb, an adverb or a conjunction.

 N =: 6

 431 Chapter 27: Representations and Conversions

 V =: h
 A =: /
 C =: &

ar <'N' ar <'V' ar <'A' ar <'C'

+-----+
|+-+-+|
||0|6||
|+-+-+|
+-----+

+-+
|h|
+-+

+-+
|/|
+-+

+-+
|&|
+-+

27.4.2 Inverse of Atomic Representation
The inverse of representation is sometimes called "abstraction", (in
the sense that for example a number is an abstract mathematical
object represented by a numeral.) The inverse of atomic
representation is 5!:0 which we can call ab.

 ab =: 5!:0

ab is an adverb, because it must be able to generate any of noun,
verb, adverb or conjunction. For example, we see that the
abstraction of the atomic representation of h is equal to h

h r =: ar < 'h' r ab

+ % +---------+
|+-+-----+|
||2|+-+-+|| | | |
|| ||+|%|||
|| |+-+-+||
|+-+-----+|
+---------+

+ %

Chapter 27: Representations and Conversions 432

and similarly for an argument of any type. For example for noun N
or conjunction C

N rN=: ar <'N' rN
ab

C (ar <'C') ab

6 +-----+
|+-+-+|
||0|6||
|+-+-+|
+-----+

6 & &

27.4.3 Execute Revisited
Here is another example of the use of atomic representations.
Recall that Execute evaluates strings expressing nouns but not
verbs. Since Execute is itself a verb it cannot deliver verbs as its
result.

". '1+2' ". '+'

3

To evaluate strings expressing values of any class we can define an
adverb eval say, which delivers its result by abstracting an atomic
representation of it.

 eval =: 1 : 0
". 'w =. ' , u
(ar < 'w') ab
)

 433 Chapter 27: Representations and Conversions

'1+2' eval mean =: '+/ % #' eval mean 1 2

3 +/ % # 1.5

27.4.4 The Tie Conjunction Revisited
Recall from Chapter 14 that we form gerunds with the Tie
conjunction `. Its arguments can be two verbs.

 G =: (+ %) ` h

Its result is a list of atomic representations. To demonstrate, we
choose one, say the first in the list, and abstract the verb.

G r =: 0 { G r ab

+---------+-+
+-+-----+	h						
	2	+-+-+					
			+	%			
		+-+-+					
+-+-----+							
+---------+-+

+---------+
|+-+-----+|
	2	+-+-+				
			+	%		
		+-+-+				
+-+-----+						
+---------+

+ %

The example shows that Tie can take arguments of expressions
denoting verbs. By contrast, the atomic representation function
(ar or 5!:1) must take a boxed name to identify its argument.

Here is a conjunction T which, like Tie, can take verbs (not names)
as arguments and produces atomic representations.

Chapter 27: Representations and Conversions 434

 T =: 2 : '(ar <''u.'') , (ar <''v.'')'

(+ %) T h (+ %) ` h

+---------+-+
+-+-----+	h						
	2	+-+-+					
			+	%			
		+-+-+					
+-+-----+							
+---------+-+

+---------+-+
+-+-----+	h						
	2	+-+-+					
			+	%			
		+-+-+					
+-+-----+							
+---------+-+

27.5 Conversions for Binary Data

Binary data is, briefly, values represented compactly as character
strings. Here we look at functions for converting between values in
J arrays and binary data, with a view to handling files with binary
data. Data files will be covered in Chapter 28 .

In the following, a 32-bit PC is assumed, so it is assumed that a
character occupies one byte and a floating point number occupies
8.

A J array, of floating-point numbers for example, is stored in the
memory of the computer. Storage is required to hold information
about the type, rank and shape of the array, together with storage
for each number in the array. Each floating-point number in the
array needs 8 bytes of storage.

There are built-in functions to convert a floating-point number to a
character-string of length 8, and vice versa.

 435 Chapter 27: Representations and Conversions

 cf8 =: 2 & (3!:5) NB. float to 8 chars
 c8f =: _2 & (3!:5) NB. 8 chars to float

In the following example, we see that the number n is floating-
point, n is converted to give the string s which is of length 8, and s
is converted back to give a floating-point number equal to n.

n =: 0.1 $ s =: cf8 n c8f s

0.1 8 0.1

Characters in the result s are mostly non-printable. We can inspect
the characters by locating them in the ASCII character-set:

 a. i. s
154 153 153 153 153 153 185 63

Now consider converting arrays of numbers. A list of numbers is
converted to a single string, and vice versa::

a =: 0.1 0.1 $ s =: cf8 a c8f s

0.1 0.1 16 0.1 0.1

The monadic rank of cf8 is infinite: cf8 applies just once to its
whole argument.

 RANKS =: 1 : 'u b. 0'
 cf8 RANKS
_ _ _

but the argument must be a scalar or list, or else an error results.

Chapter 27: Representations and Conversions 436

b =: 2 2 $ a $ w =: cf8 b $ w =: cf8"1 b

0.1 0.1
0.1 0.1

error 2 16

A floating-point number is convertible to 8 characters. There is an
option to convert a float to and from a shorter 4-character string,
sacrificing precision for economy of storage.

 cf4 =: 1 & (3!:5) NB. float to 4 chars
 c4f =: _1 & (3!:5) NB. 4 chars to float

As we might expect, converting a float to 4 characters and back
again can introduce a small error.

 p =: 3.14159265358979323

p $ z =: cf4 p q =: c4f z p - q

3.14159 4 3.14159 _8.74228e_8

A J integer needs 4 bytes of storage. There are functions to
convert between J integers and 4-character strings.

 ci4 =: 2 & (3!:4) NB. integer to 4 char
 c4i =: _2 & (3!:4) NB. 4 char to integer

i =: 1 _100 $ s =: ci4 i c4i s

1 _100 8 1 _100

 437 Chapter 27: Representations and Conversions

We see that the length of s is 8 because s represents two integers.

Suppose k is an integer and c is the conversion of k to 4
characters.

k =: 256+65 $ c =: ci4 k

321 4

Since characters in c are mostly non-printable, we inspect them by
viewing their locations in the ASCII alphabet. We see that the
characters are the base-256 digits in the value of k, stored in c in
the order least-significant first (on a PC)..

k a. i. c 256 256 256 256 #: k

321 65 1 0 0 0 0 1 65

Integers in the range _32768 to 32767 can be converted to 2-
character strings and vice versa.

 ci2 =: 1 & (3!:4) NB. integer to 2 char
 c2i =: _1 & (3!:4) NB. 2 char to int

i $ s =: ci2 i c2i s

1 _100 4 1 _100

Chapter 27: Representations and Conversions 438

Integers in the range 0 to 65535 can be converted to 2-character
strings and vice versa. Such strings are described as "16bit
unsigned".

 ui2 =: ci2 NB. integer to 2-char,
unsigned
 u2i =: 0 & (3!:4) NB. 2 char to integer,
unsigned

m =: 65535 $ s =: ui2 m u2i s

65535 2 65535

27.6 Unicode

In this section we look at J support for Unicode.

There are three kinds of character data in J.

• Ordinary character data we have seen already as 8-bit ASCII
• 16-bit characters, called "wide characters" for Unicode.
• Sequences of 8-bit characters, which represent Unicode

characters, for the purpose of writing Unicode in files. This
representation is called the UTF-8 encoding.

The following diagram shows the J functions available for
converting character data from one kind to another. The functions
are members of the u: family.

 439 Chapter 27: Representations and Conversions

ASCII chars

wide chars

16-bit

UTF-8

8-bit

8-bit
integer

u:

We have seen that J supports character data. For example

 C =: 'this is a string'

The built-in verb 3 !: 0 shows the type of a data value.

 3!:0 C
2

The result of 2 indicates that the data type of C is 8-bit characters,
called "char".

Chapter 27: Representations and Conversions 440

J also provides another data type with 16-bit characters, called
"wchar" ("wide character"). The built-in function monadic u:
converts char data to wchar.

] W =: u: C
this is a string

wchar data is displayed as before, but its data-type is shown as
131072

 3!:0 W
131072

A 16-bit wchar character can be one of the many characters in the
Unicode standard. The built-in function 4&u: produces a wchar
character specified by the argument, which is an integer in the
range 0-65536, called a Unicode "code point".

A code point is often given as 4 hex digits. For example, the code
point for the Greek letter alpha is hex 03b1 which we can write as
16b03b1

] alpha =: 4&u: 16b03b1
α

alpha is a wchar:

 3!:0 alpha
131072

We can build a wchar string including alpha :

] U= (u: 'the Greek letter alpha looks like this: '),alpha
the Greek letter alpha looks like this: α

 441 Chapter 27: Representations and Conversions

Suppose now that our wchar data U is to be exported, say by
writing it to a data file . We will need to encode our 16-bit wchar
data as a sequence of 8-bit bytes, according to some recognised
standard encoding scheme. The UTF-8 standard is suitable.

The built-in function 8&u: produces a character string which is a
UTF-8 encoding of wchar data

] Z =: 8&u: U
the Greek letter alpha looks like this: α

We see that Z is of data type 2, (that is 8-bit char) and that the
number of bytes in Z is one more than the number of characters in
U, because alpha is encoded as two bytes.

3!:0 Z # U # Z

2 42 43

The inverse of 8&u: is the built-in function 7&u: which produces
wchar characters from a UTF-8 string.

] A =: 7&u: Z
the Greek letter alpha looks like this: α

We can view the Unicode code-points of the letters in A. The built-
in function 3&u: produces code-point integers from wchar data. If
we look at the last few characters of A, we see as we expect that
the code-point integer of alpha is decimal 945, that is, hex 03b1.

] L =: _6 {. A NB. last few of A
is: α

Chapter 27: Representations and Conversions 442

 3 & u: L
105 115 58 32 32 945

This is the end of Chapter 27

 443 Chapter 28: Data Files

Chapter 28: Data Files

The subject of file-handling in general, and how data is organized
in files, is a major topic in itself. In this chapter we will cover only
a selection of the facilities available in J.

J functions to read files produce results in the form of character-
strings, and similarly functions to write files take strings as
arguments. Such a string can be the whole data content of a file
when the available memory of the computer is sufficient.

Our approach here will be to look first at some J functions for input
and output of strings. Then we look at a few examples of dealing
with strings as representing data in various formats. Finally we
look at mapped files as an alternative to conventional file-handling.

28.1 Reading and Writing Files

28.1.1 Built-in Verbs
In the following, a filename is a string which is valid as a filename
for the operating-system of the computer where we are running J.
For example:

 F =: 'c:\temp\demofile.xyz' NB. a filename

The built-in verb 1!:2 writes data to a file. The right argument is a
boxed filename. The left argument is a character-string, the data
to be written. The effect is that the file is created if it does not
already exist, and the data becomes the whole content of the file.
The result is null.

Chapter 28: Data Files 444

 'some data' 1!:2 < F NB. write to file F

The built-in verb 1!:1 reads data from a file. The right argument is
a boxed filename. The result is a character-string, the data read.

 data =: 1!:1 < F NB. read from file F

data $ data

some data 9

28.1.2 Screen and Keyboard As Files
Screen and keyboard can be treated as files, to provide a simple
facility for user-interaction with a running program.

The expression x (1!:2) 2 writes the value of x to "file 2", that is,
to the screen. A verb to display to the screen can be written as

 display =: (1!:2) & 2

For example, here is a verb to display the stages in the
computation of least-common-denominator by Euclid's algorithm.

 E =: 4 : 0
display x , y
if. y = 0 do. x else. (x | y) E x end.
)

 12 E 15
12 15
3 12
0 3
3 0

 445 Chapter 28: Data Files

3

The value to be displayed by (1!:2) &2 is not limited to strings: in
the example above a list of numbers was displayed.

User-input can be requested from the keyboard by reading "file 1",
that is, by evaluating (1!:1) 1. The result is a character-string
containing the user's keystrokes. For example, a function for user-
interaction might be:

 ui =: 3 : 0
display 'please type your name:'
n =. (1!:1) 1
display 'thank you ', n
''
)

and then after executing

 ui ''

a dialogue appears on the screen, like this:

 please type your name:

 Waldo

 thank you Waldo

28.1.3 Library Verbs

There are a number of useful verbs for file-handling in the
"standard library" (Chapter 26). Here is a brief summary of a
selection:

Chapter 28: Data Files 446

s fwrite F write string s to file F

fread F read string from file F

s fappend F append string s to file F

fread F;B,L read slice from file F, starting at B, length
L

s fwrites F write text s to file F

freads F read text from file F

fexist F true if file F exists

ferase F delete file F

From now on we will use these library verbs for our file-handling.

The library verb fwrite writes data to a file. The right argument is
a filename. The left argument is a character-string, the data to be
written. The effect is that the file is created if it does not already
exist, and the data becomes the whole content of the file.

 'some data' fwrite F NB. file write
9

The result shows the number of characters written. A result of _1
shows an error: either the left argument is not a string or the right
argument is not valid as a filename, or the specified file exists but
is read-only.

 447 Chapter 28: Data Files

 (3;4) fwrite F
_1

The library verb fread reads data from file. The argument is a
filename and the result is a character-string.

z =: fread F $z

some data 9

A result of _1 shows an error: the specified file does not exist, or is
locked.

fread 'qwerty' fexist 'qwerty'

_1 0

28.2 Large Files

For large files, the memory of the computer may not be sufficient
to allow the file to be treated as a single string. We look at this
case very briefly.

Write a file with some initial content:

 'abcdefgh' fwrite F
8

We can append some data to the file with library verb fappend.

Chapter 28: Data Files 448

 'MORE' fappend F
4

To see the effect of fappend (just for this demonstration, but not
of course for a large file) we can read the whole file again :

 fread F
abcdefghMORE

We can read a selected slice of the file, say 8 bytes starting from
byte 4. In this case we use fread with a right argument of the
form filename;start,size.

 start =: 4
 size =: 8
 fread F ; start, size
efghMORE

28.3 Data Formats

We look now at a few examples of how data may be organized in a
file, that is, represented by a string. Hence we look at converting
between character strings, with various internal structures, and J
variables.

We take it that files are read and written for the purpose of
exchanging data between programs. Two such programs we can
call "writer" and "reader". Questions which arise include:

1. Are writer and reader both to be J programs? If so, then
there is a convenient J-only format, the "binary
representation" covered below. If not, then we expect to

 449 Chapter 28: Data Files

work from a programming-language-independent description
of the data.

2. Are writer and reader to run on computers with the same
architecture? If not, then even in the J-to-J situation, some
finesse may be needed.

3. Is the data organized entirely as a repetition of some
structure (for example, "fixed length records"). If so then we
may usefully be able to treat it as one or more J arrays. If
not, we may need some ad-hoc programming.

28.3.1 The Binary Representation for J-0nly Files

Suppose we aim to handle certain files only in J programs, so that
we are free to choose any file format convenient for the J
programmer. The "binary representation" is particularly
convenient.

For any array A,

 A =: 'Thurs'; 19 4 2001

the binary representation of A is a character string. There are built-
in verbs to convert between arrays and binary representations of
arrays.

 arrbin =: 3!:1 NB. array to binary rep.
 binarr =: 3!:2 NB. binary rep. to array

If B is the binary representation of A, we see that B is a character
string, with a certain length.

Chapter 28: Data Files 450

A $ B =: arrbin A

+-----+---------+
|Thurs|19 4 2001|
+-----+---------+

88

We can write B to a file, read it back, and do the inverse
conversion to recover the value of A :

B fwrite F $ Z =: fread F binarr Z

88 88 +-----+---------+
|Thurs|19 4 2001|
+-----+---------+

From J4.06 on, there are variations of the binary representation
verbs above to allow for different machine architectures: see the
Dictionary under 3!:1.

28.3.2 Text Files
The expression a. (lower-case a dot) is a built-in noun, a
character-string containing all 256 ASCII characters in sequence.

65 66 67 { a. $ a.

ABC 256

In the ASCII character set, that is, in a., the character at position
0 is the null, at position 10 is line-feed and at position 13 is

 451 Chapter 28: Data Files

carriage return . In J, the names CR and LF are predefined in the
standard profile to mean the carriage-return and linefeed
characters.

 a. i. CR,LF
13 10

We saw fread and fwrite used for reading and writing character
files. Text files are a special kind of character file, in that lines are
delimited by CR and/or LF characters.

On some systems the convention is that lines of text are delimited
by a single LF and on other systems a CR,LF pair is expected.
Regardless of the system on which J is running, for J text
variables, the convention is always followed of delimiting a line
with single LF and no CR.

Here is an example of a text variable.

 t =: 0 : 0
There is physics
and there is
stamp-collecting.
)

Evidently it is a string (that is, a 1-dimensional character list) with
3 LF characters and no CR characters.

$ t +/t=LF +/t=CR

49 3 0

If we aim to write this text variable t to a text file, we must

Chapter 28: Data Files 452

choose between the single-LF or CRLF conventions. There are two
useful library verbs, fwrites and freads to deal with this
situation.

• Under Windows, x fwrites y writes text-variable x to file y,
in the process converting each LF in x to a CRLF pair in y.

• Under Linux, x fwrites y writes text-variable x to file y,
with no conversion.

• Under Windows or Linux z =: freads y reads file y,
converting any CRLF pair in y to a single LF in text-variable
z.

For convenience in dealing with a text variable such as t, we can
cut it into lines. A verb for this purpose is cut (described more
fully in Chapter 17).

 cut =: < ;. _2

cut produces a boxed list of lines, removing the LF at the end of
each line.

 lines =: cut t
 lines
+----------------+-------------+-----------------+
|There is physics|and there is |stamp-collecting.|
+----------------+-------------+-----------------+

The inverse of cut we can call uncut. It restores the LF at the end
of each box and then razes to make a string.

 uncut =: ; @: (,&LF &. >)
 uncut lines
There is physics
and there is

 453 Chapter 28: Data Files

stamp-collecting.

28.3.3 Fixed Length Records with Binary Data
Suppose our data is in two J variables: a table cnames, of
customer-names, and a list amts in customer order with for each
customer an amount, a balance say.

cnames =: 'Mr Rochester' ,: 'Jane' ,. amts =: _10000 3

Mr Rochester
Jane

_10000
 3

Now suppose the aim is to write this data to a file, formatted in
16-byte records. Each record is to have two fields: customer-name
in 12 bytes followed by amount in 4 bytes, as a signed integer.
Here is a possible approach.

The plan is to construct, from cnames and amts, an n-by-16
character table, to be called records. For this example, n=2, and
records will look like this:

Mr Rochester####
Jane ####

where #### represents the 4 characters of an integer in binary
form.

We build the records table by stitching together side by side an n-
by-12 table for the customer names field, and an n-by-4 table for
the amounts field.

Chapter 28: Data Files 454

For the customer-names field we already have cnames which is
suitable, since it is 12 bytes wide:

 $ cnames
2 12

For the amounts field we convert amts to characters, using ci4
from Chapter 27. The result is a single string, which is reshaped to
be n-by-4.

 ci4 =: 2 & (3!:4) NB. integer to 4 char

 amtsfield =: ((# amts) , 4) $ ci4 amts

Now we build the n-by-16 records table by stitching together
side-by-side the two "field" tables:

 records =: cnames ,. amtsfield

To inspect records, here is a utility verb which shows a non-
printing character as #

 inspect =: 3 : ('A=.a.{~32+i.96';'(A i.y)
{ A,''#''')

inspect records $ records

Mr Rochester####
Jane ####

2 16

The outgoing string to be written to the file is the ravel of the
records.

 455 Chapter 28: Data Files

 (, records) fwrite F
32

The inverse of the process is to recover J variables from the file.
We read the file to get the incoming string.

 instr =: fread F

Since the record-length is known to be 16, the number of records
is

 NR =: (# instr) % 16

Reshape the incoming string to get the records table.

 inspect records =: (NR,16) $ instr
Mr Rochester####
Jane ####

and extract the data. The customer-names are obtained directly,
as columns 0-11 of records.

 cnames =: (i.12) {"1 records

For the amounts, we extract columns 12-15, ravel into a single
string and convert to integers with c4i.

 c4i =: _2 & (3!:4) NB. 4 char to integer

 amts =: c4i , (12+i.4) {"1 records

Chapter 28: Data Files 456

cnames ,. amts

Mr Rochester
Jane

_10000
 3

28.4 Mapped Files

A file is said to be mapped when the file is temporarily
incorporated into the virtual-address-translation mechanism of an
executing program. The data in a mapped file appears to the J
programmer directly as the value of a J variable - an array.
Changes to the value of the variable are changes to the data in the
file.

In such a case, we can say, for present purposes, that the file is
mapped to the variable or, equivalently, that the variable is
mapped to the file.

Mapped files offer the following advantages:

• Convenience. Data in a file is handled just like data in any J
array. There is no reading or writing of the file.

• Persistent variables. A variable mapped to a file lives in the
file, and can persist from one J session to another.

There are two cases. In the first case, any kind of existing file can
be mapped to a variable. We take as given the structure of the
data in the file, and then the J program must supply a description
of the desired mapping. For example, a file with fixed-length
records could be mapped to a character table.

 457 Chapter 28: Data Files

In the second case, a file can be created in J in a special format
(called "jmf") specifically for the purpose of mapping to a variable.
In this case, the description is automatically derived from the
variable and stored in the file along with the data. Thus a "jmf" file
is self-describing.

We look first at creating jmf files, and then at mapping given files..

28.4.1 Library Script for Mapped Files
There is a library script, jmf.ijs, for handling mapped files. For
present purposes it is simplest to download it directly from the J
Application Library. Here is a link to jmf.ijs .

Assuming we have downloaded it into say, directory C:\temp for
example, we can load it into our J session with:

 load 'c:\temp\jmf.ijs'

The script will load itself into the locale jmf .

28.4.2 jmf Files and Persistent Variables
Suppose we have constructed an array V with some valuable data,
which from now on we aim to use and maintain over a number of J
sessions. Perhaps V is valuable now, or perhaps it will become
valuable over subsequent sessions as it is modified and added-to.

Our valuable data V can be an array of numbers, of characters, or
of boxes. For a simple example we start with V as a table of
numbers.

] V =: 2 2 $ 1 2 3 4
1 2
3 4

http://www.jsoftware.com/svn/addons/trunk/data/jmf/jmf.ijs

Chapter 28: Data Files 458

We can make a persistent variable from V as follows.

Step 1 is to estimate the size, in bytes, of a file required for the
value of V. Since we expect that over time V may grow from its
present size ultimately to, say, 64 KB, then our estimate S is

 S =: 64000

If in doubt, allow plenty. The size must be given as a positive
integer (not a float) and therefore less than 2147483648 (2Gb) on
a 32-bit machine.

Step 2 is to choose a file-name and, for convenience, define a
variable F to hold the the file name as a string. For example:

 F =: 'c:\temp\persis.jmf'

Step 3 is to create file F as a jmf file, large enough to hold S bytes
of data. For this purpose the utility function createjmf is available
(in locale jmf) so we can write:

 createjmf_jmf_ F;S

(On your system, with a different version of J, you may see a
response different from what is shown here.)

At this point, file F exists. If we inspect it we see its actual size is a
little larger than S, to accommodate a header record which makes
the file self-describing.

 fdir F
+----------+------------------+-----+---+------+
|persis.jmf|2012 12 16 8 37 22|64284|rw-|-----a|
+----------+------------------+-----+---+------+

 459 Chapter 28: Data Files

The content of file F is initially set by createjmf_jmf_ to represent
a J value, in fact a zero-length list. The important point is that file
F now contains a definite value.

Step 4 is to map the content of file F to a new variable, for which
we choose the name P.

 map_jmf_ 'P'; F

This statement means, in effect:

 P =: value-currently-in-file-F

and we can verify that P is now an empty list:

P $ P

 0

Notice particularly that the effect of mapping file F to variable P is
to assign the value in F to P and not the other way around. Hence
we avoided mapping file F directly onto our valuable array V
because V would be overwritten by the preset initial value in F, and
lost.

Step 5 is to assign to P the desired value, that of V

 P =: V

Variable P is now a persistent variable, since it is mapped to file F.
We can amend P, for example by changing the value at row 0
column 1 to 99.

Chapter 28: Data Files 460

P P =: 99 (<0 1) } P

1 2
3 4

1 99
3 4

or by appending a new row:

] P =: P , 0 0
1 99
3 4
0 0

Step 6 is needed before we finish the current session. We unmap
variable P, to ensure file F is closed.

 unmap_jmf_ 'P'
0

The result of 0 indicates success. The variable P no longer exists:

P $ P

error $ P

To demonstrate that the value of P persists in file F we repeat the
mapping, processing and unmapping in this or another session.
The name P we chose for our persistent variable is only for this
session. In another session, the persistent variable in file F can be
mapped to any name.

This time we choose the name Q for the persistent variable. We
map file F to Q:

 461 Chapter 28: Data Files

 map_jmf_ 'Q' ; F

 Q
1 99
3 4
0 0

modify Q:

] Q =: Q , 7 8
1 99
3 4
0 0
7 8

and unmap Q to close file F.

 unmap_jmf_ 'Q'
0

28.4.3 Mapped Files are of Fixed Size

Recall that we created file F large enough for S bytes of data.

 S
64000
 fdir F
+----------+------------------+-----+---+------+
|persis.jmf|2012 12 16 8 37 22|64284|rw-|-----a|
+----------+------------------+-----+---+------+

The variable in file F is currently much smaller than this, and the
unused trailing part of the file is filled with junk. However, if we

Chapter 28: Data Files 462

continue to modify Q by appending to it, we reach a limit, by filling
the file, and encounter an error. To demonstrate, with a verb fill
for the purpose:

 fill =: 3 : 0
try. while. 1 do. Q =: Q , 99 99 end.
catch. 'full'
end.
)

 map_jmf_ 'Q'; F
 fill ''
full

The amount of data now in Q can be estimated as 4 bytes per
integer (since Q is integer) multiplied by the number of integers,
that is, altogether 4 * */$ Q. This result for the final size of Q
accords with our original size estimate S.

4 * */ $ Q S

64000 64000

 unmap_jmf_ 'Q'
0

28.4.4 Given Files

Now we look at mapping ordinary data files (that is, files other
than the special jmf-format files we considered above).

 463 Chapter 28: Data Files

The way the data is laid out in the file we take as given, and our
task is specify how this layout is to be represented by the type,
rank and shape of a J variable, that is, to specify a suitable
mapping.

For example, suppose we aim to read a given file G with its data
laid out in fixed-length records, each record being 8 characters.
Suppose file G was originally created by, say:

 G =: 'c:\temp\data.xyz'

 'ABCD0001EFGH0002IJKL0003MNOP0004' fwrite G
32

The next step is to decide what kind of a variable will be suitable
for mapping the data in file G. We decide on an n-by-8 character
table. The number of rows, n, will be determined by the amount of
data in the file, so we do not specify n in advance.

It is convenient to start with a small example of an n-by-8
character table, which we call a prototype. The choice of n is
unimportant.

 prototype =: 1 8 $ 'a'

Now the mapping can be defined by:

] mapping =: ((3!:0) ; (}. @: $)) prototype
+-+-+
|2|8|
+-+-+

We see that mapping is a boxed list. The first item is the data-type.
Here 2, meaning "character", is produced by 3!:0 prototype. The

Chapter 28: Data Files 464

second item is the trailing dimensions (that is, all but the first) of
the prototype. Here 8 is all but the first of 1 8, produced by (}.@:
$) prototype. Thus mapping expresses or encodes "n-by-8
characters".

Now mapping is supplied as left argument to (dyadic) map_jmf_.
We map file G onto a variable for which we choose the name W
thus:

 mapping map_jmf_ 'W'; G

We see that W is now a variable. Its value is the data in the file.

W $ W

ABCD0001
EFGH0002
IJKL0003
MNOP0004

4 8

We can amend the data in the ususal way:

] W =: 'IJKL9999' 2 } W
ABCD0001
EFGH0002
IJKL9999
MNOP0004

What we cannot do is add another row to the data, because all the
space in file G is occupied by the data we already have.

 465 Chapter 28: Data Files

W W =: W , 'WXYZ0000'

ABCD0001
EFGH0002
IJKL9999
MNOP0004

error

We close file G by unmapping variable W:

 unmap_jmf_ 'W'
0

28.4.5 Mapped Variables Are Special
Mapping files to variables offers the programmer significant
advantages in functionality and convenience.

The price to be paid for these advantages is that there are some
considerations applying to mapped variables which do not apply to
ordinary variables. The programmer needs to be aware of, and to
manage, these considerations. This is our topic in this section and
the next.

If A is an ordinary variable, not mapped, then in the assignment
B=: A the value of A is in effect copied to B. A subsequent change
to A does not affect the value of B.

A =: 1 B =: A B A =: 2 B

1 1 1 2 1

Chapter 28: Data Files 466

By contrast, consider a variable mapped to a file. If the file is very
large, there may not be enough space for another copy of the
value. Hence copying is to be avoided.

Compare the previous example with the case when A is a mapped
variable.

 map_jmf_ 'A';F

A =: 1 B =: A B A =: 2 B

1 1 1 2 2

We see that B changes with changes to A. In effect B =: A means
that B is another name for A, not a copy of the value of A. That is,
both A and B refer to the same thing - the value in the file.

Hence it is also the case that A changes with changes to B.

A B =: 7 A

2 7 7

Consider now an explicit verb applied to a mapped variable. Here y
becomes another name for the data in the file. Hence assignment
to y (even a local assignment) may cause an unintended change
the mapped variable in the file. For example

 foo =: 3 : ' 3 * y =. y + 1'

 467 Chapter 28: Data Files

foo 2 A foo A A

9 7 24 8

28.4.6 Unmapping Revisited
The current status of mapped files and variables is maintained by
the J system in a "mapping table". The mapping table can be
displayed by entering the expression showmap_jmf_ '' but for
present purposes here is a utility function to display only selected
columns.

 status =: 0 1 9 & {"1 @: showmap_jmf_
 status ''
+-------+------------------+----+
|name |fn |refs|
+-------+------------------+----+
|A_base_|c:\temp\persis.jmf|3 |
+-------+------------------+----+

We see that currently variable A in locale base is mapped to file F
(persis.jmf).

Under "refs", the value 3 means that the data in file F is the target
of 3 references. One of these is variable A, a second is the variable
B (which we know to be another name for A) and the third is for
the system itself.

Variables A and B are both in existence:

Chapter 28: Data Files 468

A B

8 8

For the sake of simplicity, a recommended procedure for closing
the file is first to erase all variables such as B which are alternative
names for the originally-mapped variable A

 erase <'B'
1

The status shows the number of references is reduced.

 status ''
+-------+------------------+----+
|name |fn |refs|
+-------+------------------+----+
|A_base_|c:\temp\persis.jmf|2 |
+-------+------------------+----+

Now we can unmap A.

 unmap_jmf_ 'A'
0

The result of 0 means the file is closed and A erased. The status
table shows no entries, that is, that no files are mapped.

 469 Chapter 28: Data Files

 status ''
+----+--+----+
|name|fn|refs|
+----+--+----+

Let us recreate the situation in which A is mapped to F and B is
another name for A, so there are 3 references to (the data in) file
F.

 map_jmf_ 'A'; F
 B =: A
 status ''
+-------+------------------+----+
|name |fn |refs|
+-------+------------------+----+
|A_base_|c:\temp\persis.jmf|3 |
+-------+------------------+----+

What happens if we erase all the variables referring to F ?

 erase 'A';'B'
1 1
 status ''
+-------+------------------+----+
|name |fn |refs|
+-------+------------------+----+
|A_base_|c:\temp\persis.jmf|1 |
+-------+------------------+----+

We see there is still a single reference, under the name A even
though there is no variable A. This single reference reflects the fact

Chapter 28: Data Files 470

that file F is not yet unmapped.

Thus when we said earlier that file F gets mapped to variable A, it
would be more accurate to say that file F gets mapped to the
name A, and a variable of that name is created. Even though the
variable is subsequently erased, the name A still identifies the
mapped file, and can be used as an argument to unmap.

 unmap_jmf_ 'A'
0
 status ''
+----+--+----+
|name|fn|refs|
+----+--+----+

For more information, see the "Mapped Files" lab.

This is the end of Chapter 28

 471 Chapter 29: Error Handling

Chapter 29: Error Handling

The plan for this chapter is to look at some of the J facilities for
finding and dealing with programming errors. It is beyond the
scope of this chapter to consider debugging strategies, but (in my
view) the use of assertions is much to be recommended. We look
at:

• Assertions
• Continuing after failure
• Suspended execution
• Programmed error-handling

29.1 Assertions

A program can be made self-checking to some degree. Here is an
example of a verb which computes the price of an area of carpet,
given a list of three numbers: price per unit area, length and
width.

 carpet =: 3 : 0
*/ y
)

 carpet 2 3 4
24

Assume for the sake of example that the computation */y is large
and problematic, and we want some assurance that the result is
correct. We can at least check that the result is reasonable; we

Chapter 29: Error Handling 472

expect the price of a carpet to lie between, say, $10 and $10,000.

We can redefine carpet, asserting that the result p must be
between 10 and 10000:

 carpet =: 3 : 0
p =. */y
assert. p >: 10
assert. p <: 10000
p
)

If an assertion is evaluated as true (or "all true") there is no other
effect, and the computation proceeds.

 carpet 2 3 4
24

If an assertion is evaluated as false, the computation is terminated
and an indication given:

 carpet 0 3 4
|assertion failure: carpet
| p>:10

Assertions can only be made inside explicit definitions, because
assert. is a "control word", that is, an element of syntax, not a
function.

It always a matter for judgement as to where an assertion can
usefully be placed, and what can usefully be asserted. Assertions
are best kept as simple as possible, since it is highly undesirable to
make an error in an assertion itself.

It is often useful to make assertions which check the correctness of

 473 Chapter 29: Error Handling

arguments of functions. For example, we could assert that, for
carpet the argument y must be a list of 3 strictly positive
numbers.

The order of assertions may be important. For example, we should
check that we have numbers before checking the values of those
numbers. The type of a noun is given by 3!:0; here we want
integers (type=4) or reals (type=8).

 carpet =: 3 : 0

assert. (3!:0 y) e. 4 8 NB. numeric
assert. 1 = # $ y NB. a list (rank = 1)
assert. 3 = # y NB. of 3 items
assert. *. / y > 0 NB. all positive

p =. */y

assert. p >: 10
assert. p <: 10000

p
)

 carpet 2 3 4
24

 carpet 'hello'
|assertion failure: carpet
| (3!:0 y)e.4 8

Chapter 29: Error Handling 474

29.1.1 Assertions and the Tacit Style

Assertions are good for correctness. The tacit style is good for
crispness and clarity.

The two are not readily combined, however. Evidently the natural
place for an assertion is as a line in an explicit definition. By
contrast, a tacit definition offers no place for an assertion.

What would it take to add assertions to a set of purely tacit
definitions? Just to be able to make assertions about the
arguments of functions would be a lot better than nothing. Here is
a possibility.

Suppose we have an example of a purely tacit definition,

 sq =: *:

and we wish to assert that any argument to sq must be a number,
that is, it must satisfy the predicate:

 is_number =: 4 8 16 128 e. ~ (3 !: 0)

Now our aim is to redefine sq, while making use of the previous
definition of sq. Convenient for this purpose is a conjunction
ASSERTING, which is defined below.

We can write

 sq =: sq ASSERTING is_number

and we see:

 475 Chapter 29: Error Handling

 sq
3 : 0
assert. (is_number) y
(*:) y
)
 sq 3
9
 sq 'abc'
|assertion failure: sq
| (is_number)y

The definition of ASSERTING is:

 ASSERTING
2 : 0
 U =. 5!:5 < 'u'
 if. (< U) e. nl 3 do. U =. 5!:5 < U end.
 V =. 5!:5 < 'v'
 z =: 'assert. (', V , ') y', LF
 z =. z , '(', U, ') y'
 3 : z
)

The ASSERTING conjunction is written in this string-building style
so that its result can be easily inspected. We can see that the new
sq combines the predicate is_number with the value (not the
name!) of the old sq. Finally, note that ASSERTING as here defined
is good only for monadic verbs.

29.1.2 Enabling and Disabling Assertions

When we are confident of correctness, we can consider removing
assertions from a program, particularly if performance is an issue.
Another possibility is to leave the assertions in place, but to disable
them. In this case, asserted expressions are not evaluated, and

Chapter 29: Error Handling 476

assertions always succeed. There is a built-in function 9!:35 to
enable or disable assertions. For example:

 (9!:35) 0 NB. disable assertions
 carpet 0 3 4 NB. an error
0

 (9!:35) 1 NB. enable assertions
 carpet 0 3 4 NB. an error
|assertion failure: carpet
| *./y>0

The built-in function 9!:34 tests whether assertions are enabled.
Currently they are:

 9!:34 '' NB. check that assertions are enabled
1

29.2 Continuing after Failure

There are several ways to continue after a failure.

29.2.1 Nonstop Script

In testing a program, it may be useful to write a script for a series
of tests. Here is an example of a test-script.

 (0 : 0) (1!:2) <'test.ijs' NB. create test-
script

NB. test 1
carpet 10 0 30

 477 Chapter 29: Error Handling

NB. test 2
carpet 10 20 30
)

A test may give the wrong result, or it may fail altogether, that is,
it may be terminated by the system. We can force the script to
continue even though a test fails, by executing the script with the
built-in verb 0!:10 or 0!:11

 0!:11 <'test.ijs' NB. execute test-
script

 NB. test 1
 carpet 10 0 30
|assertion failure: carpet
| *./y>0

 NB. test 2
 carpet 10 20 30
6000

29.2.2 Try and Catch Control Structure

Here is an example of a verb which translates English words to
French using word-lists.

 English =: 'one'; 'two'; 'three'
 French =: 'un'; 'deux'; 'trois'

 ef =: 3 : '> (English i. < y) { French'

A word not in the list will produce an error.

Chapter 29: Error Handling 478

ef 'two' ef 'seven'

deux error

This error can be handled with the try. catch. end. control
structure. (Chapter 12 introduces control structures)

 EF =: 3 : 'try. ef y catch. ''don''''t know''
end.'

EF 'two' EF 'seven'

deux don't know

The scheme is that

 try. B1 catch. B2 end.

means: execute block B1. If and only if B1 fails, execute block B2.

29.2.3 Adverse Conjunction

A tacit version of the last example can be written with the
"Adverse" conjunction :: (colon colon).

 TEF =: ef :: ('don''t know' " _)

 479 Chapter 29: Error Handling

TEF 'two' TEF 'seven'

deux don't know

Notice that the left and right arguments of :: are both verbs. The
scheme is:

 (f :: g) y

means: evaluate f y. If and only if f y fails, evaluate g y

29.3 Suspended Execution

Suppose we have, as an example of program to be debugged, a
verb main which uses a supporting verb plus

 main =: 3 : 0
k =. 'hello'
z =. y plus k
'result is'; z
)

 plus =: +

Clearly there is an error in main: the string k is inconsistent with
the numeric argument expected by plus.

If we type, for example, main 1 at the keyboard, then when the
error is detected the program terminates, an error-report is
displayed and the user is prompted for input from the keyboard.

Chapter 29: Error Handling 480

 main 1
|domain error: plus
| z=.y plus k

To gather more information about the cause of the error, we can
arrange that the program can be suspended rather than
terminated when control returns to the keyboard. To enable
suspension we use the command (13!:0) 1 before running main
again.

 (13!:0) 1

Now when main is re-run, we see a slightly different error message

 main 1
|domain error: plus
|plus[:0]

At this point execution is suspended. In the suspended state,
expressions can be typed in and evaluated. Notice that the prompt
is 6 spaces (rather than the usual 3) to identify the suspended
state.

 1+1
2

We can view the current state of the computation, by entering at
the keyboard this expression, to show (selected columns of) what
is called the "execution stack".

 481 Chapter 29: Error Handling

 0 2 6 7 8 { " 1 (13!:13 '')
+----+-+---------+----------+-+
plus	0	+-+-----+		*			
			1	hello			
		+-+-----+					
+----+-+---------+----------+-+							
main	1	+-+	+--+-----+				
			1			k	hello
		+-+	+--+-----+				
				y	1		
			+--+-----+				
+----+-+---------+----------+-+

The stack is a table, with a row for each function currently
executing. We see that plus is the function in which the error was
detected, and plus is called from main.

The stack has 9 columns, of which we selected only 5 for display
(columns 0 2 6 7 8). The columns are:

Chapter 29: Error Handling 482

0
Name of suspended function. Only named functions appear on the
stack.

1 (not shown above) error-number or 0 if not in error

2 Line-number. plus is suspended at line 0 and main is at line 1

3
(not shown above) Name-class: 1 2 or 3 denoting adverb, conjunction
or verb

4 (not shown above) Linear representation of suspended function

5 (not shown above) name of script from which definitions were loaded

6
Values of arguments. plus was called with arguments 1 and
'hello'

7
Names and values of local variables. plus being a tacit verb has no
local variables, while main has k and also y, since arguments of
explicit functions are regarded as local variables.

8
An asterisk, or a blank. plus is asterisked to show it is the function
in which suspension was caused. Normally this the top function on
the stack, (but not necessarily, as we will see below).

While in the suspended state we can inspect any global variables,
by entering the names in the usual way. In this simple example
there are none.

 483 Chapter 29: Error Handling

Finally, we can terminate the suspended execution, and escape
from the suspended state, by entering the expression:

 (13!:0) 1

29.4 Programmed Error Handling

By default, when suspension is enabled, and an error is
encountered, the program suspends and awaits input from the
keyboard.

We can arrange that instead of taking input from the keyboard,
when an error is encountered, our own error-handling routine is
automatically entered.

Suppose we decide to handle errors by doing the following:

• display the error message generated by the system
• display (selected columns of) the stack
• cut short the execution of the the suspended function, and

cause it to return the value 'error' instead of whatever it
was intended to return.

• resume executing the program. (This may or may not result
in a cascade of further errors.)

Here is a verb to perform this sequence of actions:

Chapter 29: Error Handling 484

 handler =: 3 : 0
(1!:2&2) 13!:12 '' NB. display error message
(1!:2&2) 0 2 6 7 8 {" 1 (13!:13 '') NB. display stack
13!:6 'error' NB. resume returning 'error'
)

The next step is to declare this verb as the error-handler. To do
this we set an appropriate value for what is called the "latent
expression". The latent expression is represented by a string
which, if non-null, is executed automatically whenever the system
is about to enter the suspended state. The latent expression can
be queried and set with 13!:14 and 13!:15. What is the current
value of the latent expression?

 13!:14 ''

A null string. We set the latent expression to be a string,
representing an expression meaning "execute the verb handler".

 13!:15 'handler 0'

Now we make sure suspension is enabled:

 (13!:0) 1 NB. enable suspension

and try a debugging run on main

 485 Chapter 29: Error Handling

 main 1
|domain error: plus
|plus[:0]

+-------+-+---------+---------+-+
handler	1	+-+	+-+-+						
			0			y	0		
		+-+	+-+-+						
+-------+-+---------+---------+-+									
plus	0	+-+-----+		*					
			1	hello					
		+-+-----+							
+-------+-+---------+---------+-+									
main	1	+-+	+-+-----+						
			1			k	hello		
		+-+	+-+-----+						
				y	1				
			+-+-----+						
+-------+-+---------+---------+-+									
+---------+-----+									
result is	error								
+---------+-----+

We see that the topmost stack-frame is for handler, because we
are in handler when the request to view the stack is issued. The
suspended function is plus.

The display result is error demonstrates that plus returned
the value ('error') supplied by handler.

This is the end of Chapter 29.

Chapter 29: Error Handling 486

 487 Chapter 30: Sparse Arrays

Chapter 30: Sparse Arrays

30.1 Introduction

The sparse array facility of J allows a large array to be stored in
the computer in a moderate amount of memory if many of the
array's elements are all the same. In this case a value which
occurs many times need be stored only once.

For an example, sparse representation might be considered for a
connection matrix describing a network. In this chapter we will
look at the J machinery for handling sparse arrays.

Suppose that D is a matrix with most of its elements the same:

Chapter 30: Sparse Arrays 488

] D =: 2 3 4 (2 2; 3 6; 4 4) } 16 16 $ 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This array can be stored in a compact form, called a "sparse
array", where only its non-zero elements occupy storage. An
ordinary array which is not sparse may be called a "dense" array.

There is a built-in function, $. (dollar dot) to compute a sparse
array from a dense.

 S =: $. D

For many purposes dense matrix D and sparse matrix S are
equivalent: S matches D, and therefore it has the same
dimensions, and gives the same result on indexing:

 489 Chapter 30: Sparse Arrays

S -: D ($S) -: ($D) ((< 0 0){ S) -: (<0 0) { D

1 1 1

30.2 Sparse Array is Compact

Compared to matrix D, matrix S is economical in storage because
the value which occurs many times in D is stored only once in S.
This value is known as the "sparse element" of S, or the "zero"
element of S. It happens to be 0 in the case of S, but need not be
0 always.

We can measure the size of the storage occupied by an array with
the built-in 7!:5. We see that the size of S (which the sparse form
of D) is smaller than the size D itself:

7!:5 <'S' 7!:5 <'D'

384 2048

30.3 Inspecting A Sparse Array

There is a useful function datatype in the standard library. It
shows the type of its argument.

datatype D datatype S

integer sparse integer

Chapter 30: Sparse Arrays 490

Recall that the built verb 3!:0 also gives the type of its argument.
For a sparse array, the possible types reported by 3!:0 are

1024 sparse boolean

2048 sparse character

4096 sparse integer

8192 sparse floating point

16384 sparse complex

32768 sparse boxed

If we display S in the usual way , we see, not the familiar
representation of a matrix, but instead a list of index-value pairs,
one pair for each (in this example) non-zero element.

 S
2 2 | 2
3 6 | 3
4 4 | 4

This display does not show that the sparse element of S is in fact
integer zero. To show this, we can extract the sparse element with
the verb 3 & $. .

se =: 3 $. S datatype se

0 integer

If we now compute a new matrix from S

 491 Chapter 30: Sparse Arrays

 T =: S + 5

we see that T is sparse, and the sparse element of T is not zero
but 5

T 3 $. T

2 2 | 7
3 6 | 8
4 4 | 9

5

Another way to view a sparse array is simply to convert it to dense
with 0 & $.

 view =: 0 & $.

Chapter 30: Sparse Arrays 492

T view T

2 2 | 7
3 6 | 8
4 4 | 9

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 8 5 5 5 5 5 5 5 5 5
5 5 5 5 9 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

 493 Chapter 30: Sparse Arrays

30.4 Computing with Sparse Arrays

Computations with sparse arrays are pretty much the same as with
dense arrays, except that they tend to produce sparse arrays as
results. We saw this with S+5 above. Here is another example.
Summing over T produces a vector of column-sums which is
sparse

] V =: +/ T
2 | 82
4 | 84
6 | 83

but the "zero" element of V is the sum of a column of "zero"
elements of T

 3 $. V
80

At the time of writing, there are still some limitations on what can
be done with sparse arrays compared with dense arrays. See the
Dictionary under $. for more information.

30.5 Constructing A Sparse Array

At this point it will be helpful to define a few terms. First note that,
according to context, the numerals 0 or 1 or 0.0 or 1.0 could be
valid as boolean or integer or real. However in the absence of any
context the J system takes them all to be in fact boolean.

Chapter 30: Sparse Arrays 494

datatype 0 datatype 1 datatype 0.0 datatype 1.0

boolean boolean boolean boolean

It will be useful to define some values of unambiguous type.

INTEGERZERO =: 3 - 3 datatype INTEGERZERO

0 integer

INTEGERONE =: 3 - 2 datatype INTEGERONE

1 integer

REALZERO =: 0.0*0.1 datatype REALZERO

0 floating

REALONE =: ^ 0 datatype REALONE

1 floating

Returning now to sparse arrays, the recommended method of
constructing them is to begin by making an empty array of the
required shape and type, but with no actual data.

An empty array is built by evaluating the expression

 1 $. shape;axes;zero

 495 Chapter 30: Sparse Arrays

where

• shape specifies the dimensions
• axes specifies which of those dimensions will be sparse, as a

list of axis-numbers. For example, with 2 dimensions both
sparse the list would be 0 1

So far, in the examples of sparse arrays, all axes have been
sparse but we will see below mixed sparse and dense axes.

• zero specifies the value of the "zero" element, and hence
the type of the array as a whole. An unambiguous value is
evidently needed.

If zero is omitted the default is REALZERO. If both axes and zero
are omitted, the default is all axes sparse and REALZERO.

So to build a 6 by 6 matrix, sparse in all dimensions (that is, on
axis 0 and axis 1), of type integer with "zero" element of 0 we can
write:

 U =: 1 $. 6 6 ; 0 1; INTEGERZERO

At this point, U is empty, that is, all "zero", so displays as nothing:

 U

Populate it by inserting a few non-zero elements into it

 U =: 4 5 6 7 (0 0 ; 1 1; 2 2; 3 3) } U

and check that U is what we expect by viewing it:

 view U

Chapter 30: Sparse Arrays 496

4 0 0 0 0 0
0 5 0 0 0 0
0 0 6 0 0 0
0 0 0 7 0 0
0 0 0 0 0 0
0 0 0 0 0 0

30.6 Sparse and Dense Axes

An array may be sparse on some axes and dense on others. In the
following example W is sparse on its first axis and dense on its
second, because its list of sparse axes is just 0

 saw =: ,0 NB. sparse axes for W

 W =: 1 $. 3 5; saw ; INTEGERZERO

 W =: 4 5 6 (0 1; 0 2; 1 3) } W

It looks as expected:

 view W
0 4 5 0 0
0 0 0 6 0
0 0 0 0 0

but we see that it is stored as two dense rows only:

 W
0 | 0 4 5 0 0
1 | 0 0 0 6 0

 497 Chapter 30: Sparse Arrays

Compare with an array sparse on second axis axis only, because
its list of sparse axes is 1

 saz=: ,1 NB. sparse axes for Z
 Z =: 1 $. 3 5; saz; INTEGERZERO
 Z =: 4 5 6 (0 1; 0 2; 1 3) } Z

Z looks just like W

 view Z
0 4 5 0 0
0 0 0 6 0
0 0 0 0 0

but we see it is stored as three dense colums.

 Z
1 | 4 0 0
2 | 5 0 0
3 | 0 6 0

Chapter 30: Sparse Arrays 498

30.7 Deconstructing a Sparse Array

As we noted above, if we display U itself, we see, not the familiar
representation of a matrix, but instead a list of index-value pairs,
one pair for each non-zero element.

 U
0 0 | 4
1 1 | 5
2 2 | 6
3 3 | 7

We can extract the index from each pair to get what is called the
index-matrix of U. This is an ordinary dense array

 4 $. U
0 0
1 1
2 2
3 3

To extract the value from each pair

 5 $. U
4 5 6 7

As we noted above, 0 & $. will produce a dense array from a
sparse:

 0 $. U
4 0 0 0 0 0
0 5 0 0 0 0
0 0 6 0 0 0
0 0 0 7 0 0

 499 Chapter 30: Sparse Arrays

0 0 0 0 0 0
0 0 0 0 0 0

30.8 Sparse Array From Relation

Next we look at representing data as a sparse array as an
alternative to representing data as a relation (that is, a table).

The point is that the sparse array may be more convenient than
the relation for some computations with the data. Thus we are
interested in converting between sparse arrays and relations.

For example, suppose that a given relation R represents sales of
various commodities in various cities

 'Pa Qu Ro Sy' =: s: ' Paris Quebec Rome Sydney'
 'Ap Ba Ch Da' =: s: ' Apples Bananas Cherries
Damsons'

 R =: (". ;. _2) 0 : 0
Ap ; Pa; 99
Ap ; Qu ; 50
Ba ; Qu ; 10
Ch ; Ro ; 19
Da ; Sy ; 110
Da ; Pa ; 88
)

Chapter 30: Sparse Arrays 500

 R
+---------+-------+---+
|`Apples |`Paris |99 |
+---------+-------+---+
|`Apples |`Quebec|50 |
+---------+-------+---+
|`Bananas |`Quebec|10 |
+---------+-------+---+
|`Cherries|`Rome |19 |
+---------+-------+---+
|`Damsons |`Sydney|110|
+---------+-------+---+
|`Damsons |`Paris |88 |
+---------+-------+---+

We can convert the relation R to a sparse array as follows.

Firstly, we need to establish the domain -the set of all possible
values - of the first column. It can be computed from R :

] Fru =: > ~. 0 { |: R
`Apples `Bananas `Cherries `Damsons

Similarly for the domain of the second column:

] Cit =: > ~. 1 { |: R
`Paris `Quebec `Rome `Sydney

Now the first column converted to indices into its domain:

] r =: Fru i. > 0 { |: R
0 0 1 2 3 3

 501 Chapter 30: Sparse Arrays

Similarly for the second column:

] c =: Cit i. > 1 { |: R
0 1 1 2 3 0

and the values from the third

] v =: > 2 { |: R
99 50 10 19 110 88

Now we build an empty sparse array of dimensions #Fru by #Cit .
By default the sparse axes will be 0 and 1 and the "zero" element
will be REALZERO . The function 1&$. produces the empty array.

 A =: (1 & $.) (#Fru) , (#Cit)

Insert the values by amending in the ordinary way:

 A =: v (<"1 r,.c) } A

and check we have what we expect:

 view A
99 50 0 0
 0 10 0 0
 0 0 19 0
88 0 0 110

To display A with labelling of rows and columns, the list of row-
labels is Fru computed above, and the list of column-labels is Cit :

Chapter 30: Sparse Arrays 502

 (a:, <"0 Cit), (<"0 Fru) ,. (<"0 view A)
+---------+------+-------+-----+-------+
| |`Paris|`Quebec|`Rome|`Sydney|
+---------+------+-------+-----+-------+
|`Apples |99 |50 |0 |0 |
+---------+------+-------+-----+-------+
|`Bananas |0 |10 |0 |0 |
+---------+------+-------+-----+-------+
|`Cherries|0 |0 |19 |0 |
+---------+------+-------+-----+-------+
|`Damsons |88 |0 |0 |110 |
+---------+------+-------+-----+-------+

Now we have finished producing the sparse array from the original
relation, so we can can compute with our data as an array.

For example, total value of sales for each city is given by:

 +/ A
0 | 187
1 | 60
2 | 19
3 | 110

This is sparse, so taking the usual view :

 view +/ A
187 60 19 110

 503 Chapter 30: Sparse Arrays

30.9 Relation from Sparse Array

To complete the circle, we look next at how to produce a relation
from a sparse array, A for example.

 A
0 0 | 99
0 1 | 50
1 1 | 10
2 2 | 19
3 0 | 88
3 3 | 110

The first step is to get the index-matrix for the non-zero elements.

] INDS =: 4 $. A
0 0
0 1
1 1
2 2
3 0
3 3

and next the values.

] VALS =: 5 $. A
99 50 10 19 88 110

The first column of the relation we produce by indexing the domain
Fru which we computed above. The second column is produced
similarly from Cit.

Chapter 30: Sparse Arrays 504

] c0 =: (0 { |: INDS) { Fru
`Apples `Apples `Bananas `Cherries `Damsons `Damsons
] c1 =: (1 { |: INDS) { Cit
`Paris `Quebec `Quebec `Rome `Paris `Sydney

So finally we see that the relation recovered from the sparse array
is

 (<"0 c0) ,. (<"0 c1) ,. (<"0 VALS)
+---------+-------+---+
|`Apples |`Paris |99 |
+---------+-------+---+
|`Apples |`Quebec|50 |
+---------+-------+---+
|`Bananas |`Quebec|10 |
+---------+-------+---+
|`Cherries|`Rome |19 |
+---------+-------+---+
|`Damsons |`Paris |88 |
+---------+-------+---+
|`Damsons |`Sydney|110|
+---------+-------+---+

This is the end of Chapter 30.

 505 Chapter 31: Performance

Chapter 31: Performance

This chapter is concerned with performance, that is, the time taken
to perform a computation, and how to improve it.

There is one golden rule for achieving good performance in a J
program. The rule is to try to apply verbs to as much data as
possible at any one time. In other words, try to give to a verb
arguments which are not scalars but vectors or, in general, arrays,
so as to take maximum advantage of the fact that the built-in
functions can take array arguments.

The rest of this chapter consists mostly of harping on this single
point.

31.1 Measuring the Time Taken

There is a built-in verb 6!:2 . It takes as argument an expression
(as a string) and returns the time (in seconds) to execute the
expression. For example, given :

 mat =: ? 20 20 $ 100x NB. a random matrix

The time in seconds to invert the matrix is given by:

 6!:2 '%. mat'
1.92381

If we time the same expression again, we see:

Chapter 31: Performance 506

 6!:2 '%. mat'
1.85601

Evidently there is some uncertainty in this measurement.
Averaging over several measurements is offered by the dyadic
case of 6!:2 . However, for present purposes we will use monadic
6!:2 to give a rough and ready but adequate measurement.

31.2 The Performance Monitor

As well as 6!:2, there is another useful instrument for measuring
execution times, called the Performance Monitor. It shows how
much time is spent in each line of, say, an explicit verb.

Here is an example with a main program and an auxiliary function.
We are not interested in what it does, only in how it spends its
time doing it..

 main =: 3 : 0
 m =. ? 10 10 $ 100x NB. random matrix
 u =. =/ ~ i. 10 NB. unit matrix
 t =. matinv m NB. inverted
 p =. m +/ . * t
 'OK'
)

 matinv =: 3 : 0
 assert. 2 = # $ y NB. check y is square
 assert. =/ $ y
 %. y
)

We start the monitor:

 507 Chapter 31: Performance

 load 'jpm'
 start_jpm_ ''
357142

and then enter the expression to be analyzed

 main 0 NB. expression to be
analyzed
OK

To view the reports available: firstly , the main function:

 showdetail_jpm_ 'main' NB. display
measurements
 Time (seconds)
+--------+--------+---+-----------------+
|all |here |rep|main |
+--------+--------+---+-----------------+
0.000007	0.000007	1	monad
0.000136	0.000136	1	[0] m=.?10 10$100
0.000019	0.000019	1	[1] u=.=/~i.10
0.102103	0.000011	1	[2] t=.matinv m
0.124305	0.124305	1	[3] p=.m+/ .*t
0.000024	0.000024	1	[4] 'OK'
0.226594	0.124502	1	total monad
+--------+--------+---+-----------------+

and we may wish to look at the auxiliary function:

Chapter 31: Performance 508

 showdetail_jpm_ 'matinv'
 Time (seconds)
+--------+--------+---+-----------------+
|all |here |rep|matinv |
+--------+--------+---+-----------------+
0.000006	0.000006	1	monad
0.000008	0.000008	1	[0] assert. 2=#$y
0.020002	0.020002	1	[1] assert. =/$y
0.082076	0.082076	1	[2] %.y
0.102092	0.102092	1	total monad
+--------+--------+---+-----------------+

Evidently, main spends most of its time executing lines 2 and 3 .
Notice that the time under "all" of line 2 is near enough equal to
the time for line 2 "here", (that is, in main) plus the time for
"total" of matinv

31.3 The Golden Rule: Example 1

Here is an example of a function which is clearly intended to take a
scalar argument.

 collatz =: 3 : 'if. odd y do. 1 + 3 * y else. halve y end.'
 odd =: 2 & |
 halve =: -:

With a vector agument it gives the wrong results

 collatz 2 3 4 5 6 7 8 9
1 1.5 2 2.5 3 3.5 4 4.5

So we need to specify the rank to force the argument to be scalar

 509 Chapter 31: Performance

 (collatz "0) 2 3 4 5 6 7 8 9
1 10 2 16 3 22 4 28

This is an opportunity for the Golden Rule, so here is a version
designed for a vector argument:

 veco =: 3 : '(c*1+3*y) + (halve y) * (1-c =. odd
y)'

The results are the same:

 data =: 1 + i. 10000

 (collatz"0 data) -: (veco data)
1

but the vector version is about a hundred times faster:

 t1 =: 6!:2 e1 =: 'collatz"0 data '
 t2 =: 6!:2 e2 =: 'veco data '
 2 2 $ e1 ; t1; e2;t2
+---------------+-----------+
|collatz"0 data |0.0667271 |
+---------------+-----------+
|veco data |0.000561943|
+---------------+-----------+

31.4 Golden Rule Example 2: Conway's "Life"

J. H. Conway's celebrated "Game of Life" needs no introduction.
There is a version in J at Rosetta Code, reproduced here:

Chapter 31: Performance 510

 pad=: 0,0,~0,.0,.~]
 life=: (_3 _3 (+/ e. 3+0,4&{)@,;._3])@pad

To provide a starting pattern, here is a function rp which generates
an r-pentomino in a y-by-y boolean matrix.

 rp =: 3 : '4 4 |. 1 (0 1; 0 2; 1 0; 1 1; 2 1) }
(y,y) $ 0'

] M =: rp 8
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0

 life M
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0

We notice that the life verb contains ;._3 - it computes the
count of neighbours of each cell separately, by working on the 3-
by-3 neighbourhood of that cell.

By contrast here is a version which computes all the neighbours-
counts at once, by shifting the whole plane to align each cell with

 511 Chapter 31: Performance

its neighbours.

 sh =: |. !. 0
 E =: 0 _1 & sh
 W =: 0 1 & sh
 N =: 1 & sh
 S =: _1 & sh
 NS =: N + S
 EW =: E + W
 NeCo =: NS + (+ NS) @: EW NB.
neighbour-count
 evol =: ((3 =]) +. ([*. 2 =])) NeCo

The last line expresses the condition that (neighbour-count is 3) or
("alive" and count is 2). The shifting method evol, and the Rosetta
method life give the same result

 (life M) -: (evol M)
1

However, the shifting method is faster:

 G =: rp 200 NB. a 200-by-200 grid

 t3 =: 6!:2 e3 =: 'r3 =: life ^: 100 G '
 NB. 100 iterations of Rosetta method

 t4 =: 6!:2 e4 =: 'r4 =: evol ^: 100 G'
 NB. and of shifting method

Chapter 31: Performance 512

 2 2 $ e3;t3;e4;t4
+--------------------+---------+
|r3 =: life ^: 100 G |14.6997 |
+--------------------+---------+
|r4 =: evol ^: 100 G |0.0959352|
+--------------------+---------+

Checking for correctness again:

 r3 -: r4
1

31.5 Golden Rule Example 3: Join of Relations

31.5.1 Preliminaries

Recall from Chapter 18 the author-title and title-subject relations.
We will need test-data in the form of these relations in various
sizes. It is useful to define a verb to generate test-data from
random integers. (Integers are adequate as substitutes for
symbols for present purposes.) The argument y is the number of
different titles required.

 513 Chapter 31: Performance

 maketestdata =: 3 : 0
 T =. i. y NB. titles domain
 A =. i. <. 4 * y % 5 NB. authors domain
 S =. i. <. y % 2 NB. subjects domain
 AT =. (? (#T) $ # A) ,. (? (#T) $ #T) NB. AT relation
 TS =. (? (#T) $ # T) ,. (? (#T) $ #S) NB. TS relation
 AT;TS
)

 'AT1 TS1' =: maketestdata 8 NB. small test-data
 'AT2 TS2' =: maketestdata 1000 NB. medium
 'AT3 TS3' =: maketestdata 10000 NB. large

31.5.2 First Method

Recall also from Chapter 18 a verb for the join of relations, which
we will take as a starting-point for further comparisons. We can
call this the "first method".

 VPAIR =: 2 : 0
 :
 z =. 0 0 $ ''
 for_at. x do. z=.z , |: v (#~"1 u) |: at , "1 y end.
 ~. z
)

 first =: (1&{ = 2&{) VPAIR (0 3 & {)

Chapter 31: Performance 514

AT1 TS1 AT1 first TS1

3 4
1 6
0 1
5 5
2 1
2 1
5 4
2 7

4 2
5 0
5 0
2 3
2 2
5 1
6 2
2 1

3 2
1 2
5 0
5 1
5 2

31.5.3 Second Method: Boolean Matrix
Here is another method. It computes a boolean matrix of equality
on the titles. Row i column j is true where the title in i{AT equals
the title in j{TS . The authors and titles are recovered by by
converting the boolean matrix to sparse representation, then
taking its index-matrix.

 second =: 4 : 0
 'a t' =. |: x
 'tt s' =. |: y
 bm =. t =/ tt NB. boolean matrix of matches
 sm =. $. bm NB. convert to sparse
 im =: 4 $. sm NB. index-matrix
 'i j' =. |: im
 (i { a),. (j { s)
)

Now to check the second method for correctness, that is, giving the
same results as the first. We don't care about ordering, and we
don't care about repetitions, so let us say that two relations are
the same iff their sorted nubs match.

 515 Chapter 31: Performance

 same =: 4 : '(~. x /: x) -: (~. y /: y) '

 (AT2 second TS2) same (AT2 first TS2)
1

Now for some times

 t1 =: 6!:2 'AT2 first TS2'
 t2 =: 6!:2 'AT2 second AT2'
 t3 =: 6!:2 'AT3 first TS3'
 t4 =: 6!:2 'AT3 second TS3'

 3 3 $ ' '; (#AT2) ; (#AT3) ; 'first' ; t1; t3 ; 'second' ; t2; t4
+------+----------+--------+
| |1000 |10000 |
+------+----------+--------+
|first |0.0707548 |5.9401 |
+------+----------+--------+
|second|0.00396342|0.397783|
+------+----------+--------+

We see that the advantage of the second method is reduced at the
larger size, and we can guess this is because the time to compute
the boolean matrix is quadratic in the size. We can use the
performance monitor to see where the time goes.

 require 'jpm'
 start_jpm_ ''
357142
 z =: AT3 second TS3

Chapter 31: Performance 516

 showdetail_jpm_ 'second' NB. display
measurements
 Time (seconds)
+--------+--------+---+----------------+
|all |here |rep|second |
+--------+--------+---+----------------+
0.000007	0.000007	1	dyad	
0.000209	0.000209	1	[0] 'a t'=.	:x
0.000182	0.000182	1	[1] 'tt s'=.	:y
0.242920	0.242920	1	[2] bm=.t=/tt	
0.139628	0.139628	1	[3] sm=.$.bm	
0.000013	0.000013	1	[4] im=:4$.sm	
0.000194	0.000194	1	[5] 'i j'=.	:im
0.008760	0.008760	1	[6] (i{a),.(j{s)	
0.391913	0.391913	1	total dyad	
+--------+--------+---+----------------+

Evidently much of the time went into computing the boolean
matrix at line 2. Can we do better than this?

31.5.4 Third method: boolean matrix with recursive
splitting
Here is an attempt to avoid the quadratic time. If the argument is
smaller than a certain size, we use the second method above
(which is quadratic, but not so bad for smaller arguments).

If the argument is larger than a certain size, we split it into two
smaller parts, so that there are no titles shared between the two.
Then the method is applied recursively to the parts.

By experimenting, the "certain size" appears to be about 256 on
my computer.

 517 Chapter 31: Performance

 third =: 4 : 0
 if. 0 = # x do. return. 0 2 $ 3 end.
 if. 0 = # y do. return. 0 2 $ 3 end.
 'a t' =. |: x
 'tt s' =. |: y
 if. 256 > # x do.
 bm =. t =/ tt NB. boolean matrix of matches
 sm =. $. bm
 im =. 4 $. sm NB. index-matrix
 'i j' =. |: im
 (i { a),. (j { s)
 else.
 p =: <. -: (>./t) + (<./t) NB. choose "pivot" title
 pv =: t <: p
 x1 =. pv # x
 x2 =. (-. pv) # x
 assert. (#x1) < (#x)
 assert. (#x2) < (#x)
 qv =. tt <: p
 y1 =. qv # y
 y2 =. (-. qv) # y
 assert. (#y1) < (#y)
 assert. (#y2) < (#y)
 (x1 third y1) , (x2 third y2)
 end.
)

Check correctness :

 (AT2 third TS2) same (AT2 second TS2)
1

And timings. Experiment on my computer shows the second
method will run out of space where the third method will succeed.

 'AT4 TS4' =: maketestdata 30000
 'AT5 TS5' =: maketestdata 100000

Chapter 31: Performance 518

 t4a =: 6!:2 'AT4 second TS4'
 t5 =: 6!:2 'AT2 third TS2'
 t6 =: 6!:2 'AT3 third TS3'
 t7 =: 6!:2 'AT4 third TS4'
 t8 =: 6!:2 'AT5 third TS5'

 a =: ' '; (#AT2); (#AT3) ; (#AT4); (#AT5)
 b =: 'second'; t2; t4; t4a; 'limit error'
 c =: 'third' ; t5; t6; t7 ; t8

 3 5 $a,b,c
+------+----------+---------+--------+-----------+
| |1000 |10000 |30000 |100000 |
+------+----------+---------+--------+-----------+
|second|0.00396342|0.397783 |3.59719 |limit error|
+------+----------+---------+--------+-----------+
|third |0.00178682|0.0204814|0.064824|0.251812 |
+------+----------+---------+--------+-----------+

In conclusion, the third method is clearly superior but considerably
more complex.

31.6 Golden Rule Example 4: Mandelbrot Set

The Mandelbrot Set is a fractal image needing much computation
to produce. In writing the following, I have found to be helpful
both the Wikipedia article and the Rosetta Code treatment for the
Mandelbrot Set in J:

Computation of the image requires, for every pixel in the image,
iteration of a single scalar function until a condition is satisfied.
Different pixels will require different numbers of iterations. The
final result is the array of counts of iterations for each pixel. Hence

http://rosettacode.org/wiki/Mandelbrot_set#J
http://en.wikipedia.org/wiki/Mandelbrot_set

 519 Chapter 31: Performance

it may appear that the Mandelbrot Set is an inescapably scalar
computation. It is not, as the following is meant to show. The
Golden Rule applies.

31.6.1 Scalar Versions
The construction of an image begins with choosing a grid of points
on the complex plane, one for each pixel in the image. Here is a
verb for conveniently constructing the grid.

 makegrid =: 3 : 0
 'LL UR delta' =. y
 'xmin ymin' =. +. LL
 'xmax ymax' =. +. UR
 xn =. <. (xmax-xmin) % delta
 yn =. <. (ymax-ymin) % delta
 (|.(ymin + delta * i. yn)) (j. ~/) (xmin + delta * i. xn)
)

The arguments are the complex numbers for lower-left and upper-
right corners of the image, and a value for the spacing of the
points. To demonstrate with a tiny grid

 makegrid _2j3 4j5 1.0
_2j4 _1j4 0j4 1j4 2j4 3j4
_2j3 _1j3 0j3 1j3 2j3 3j3

For an image, a list of arguments more suitable for present
purposes is shown by :

 GRID =: makegrid _2.5j_1 1j1 0.005

The image is computed by applying a Mandelbrot function to each
pixel in the grid. Here is a suitable Mandelbrot function. It follows

Chapter 31: Performance 520

the design outlined in the Wikipedia article,

 mfn1 =: 3 : 0
 NB. y is one pixel-position
 v =. 0j0
 n =. 0
 while. (2 > | v) *. (n < MAXITER) do.
 v =. y + *: v
 n =. n+1
 end.
 n
)

We need to choose a value for MAXITER, the maximum number of
iterations. The higher the maximum, the more complex the
resulting image. For present purposes let us choose a maximum of
64 iterations, which will give a recognisable image.

 MAXITER =: 64 NB. maximum number of iterations

 image1 =: mfn1 " 0 GRID

The result image1 is a matrix of integers, which can be mapped to
colors and then displayed on-screen with:

 require '~addons/graphics/viewmat/viewmat.ijs'
 viewmat image1
0

to produce an image appear looking something like this:

 521 Chapter 31: Performance

The time to compute the image:

 e1;t1 =: 6!:2 e1 =: 'image1 =: mfn1 " 0 GRID NB. Wikipedia scalar'

+--+-------+
|image1 =: mfn1 " 0 GRID NB. Wikipedia scalar|41.4486|
+--+-------+

The mfn1 function above was designed to show the algorithm for
the scalar one-pixel-at-at-a-time method. Regarding its
performance, here is some evidence that its performance is
reasonable, that is, comparable to the published Rosetta Code
version.

The verb mfn2 is adapted from the verb mcf of the Rosetta Code
treatment. It differs only by replacing a numerical constant by the
parameter MAXITER.

 mfn2 =: (<: 2:)@|@(] ((*:@] + [)^:((<: 2:)@|@])^: MAXITER) 0:)

We see that times for mfn1 and mfn2 are not very different:

Chapter 31: Performance 522

 t2 =: 6!:2 e2 =: 'image2 =: mfn2 "0 GRID NB. Rosetta '
 2 2 $ e1; t1; e2; t2
+--+-------+
|image1 =: mfn1 " 0 GRID NB. Wikipedia scalar|41.4486|
+--+-------+
|image2 =: mfn2 "0 GRID NB. Rosetta |35.3052|
+--+-------+

and the image from the Rosetta code is recognisably similar to that
from the Wikipedia design,

 viewmat image2
0

31.6.2 Planar Version
Now we look at a version which computes all pixels at once. Here
is a first attempt. It is is a straightforward developement of mfn1
but here all the computations for every pixel are allowed to run for
the maximumum number of iterations.

 523 Chapter 31: Performance

 mfn3 =: 3 : 0 NB. y is entire grid
 N =. ($ y) $ 0
 v =. 0j0
 for_k. i. MAXITER-1 do.
 v =. y + *: v
 N =. N + (2 > | v)
 end.
 1 + N
)

For small values of MAXITER, this is OK. A quick demonstration,
firstly of correctness: it produces the same result as mfn1.

 MAXITER =: 12

 (mfn1 " 0 GRID) -: (mfn3 " 2 GRID)
1

And it's faster:

Chapter 31: Performance 524

 t1a =: 6!:2 e1a =: 'mfn1 " 0 GRID NB. Wikip. with MAXITER=12'
 t3a =: 6!:2 e3a =: 'mfn3 " 2 GRID NB. Planar with MAXITER=12'

 2 2 $ e1a ; t1a; e3a; t3a
+---+--------+
|mfn1 " 0 GRID NB. Wikip. with MAXITER=12|15.2705 |
+---+--------+
|mfn3 " 2 GRID NB. Planar with MAXITER=12|0.676646|
+---+--------+

Unfortunately there is a problem with any larger values of
MAXITER. The repeated squaring of the complex numbers in v will
ultimately produce, not infinity, but a "NaN Error", caused by
subtracting infinities. Observe:

 (*: ^: 10) 1j3 NB. this is OK
__j__

 (*: ^: 30) 1j3 NB. but this is not
|NaN error
| (*:^:30)1j3
|[-587] c:\users\homer\13\js\31.ijs

 MAXITER =: 64

Here is an attempt to avoid the NaN errors. One cycle in every 10,
those values in v which have "escaped", (that is, no longer
contribute to the final result N) are reset to small values to prevent
them increasing without limit.

 525 Chapter 31: Performance

 mfn4 =: 3 : 0
 N =. ($ y) $ 0
 v =. 0j0
 for_k. i. MAXITER - 1 do.
 if. 0 = 10 | k do.
 e =. 2 < | v
 v =. (v * 1-e) + (1.5j1.5 * e)
 end.
 v =. y + *: v
 N =. N + 2 > | v
 end.
 N+1
)

In spite of the burden of resetting, the timing looks about 8 times
faster than the scalar method:

 t4 =: 6!:2 e4 =: 'image4 =: mfn4 " 2 GRID NB. Planar, resetting'

 2 2 $ e1; t1 ; e4;t4
+---+-------+
|image1 =: mfn1 " 0 GRID NB. Wikipedia scalar |41.4486|
+---+-------+
|image4 =: mfn4 " 2 GRID NB. Planar, resetting|5.20131|
+---+-------+

and we check the result is correct:

 image4 -: image1
1

Chapter 31: Performance 526

Some further improvement is possible. The idea is to avoid
computing the magnitudes of complex numbers because this
involves computing square roots. Instead of requiring the
magnitude to be less than 2, we will require the square of the
magnitude to be less than 4. To do this complex numbers will be
represented as a pair of reals. The resetting business is simplified.

 mfn5 =: 3 : 0
 'r0 i0' =. ((2 0 1 & |:) @: +.) y NB. Real , imag planes of y
 assert. y -: r0 j. i0
 N =. 0
 a =. r0
 b =. i0
 for_i. i. MAXITER-1 do.
 p =. *: a
 q =. *: b
 r =. p+q NB. square of magnitudes
 N =. N + r < 4
 b =. (i0 + +: a*b) <. 100
 a =. (r0 + p - q) <. 100
 end.
 N+1
)

Timing is improved:

 t5 =: 6!:2 e5 =: 'image5 =: mfn5 " 2 GRID NB. no square
roots'
 3 2 $ e1;t1; e4;t4; e5;t5
+---+-------+
|image1 =: mfn1 " 0 GRID NB. Wikipedia scalar |41.4486|
+---+-------+
|image4 =: mfn4 " 2 GRID NB. Planar, resetting|5.20131|
+---+-------+
|image5 =: mfn5 " 2 GRID NB. no square roots |3.18585|
+---+-------+

and the result is correct

 527 Chapter 31: Performance

 image5 -: image1
1

31.7 The Special Code of Appendix B of the Dictionary

In Appendix B of the J Dictionary there are listed about 80
different expressions which are given special treatment by the
interpreter to improve performance. Many more expressions are
listed in the Release Notes

An example is +/ . Notice that the speedup only occurs when +/
itself (as opposed to something equivalent) is recognised.

 data =: ? 1e6 $ 1e6 NB. a million random
integers

 plus =: +

 t20 =: 6!:2 e20 =: 'plus / data'
 t21 =: 6!:2 e21 =: '+/ data'

 2 2 $ e20 ; t20; e21; t21
+-----------+----------+
|plus / data|0.424388 |
+-----------+----------+
|+/ data |0.00184018|
+-----------+----------+

The special expressions can be unmasked with the f. adverb
which translates all defined names into the built-in functions.

http://www.jsoftware.com/help/release/contents.htm
http://www.jsoftware.com/help/dictionary/special.htm

Chapter 31: Performance 528

 foo =: plus /

 t22 =: 6!:2 e22 =: 'foo data'
 t23 =: 6!:2 e23 =: 'foo f. data'

 2 2 $ e22 ; t22; e23; t23
+-----------+----------+
|foo data |0.430226 |
+-----------+----------+
|foo f. data|0.00188495|
+-----------+----------+

The recommendation here is NOT that the programmer should look
for opportunities to use these special cases. The recommendation
is ONLY to allow the interpreter to find them, by giving, where
appropriate, a final little polish to tacit definitions with f. .

This brings us to the end of Chapter 31

 529 Chapter 32: Trees

Chapter 32: Trees

32.1 Introduction

Data structures consisting of boxes within boxes may be called
trees. J provides several special functions in support of
computations with trees.

Here is an example of a tree:

] T =: 'the cat' ; 'sat' ; < 'on' ; < ('the';'mat')
+-------+---+--------------+
the cat	sat	+--+---------+						
			on	+---+---+				
					the	mat		
				+---+---+				
		+--+---------+						
+-------+---+--------------+

Those boxes with no inner boxes will be called leaves. We see that
T has 7 boxes of which 5 are leaves.

32.2 Fetching

Evidently, the content of any box can be fetched from tree T by a
combination of indexing and unboxing.

Chapter 32: Trees 530

] a =: > 2 { T
+--+---------+
on	+---+---+			
		the	mat	
	+---+---+			
+--+---------+

] b =: > 1 { a
+---+---+
|the|mat|
+---+---+

] c =: > 1 { b
mat

but there is a built-in verb, "Fetch" (dyadic {::) , for this purpose.
Its left argument is a sequence of indexes (called a path):

 (2;1;1) {:: T
mat

Further examples:

 2 {:: T
+--+---------+
on	+---+---+			
		the	mat	
	+---+---+			
+--+---------+

 531 Chapter 32: Trees

 (2 ;1) {:: T
+---+---+
|the|mat|
+---+---+

32.3 The Domain of Fetch

The right argument of {:: must be a vector, or higher rank, and
not a scalar, or else an error results. (Recall that a single box is a
scalar).

0 {:: , <'hello' 0 {:: < 'hello'

hello error

Let us say that a full-length path is a path which fetches the data
content from a leaf.

Along a full-length path, every index must select a scalar, a box, or
else an error results. In other words, we must have a single path.

T (2; 1 ; 0 1) {:: T

+-------+---+--------------+
the cat	sat	+--+---------+						
			on	+---+---+				
					the	mat		
				+---+---+				
		+--+---------+						
+-------+---+--------------+

error

Chapter 32: Trees 532

The data fetched from a leaf is the result of opening the last box
selected along the path. This data can, as we saw above, be an
array, a list say.

 (2;1;1) {:: T
mat

If this data is an indexable array, then a further index can be
appended to a full-length path, giving an over-length path, to fetch
a further single scalar. The next example shows fetching 'm' from
'mat'.

 (2;1;1;0) {:: T
m

32.4 The "Map" Verb

Monadic {:: is called "Map". It shows all the paths to the leaves.

 {:: T
+---+---+-------------------------+
+-+	+-+	+-----+-----------------+														
	0			1			+-+-+	+-------+-------+								
+-+	+-+			2	0			+-+-+-+	+-+-+-+							
			+-+-+			2	1	0			2	1	1			
					+-+-+-+	+-+-+-+										
				+-------+-------+												
		+-----+-----------------+														
+---+---+-------------------------+

 533 Chapter 32: Trees

32.5 What is the Height of This Tree?

The verb L. ("LevelOf") reports the length of the longest path in a
tree, that is, the maximum length of a path to fetch the unboxed
data-content of a leaf. In the book "A Programming Language"
Kenneth Iverson uses the term "height" for the length of the
longest path of a tree.

The length of a path is the number of indexing-and-unboxing steps
needed. It is evident that it takes at most 3 steps to fetch any
data-content from T

T L.T

+-------+---+--------------+
the cat	sat	+--+---------+						
			on	+---+---+				
					the	mat		
				+---+---+				
		+--+---------+						
+-------+---+--------------+

3

One step is needed to fetch the content of the leaf of a tree
consisting only of a single leaf, for example ,<6 . The step is > @:
(0&{)

Chapter 32: Trees 534

A =: ,<6 L. A (> @: (0&{)) A 0 {:: A

+-+
|6|
+-+

1 6 6

and it evidently needs no steps to fetch the content of 'hello'

L. 'hello' (0$0) {:: 'hello'

0 hello

32.6 Levels and the L: Conjunction

A box with no inner box (a leaf) is said to be at level 0.

Here is another tree:

] D =: (<'one'; 'two'), (< 'three' ; 'four')
+---------+------------+
+---+---+	+-----+----+						
	one	two			three	four	
+---+---+	+-----+----+						
+---------+------------+

We can apply a given function to the values inside the leaves, that
is, at level 0, with the aid of the L: conjunction (called "Level At").

 535 Chapter 32: Trees

Reversing the content of each level-0 node, that is, each leaf:

 |. L: 0 D
+---------+------------+
+---+---+	+-----+----+						
	eno	owt			eerht	ruof	
+---+---+	+-----+----+						
+---------+------------+

Reversing at level 1:

 |. L: 1 D
+---------+------------+
+---+---+	+----+-----+						
	two	one			four	three	
+---+---+	+----+-----+						
+---------+------------+

and at level 2:

 |. L: 2 D
+------------+---------+
+-----+----+	+---+---+						
	three	four			one	two	
+-----+----+	+---+---+						
+------------+---------+

We see that we can apply a function at each of the levels 0 1 2 .
The level at which the function is applied can also be specified as a
negative number:

Chapter 32: Trees 536

 |. L: _2 D
+---------+------------+
+---+---+	+-----+----+						
	eno	owt			eerht	ruof	
+---+---+	+-----+----+						
+---------+------------+

 |. L: _1 D
+---------+------------+
+---+---+	+----+-----+						
	two	one			four	three	
+---+---+	+----+-----+						
+---------+------------+

Levels for trees are analogous to ranks for arrays. L: is the
analogue of the rank conjunction " .

32.7 The Spread Conjunction

We saw above that the result of the L: conjunction has the same
tree-structure as the argument. There is another conjunction, S:
(called "Spread") which is like L: in applying a function at a level,
but unlike L: in that the results are delivered, not as a tree but
simply as a flat list.

 D
+---------+------------+
+---+---+	+-----+----+						
	one	two			three	four	
+---+---+	+-----+----+						
+---------+------------+

 537 Chapter 32: Trees

 |. S: 0 D
eno
owt
eerht
ruof

The result above is a list (a "flat list") of 4 items, each item being a
string.

 |. S: 1 D
+----+-----+
|two |one |
+----+-----+
|four|three|
+----+-----+

The result above is a list of 2 items, each item being a list of 2
boxes.

 |. S: 2 D
+------------+---------+
+-----+----+	+---+---+						
	three	four			one	two	
+-----+----+	+---+---+						
+------------+---------+

The result above is a list of 2 items, each item being a box.

32.8 Trees with Varying Path-lengths

In the example tree D above all the path-lengths to a leaf are the
same length. However, in general path-lengths may vary. For the
example tree T,

Chapter 32: Trees 538

 T
+-------+---+--------------+
the cat	sat	+--+---------+						
			on	+---+---+				
					the	mat		
				+---+---+				
		+--+---------+						
+-------+---+--------------+

the paths are shown by {:: T and the lengths of the paths are
given by

 (# S: 1) {:: T
1 1 2 3 3

Reversing the contents of the level-0 nodes gives no surprises:

 |. L: 0 T
+-------+---+--------------+
tac eht	tas	+--+---------+						
			no	+---+---+				
					eht	tam		
				+---+---+				
		+--+---------+						
+-------+---+--------------+

but if we reverse contents of the level-1 nodes we see that some
but not all of the level-0 leaves reappear at level 1.

 539 Chapter 32: Trees

 |. L: 1 T
+-------+---+--------------+
tac eht	tas	+--+---------+						
			no	+---+---+				
					mat	the		
				+---+---+				
		+--+---------+						
+-------+---+--------------+

The explanation is that at level 1 the given verb is applied to

• those nodes strictly at level 1, that is, those for which 1=L.
node AND

• those nodes strictly at level 0 not already accounted for by
being contained within a level 1 node.

Similarly, if we reverse the contents of the level-2 nodes we see:

 |. L: 2 T
+-------+---+--------------+
tac eht	tas	+---------+--+						
			+---+---+	on				
				the	mat			
			+---+---+					
		+---------+--+						
+-------+---+--------------+

In this example some of the results of reverse are strings, and
some are lists of boxes. They are of different types. These results
of different types cannot simply be assembled without more ado

Chapter 32: Trees 540

into a flat list as would be attempted by S:

Hence u S: 1 may fail unless the verb u itself provides uniform
results at every node. Compare these two examples:

|. S: 1 T (< @: |.) S: 1 T

error +-------+---+--+---------+
tac eht	tas	no	+---+---+			
				mat	the	
			+---+---+			
+-------+---+--+---------+

The Level conjunction L: walks the tree in the same way, that is, it
hits the same nodes for reversing,

 |. L: 0 T
+-------+---+--------------+
tac eht	tas	+--+---------+						
			no	+---+---+				
					eht	tam		
				+---+---+				
		+--+---------+						
+-------+---+--------------+

However, Level does not try to build a flat list of results, rather
puts each individual result back into its position in the tree. Hence
where Spread will fail because it tries to build a flat list, Level will
succeed.

 541 Chapter 32: Trees

|. S: 1 T |. L: 1 T

error +-------+---+--------------+
tac eht	tas	+--+---------+						
			no	+---+---+				
					mat	the		
				+---+---+				
		+--+---------+						
+-------+---+--------------+

32.9 L. Revisited

Here we show that the LevelOf a tree can be computed from its
Map that is, that L. T, say, can be found from {:: T

 {:: T NB. Map giving the paths to leaves
+---+---+-------------------------+
+-+	+-+	+-----+-----------------+														
	0			1			+-+-+	+-------+-------+								
+-+	+-+			2	0			+-+-+-+	+-+-+-+							
			+-+-+			2	1	0			2	1	1			
					+-+-+-+	+-+-+-+										
				+-------+-------+												
		+-----+-----------------+														
+---+---+-------------------------+

 # S: 1 {:: T NB. the length of each path
1 1 2 3 3

Chapter 32: Trees 542

 >. / # S: 1 {:: T NB. maximum of the lengths
3

 L. T NB. the LevelOf T
3

This is the end of Chapter 32.

 543 Appendix 1: Evaluating Expressions

Appendix 1: Evaluating Expressions

A1.1 Introduction

Here we look at the process of evaluating a J expression. Evaluating a
complete expression proceeds by a sequence of basic steps, such as
obtaining the value assigned to a name, or applying a function to its
argument(s). For example, given

 x =: 3

then the expression

 4+5*x
19

is (in outline) evaluated by the steps:

1. obtain the value assigned to x giving 3
2. compute 5 * 3 giving 15
3. compute 4 + 15 giving 19

The sequence in which the steps take place is governed by the
grammatical (or "parsing") rules of the J language. The parsing rules
have various consequences, or effects, which can be stated informally, for
example:

• verbs have long right scope. For example, in the expression 2 * 3
+ 4 the right argument of * is 3 + 4 so that 2 * 3 + 4 means 2*
(3 + 4). This we earlier called the "rightmost-first" rule.

• verbs have short left scope. For example in 2 * 3 + 4 the left

Appendix 1: Evaluating Expressions 544

argument of + is 3.
• adverbs and conjunctions get applied before verbs. For example +

& 1 % 2 means (+ & 1)% 2
• adverbs and conjunctions have long left scope and short right

scope

These effects describe how an expression is implicitly parenthesized. Of
course, we can always produce desired effects by writing explicit
parentheses, even though they may not be needed. Further effects are:

• names denoting nouns are evaluated as soon as encountered
• names denoting functions are not evaluated until the function is

applied
• names with no assigned values are assumed to denote verbs
• long trains of verbs are resolved into trains of length 2 or 3

and we will look at how the parsing rules give rise to these effects. To
illustrate the process, we can use a function which models, or simulates,
the evaluation process step by step, showing it at work in slow motion.
This function, an adverb called EVM,is based on the description of the
parsing algorithm given in the J Dictionary, section IIE. It is defined in a
downloadable J script.

A1.2 First Example

Evaluation of an expression such as 2+3 can be modelled by offering the
argument '2+3' (a string, notice) to the modelling adverb EVM.

2+3 '2+3' EVM

5 5

We see that '2+3' EVM computes the same value as 2+3, but EVM also
produces a step-by-step record, or history, of the evaluation process. This
history is displayed by entering the expression hist ''

file:///C:/Users/homer/14/91a.ijs

 545 Appendix 1: Evaluating Expressions

 hist ''

 Queue Stack Rule

 +----------+ +------+---+---+---+ +----+
 |mark 2 + 3| | | | | | | |
 +----------+ +------+---+---+---+ +----+
 |mark 2 + | | 3 | | | | | |
 +----------+ +------+---+---+---+ +----+
 |mark 2 | | + | 3 | | | | |
 +----------+ +------+---+---+---+ +----+
 |mark | | 2 | + | 3 | | | |
 +----------+ +------+---+---+---+ +----+
 | | | mark | 2 | + | 3 | |dyad|
 +----------+ +------+---+---+---+ +----+
 | | | mark | 5 | | | | |
 +----------+ +------+---+---+---+ +----+

We see successive stages of the process. In this example there are six
stages. Each stage is defined by the values of two variables. Firstly there
is a "queue", initially containing the expression being evaluated, divided
into words and preceded by a symbol to mark the beginning. Secondly,
there is a "stack", initially empty. The first stage shows queue and stack
at the outset.

At each stage the stack is inspected to see if anything can be done, that
is, whether the first few words in the stack form a pattern to which a rule
applies. There are 9 of these rules, and each one is tried in turn. If no
rule applies, then a word is transferred from the tail of the queue to the
head of the stack, and we go to the next stage and try again. This
process takes us from the first stage to the fifth stage.

At the fifth stage, we find that a rule is applicable. This rule is identified
as dyad in the rightmost column. Informally, the dyad rule is:

Appendix 1: Evaluating Expressions 546

if the first four items in the stack are something, noun, verb, noun, then
apply verb to noun and noun to get new-noun, and replace the first four
items in the stack by two, namely original-something followed by new-
noun.

The sixth and last stage shows the results of applying the "dyad" rule
recognized at the previous stage. The rules are tried again, with no
result, and there are no more words in the queue, so we have finished.
The final result is the second item of the stack. The history is maintained
in 3 global variables, Qh Sh and Rh. The expression hist '' computes a
formatted display from these variables.

A1.3 Parsing Rules

In this section an example is shown of each of the 9 parsing rules. Each
rule looks for a pattern of items at the front of the stack, such as
something verb noun verb.

Each item of the stack is classified as one of the following: verb, noun,
adverb, conjunction, name, left-parenthesis, right-parenthesis,
assignment-symbol (=. or =:) or beginning-mark.

To aid in a compact statement of the rules, larger classes of items can be
formed. For example, an item is classified as an "EDGE" if it is a
beginning-mark, an assignment-symbol or a left-parenthesis.

The rules are always tried in the same order, the order in which they are
presented below, beginning with the 'monad rule' and ending with the
'parenthesis rule'.

 547 Appendix 1: Evaluating Expressions

A1.3.1 Monad Rule

If the first 3 items of the stack are an "EDGE" followed by a verb followed
by a noun, then the verb is applied (monadically) to the noun to give a
result-value symbolized by Z say, and the value Z replaces the verb and
noun in the stack. The scheme for transforming the items of the stack is:

 monad rule: EDGE VERB NOUN etc => EDGE Z etc

where Z is the result computed by applying VERB to NOUN. For example:

: 4 ': 4' EVM

16 16

 hist ''

 Queue Stack Rule

 +---------+ +------+----+---+ +-----+
 |mark *: 4| | | | | | |
 +---------+ +------+----+---+ +-----+
 |mark *: | | 4 | | | | |
 +---------+ +------+----+---+ +-----+
 |mark | | *: | 4 | | | |
 +---------+ +------+----+---+ +-----+
 | | | mark | *: | 4 | |monad|
 +---------+ +------+----+---+ +-----+
 | | | mark | 16 | | | |
 +---------+ +------+----+---+ +-----+

Appendix 1: Evaluating Expressions 548

A1.3.2 Second Monad Rule

An item in the stack is classified as "EAVN" if it is an EDGE or an adverb
or verb or noun. The scheme is:

 monad2 rule: EAVN VERB1 VERB2 NOUN etc => EAVN VERB1 Z etc

where Z is VERB2 monadically applied to NOUN. For example:

- *: 4 '- *: 4' EVM

_16 _16

 hist ''

 Queue Stack Rule

 +-----------+ +------+-----+----+---+ +------+
 |mark - *: 4| | | | | | | |
 +-----------+ +------+-----+----+---+ +------+
 |mark - *: | | 4 | | | | | |
 +-----------+ +------+-----+----+---+ +------+
 |mark - | | *: | 4 | | | | |
 +-----------+ +------+-----+----+---+ +------+
 |mark | | - | *: | 4 | | | |
 +-----------+ +------+-----+----+---+ +------+
 | | | mark | - | *: | 4 | |monad2|
 +-----------+ +------+-----+----+---+ +------+
 | | | mark | - | 16 | | |monad |
 +-----------+ +------+-----+----+---+ +------+
 | | | mark | _16 | | | | |
 +-----------+ +------+-----+----+---+ +------+

 549 Appendix 1: Evaluating Expressions

A1.3.3 Dyad Rule
The scheme is

 dyad rule: EAVN NOUN1 VERB NOUN2 etc => EAVN Z etc

where Z is VERB applied dyadically to NOUN1 and NOUN2. For example.

3 * 4 '3 * 4' EVM

12 12

 hist ''

 Queue Stack Rule

 +----------+ +------+----+---+---+ +----+
 |mark 3 * 4| | | | | | | |
 +----------+ +------+----+---+---+ +----+
 |mark 3 * | | 4 | | | | | |
 +----------+ +------+----+---+---+ +----+
 |mark 3 | | * | 4 | | | | |
 +----------+ +------+----+---+---+ +----+
 |mark | | 3 | * | 4 | | | |
 +----------+ +------+----+---+---+ +----+
 | | | mark | 3 | * | 4 | |dyad|
 +----------+ +------+----+---+---+ +----+
 | | | mark | 12 | | | | |
 +----------+ +------+----+---+---+ +----+

Appendix 1: Evaluating Expressions 550

A1.3.4 Adverb Rule

An item which is a verb or a noun is classified as a "VN" The scheme is:

 adverb rule: EAVN VN ADVERB etc => EAVN Z etc

where Z is the result of applying ADVERB to VN. For example:

+ / 1 2 3 '+ / 1 2 3' EVM

6 6

 hist ''

 Queue Stack Rule

 +--------------+ +-------+-------+-------+-------+ +-----+
 |mark + / 1 2 3| | | | | | | |
 +--------------+ +-------+-------+-------+-------+ +-----+
 |mark + / | | 1 2 3 | | | | | |
 +--------------+ +-------+-------+-------+-------+ +-----+
 |mark + | | / | 1 2 3 | | | | |
 +--------------+ +-------+-------+-------+-------+ +-----+
 |mark | | + | / | 1 2 3 | | | |
 +--------------+ +-------+-------+-------+-------+ +-----+
 | | | mark | + | / | 1 2 3 | |adv |
 +--------------+ +-------+-------+-------+-------+ +-----+
 | | | mark | +/ | 1 2 3 | | |monad|
 +--------------+ +-------+-------+-------+-------+ +-----+
 | | | mark | 6 | | | | |
 +--------------+ +-------+-------+-------+-------+ +-----+

 551 Appendix 1: Evaluating Expressions

A1.3.5 Conjunction Rule
The scheme is:

 conjunction EAVN VN1 CONJ VN1 etc => EAVN Z etc

where Z is the result of applying conjunction CONJ to arguments VN1 and
VN2. For example:

1 & + 2 '1 & + 2' EVM

3 3
 hist ''

Queue Stack Rule

 +------------+ +------+-----+---+---+---+ +-----+
 |mark 1 & + 2| | | | | | | | |
 +------------+ +------+-----+---+---+---+ +-----+
 |mark 1 & + | | 2 | | | | | | |
 +------------+ +------+-----+---+---+---+ +-----+
 |mark 1 & | | + | 2 | | | | | |
 +------------+ +------+-----+---+---+---+ +-----+
 |mark 1 | | & | + | 2 | | | | |
 +------------+ +------+-----+---+---+---+ +-----+
 |mark | | 1 | & | + | 2 | | | |
 +------------+ +------+-----+---+---+---+ +-----+
 | | | mark | 1 | & | + | 2 | |conj |
 +------------+ +------+-----+---+---+---+ +-----+
 | | | mark | 1&+ | 2 | | | |monad|
 +------------+ +------+-----+---+---+---+ +-----+
 | | | mark | 3 | | | | | |
 +------------+ +------+-----+---+---+---+ +-----+

Appendix 1: Evaluating Expressions 552

A1.3.6 Trident Rule
The scheme is:

 trident rule: EAVN VN1 VERB2 VERB3 etc => EAVN Z etc

and there are two cases: VN1 may be a verb or a noun. If VN1 is the verb
VERB1 then Z is the single verb defined as the fork VERB1 VERB2 VERB3.
Forks and abbreviations for forks are described in Chapter 09.

Here is an example: 1 + *: is an abbreviation for the fork 1: + *:

(1: + *:) 2 3 (1 + *:)2 3 '(1 + *:) 2 3' EVM

5 10 5 10 5 10

 hist ''

 Queue Stack Rule

 +-------------------+ +-------+-------+----+----+----+----+ +-------+
 |mark (1 + *:) 2 3| | | | | | | | | |
 +-------------------+ +-------+-------+----+----+----+----+ +-------+
 |mark (1 + *:) | | 2 3 | | | | | | | |
 +-------------------+ +-------+-------+----+----+----+----+ +-------+
 |mark (1 + *: | |) | 2 3 | | | | | | |
 +-------------------+ +-------+-------+----+----+----+----+ +-------+
 |mark (1 + | | *: |) | 2 3| | | | | |
 +-------------------+ +-------+-------+----+----+----+----+ +-------+
 |mark (1 | | + | *: |) | 2 3| | | | |
 +-------------------+ +-------+-------+----+----+----+----+ +-------+
 |mark (| | 1 | + | *: |) | 2 3| | | |
 +-------------------+ +-------+-------+----+----+----+----+ +-------+
 |mark | | (| 1 | + | *: |) | 2 3| |trident|
 +-------------------+ +-------+-------+----+----+----+----+ +-------+
 |mark | | (| 1 + *:|) | 2 3| | | |paren |
 +-------------------+ +-------+-------+----+----+----+----+ +-------+
 |mark | | 1 + *:| 2 3 | | | | | | |
 +-------------------+ +-------+-------+----+----+----+----+ +-------+
 | | | mark | 1 + *:| 2 3| | | | |monad |
 +-------------------+ +-------+-------+----+----+----+----+ +-------+
 | | | mark | 5 10 | | | | | | |
 +-------------------+ +-------+-------+----+----+----+----+ +-------+

 553 Appendix 1: Evaluating Expressions

A1.3.7 Bident Rule

The scheme is:

 bident rule: EDGE CAVN1 CAVN2 etc => EDGE Z etc

and there are altogether these 6 cases for the bident rule:

CAVN1 CAVN2 Z

verb verb verb (a hook)

adverb adverb adverb

conjunction verb adverb

conjunction noun adverb

noun conjunction adverb

verb conjunction adverb

The first case (the hook) is described in Chapter 03 and the remaining
cases in the schemes for bidents in Chapter 15.

In the following example the expression (1 &) is a bident of the form
noun conjunction. Therefore it is an adverb.

+ (1 &) 2 '+ (1 &) 2' EVM

3 3

Appendix 1: Evaluating Expressions 554

 hist ''

 Queue Stack Rule

 +----------------+ +------+-----+----+---+---+ +------+
 |mark + (1 &) 2| | | | | | | | |
 +----------------+ +------+-----+----+---+---+ +------+
 |mark + (1 &) | | 2 | | | | | | |
 +----------------+ +------+-----+----+---+---+ +------+
 |mark + (1 & | |) | 2 | | | | | |
 +----------------+ +------+-----+----+---+---+ +------+
 |mark + (1 | | & |) | 2 | | | | |
 +----------------+ +------+-----+----+---+---+ +------+
 |mark + (| | 1 | & |) | 2 | | | |
 +----------------+ +------+-----+----+---+---+ +------+
 |mark + | | (| 1 | & |) | 2 | |bident|
 +----------------+ +------+-----+----+---+---+ +------+
 |mark + | | (| 1& |) | 2 | | |paren |
 +----------------+ +------+-----+----+---+---+ +------+
 |mark + | | 1& | 2 | | | | | |
 +----------------+ +------+-----+----+---+---+ +------+
 |mark | | + | 1& | 2 | | | | |
 +----------------+ +------+-----+----+---+---+ +------+
 | | | mark | + | 1& | 2 | | |adv |
 +----------------+ +------+-----+----+---+---+ +------+
 | | | mark | 1&+ | 2 | | | |monad |
 +----------------+ +------+-----+----+---+---+ +------+
 | | | mark | 3 | | | | | |
 +----------------+ +------+-----+----+---+---+ +------+

 555 Appendix 1: Evaluating Expressions

A1.3.8 Assignment Rule

We write NN to denote a noun or a name. and Asgn for the assignment
symbol =: or =.. The scheme is:

 assign rule: NN Asgn CAVN etc => Z etc

where Z is the value of CAVN.

1 + x =: 6 '1 + x =: 6' EVM

7 7

 hist ''

 Queue Stack Rule

 +---------------+ +------+----+---+---+ +------+
 |mark 1 + x =: 6| | | | | | | |
 +---------------+ +------+----+---+---+ +------+
 |mark 1 + x =: | | 6 | | | | | |
 +---------------+ +------+----+---+---+ +------+
 |mark 1 + x | | =: | 6 | | | | |
 +---------------+ +------+----+---+---+ +------+
 |mark 1 + | | x | =: | 6 | | |assign|
 +---------------+ +------+----+---+---+ +------+
 |mark 1 + | | 6 | | | | | |
 +---------------+ +------+----+---+---+ +------+
 |mark 1 | | + | 6 | | | | |
 +---------------+ +------+----+---+---+ +------+
 |mark | | 1 | + | 6 | | | |
 +---------------+ +------+----+---+---+ +------+
 | | | mark | 1 | + | 6 | |dyad |
 +---------------+ +------+----+---+---+ +------+
 | | | mark | 7 | | | | |
 +---------------+ +------+----+---+---+ +------+

Appendix 1: Evaluating Expressions 556

A1.3.9 Parenthesis Rule

The scheme is:

 paren rule: (CAVN) etc => Z etc

where Z is the value of CAVN. For example:

(1+2)*3 '(1+2)*3' EVM

9 9

 hist ''

 Queue Stack Rule

 +------------------+ +------+---+---+---+---+---+---+ +-----+
 |mark (1 + 2) * 3| | | | | | | | | | |
 +------------------+ +------+---+---+---+---+---+---+ +-----+
 |mark (1 + 2) * | | 3 | | | | | | | | |
 +------------------+ +------+---+---+---+---+---+---+ +-----+
 |mark (1 + 2) | | * | 3 | | | | | | | |
 +------------------+ +------+---+---+---+---+---+---+ +-----+
 |mark (1 + 2 | |) | * | 3 | | | | | | |
 +------------------+ +------+---+---+---+---+---+---+ +-----+
 |mark (1 + | | 2 |) | * | 3 | | | | | |
 +------------------+ +------+---+---+---+---+---+---+ +-----+
 |mark (1 | | + | 2 |) | * | 3 | | | | |
 +------------------+ +------+---+---+---+---+---+---+ +-----+
 |mark (| | 1 | + | 2 |) | * | 3 | | | |
 +------------------+ +------+---+---+---+---+---+---+ +-----+
 |mark | | (| 1 | + | 2 |) | * | 3 | |dyad |
 +------------------+ +------+---+---+---+---+---+---+ +-----+
 |mark | | (| 3 |) | * | 3 | | | |paren|
 +------------------+ +------+---+---+---+---+---+---+ +-----+
 |mark | | 3 | * | 3 | | | | | | |
 +------------------+ +------+---+---+---+---+---+---+ +-----+
 | | | mark | 3 | * | 3 | | | | |dyad |
 +------------------+ +------+---+---+---+---+---+---+ +-----+
 | | | mark | 9 | | | | | | | |
 +------------------+ +------+---+---+---+---+---+---+ +-----+

 557 Appendix 1: Evaluating Expressions

A1.3.10 Examples of Transfer

The following example shows that when a name is transferred from
queue to stack, if the name denotes a value which is a noun, then the
value, not the name, moves to the queue.

a =: 6 (a=:7) , a

6 7 6

a=: 6 '(a =: 7) , a' EVM

6 7 6

 hist ''

Appendix 1: Evaluating Expressions 558

 Queue Stack Rule

 +-------------------+ +------+-----+---+---+---+---+ +------+
 |mark (a =: 7) , a| | | | | | | | | |
 +-------------------+ +------+-----+---+---+---+---+ +------+
 |mark (a =: 7) , | | 6 | | | | | | | |
 +-------------------+ +------+-----+---+---+---+---+ +------+
 |mark (a =: 7) | | , | 6 | | | | | | |
 +-------------------+ +------+-----+---+---+---+---+ +------+
 |mark (a =: 7 | |) | , | 6 | | | | | |
 +-------------------+ +------+-----+---+---+---+---+ +------+
 |mark (a =: | | 7 |) | , | 6 | | | | |
 +-------------------+ +------+-----+---+---+---+---+ +------+
 |mark (a | | =: | 7 |) | , | 6 | | | |
 +-------------------+ +------+-----+---+---+---+---+ +------+
 |mark (| | a | =: | 7 |) | , | 6 | |assign|
 +-------------------+ +------+-----+---+---+---+---+ +------+
 |mark (| | 7 |) | , | 6 | | | | |
 +-------------------+ +------+-----+---+---+---+---+ +------+
 |mark | | (| 7 |) | , | 6 | | |paren |
 +-------------------+ +------+-----+---+---+---+---+ +------+
 |mark | | 7 | , | 6 | | | | | |
 +-------------------+ +------+-----+---+---+---+---+ +------+
 | | | mark | 7 | , | 6 | | | |dyad |
 +-------------------+ +------+-----+---+---+---+---+ +------+
 | | | mark | 7 6 | | | | | | |
 +-------------------+ +------+-----+---+---+---+---+ +------+

By contrast, if the name is that of a verb, then the name is transferred
into the stack without evaluating it. Hence a subsequent assignment
changes the verb applied.

f=: + ((f=:-) , f) 4

+ _4 _4

f =: + '((f =: -),f) 4' EVM

+ _4 _4

 559 Appendix 1: Evaluating Expressions

 hist ''

 Queue Stack Rule

 +-------------------------+ +------+------+--+--+--+--+--+--+ +-------+
 |mark ((f =: -) , f) 4| | | | | | | | | | | |
 +-------------------------+ +------+------+--+--+--+--+--+--+ +-------+
 |mark ((f =: -) , f) | | 4 | | | | | | | | | |
 +-------------------------+ +------+------+--+--+--+--+--+--+ +-------+
 |mark ((f =: -) , f | |) | 4 | | | | | | | | |
 +-------------------------+ +------+------+--+--+--+--+--+--+ +-------+
 |mark ((f =: -) , | | f |) | 4| | | | | | | |
 +-------------------------+ +------+------+--+--+--+--+--+--+ +-------+
 |mark ((f =: -) | | , | f |)| 4| | | | | | |
 +-------------------------+ +------+------+--+--+--+--+--+--+ +-------+
 |mark ((f =: - | |) | , | f|)| 4| | | | | |
 +-------------------------+ +------+------+--+--+--+--+--+--+ +-------+
 |mark ((f =: | | - |) | ,| f|)| 4| | | | |
 +-------------------------+ +------+------+--+--+--+--+--+--+ +-------+
 |mark ((f | | =: | - |)| ,| f|)| 4| | | |
 +-------------------------+ +------+------+--+--+--+--+--+--+ +-------+
 |mark ((| | f | =: | -|)| ,| f|)| 4| |assign |
 +-------------------------+ +------+------+--+--+--+--+--+--+ +-------+
 |mark ((| | - |) | ,| f|)| 4| | | | |
 +-------------------------+ +------+------+--+--+--+--+--+--+ +-------+
 |mark (| | (| - |)| ,| f|)| 4| | |paren |
 +-------------------------+ +------+------+--+--+--+--+--+--+ +-------+
 |mark (| | - | , | f|)| 4| | | | | |
 +-------------------------+ +------+------+--+--+--+--+--+--+ +-------+
 |mark | | (| - | ,| f|)| 4| | | |trident|
 +-------------------------+ +------+------+--+--+--+--+--+--+ +-------+
 |mark | | (| - , f|)| 4| | | | | |paren |
 +-------------------------+ +------+------+--+--+--+--+--+--+ +-------+
 |mark | | - , f| 4 | | | | | | | | |
 +-------------------------+ +------+------+--+--+--+--+--+--+ +-------+
 | | | mark | - , f| 4| | | | | | |monad |
 +-------------------------+ +------+------+--+--+--+--+--+--+ +-------+
 | | | mark | _4 _4| | | | | | | | |
 +-------------------------+ +------+------+--+--+--+--+--+--+ +-------+

Appendix 1: Evaluating Expressions 560

A1.3.11 Review of Parsing Rules

rule stack before stack after where Z is ...

monad EDGE Verb Noun etc EDGE Z etc Verb applied to Noun

monad2 EAVN Verb1 Verb2 Noun EAVN
Verb
1

Z Verb2 applied to Noun

dyad EAVN Noun1 Verb Noun2 EAVN Z etc
Verb applied to Noun1 and
Noun2

adverb EAVN VN Adv etc EAVN Z etc Adv applied to VN

conj EAVN VN1 Conj VN2 EAVN Z etc Conj applied to VN1 and VN2

trident EAVN VN1 Verb2 Verb3 EAVN Z etc

fork (VN1 Verb2 Verb3)

bident EDGE CAVN1 CAVN2 etc EDGE Z etc bident (CAVN1 CAVN2)

assign NN Asgn CAVN etc Z etc etc CAVN

paren (CAVN) etc Z etc etc CAVN

A1.4 Effects of Parsing Rules

Now we look at some of the effects of the parsing rules. In what follows,
notice how the parsing rules in effect give rise to implicit parentheses.

 561 Appendix 1: Evaluating Expressions

A1.4.1 Dyad Has Long Right Scope

Consider the expression 4+3-2, which means 4+(3-2).

4 + 3 - 2 4 + (3-2) '4+3-2' EVM

5 5 5

 hist ''

 Queue Stack Rule

 +--------------+ +------+---+---+---+ +----+
 |mark 4 + 3 - 2| | | | | | | |
 +--------------+ +------+---+---+---+ +----+
 |mark 4 + 3 - | | 2 | | | | | |
 +--------------+ +------+---+---+---+ +----+
 |mark 4 + 3 | | - | 2 | | | | |
 +--------------+ +------+---+---+---+ +----+
 |mark 4 + | | 3 | - | 2 | | | |
 +--------------+ +------+---+---+---+ +----+
 |mark 4 | | + | 3 | - | 2 | |dyad|
 +--------------+ +------+---+---+---+ +----+
 |mark 4 | | + | 1 | | | | |
 +--------------+ +------+---+---+---+ +----+
 |mark | | 4 | + | 1 | | | |
 +--------------+ +------+---+---+---+ +----+
 | | | mark | 4 | + | 1 | |dyad|
 +--------------+ +------+---+---+---+ +----+
 | | | mark | 5 | | | | |
 +--------------+ +------+---+---+---+ +----+

Here we have an example of a general rule: a dyadic verb takes as its

Appendix 1: Evaluating Expressions 562

right argument as much as possible, so in this example + is applied to 3-
2, not just 3.

Further, a dyadic verb takes as left argument as little as possible. In this
example the left argument of - is just 3, not 4+3. Hence a dyadic verb is
said to have a "long right scope" and a "short left scope".

 563 Appendix 1: Evaluating Expressions

A1.4.2 Operators Before Verbs

Adverbs and conjunctions get applied first, and then the resulting verbs:

* & 1 % 2 (*&1) % 2 '* & 1 % 2' EVM

0.5 0.5 0.5

 hist ''

 Queue Stack Rule

 +--------------+ +------+-----+-----+---+---+---+ +------+
 |mark * & 1 % 2| | | | | | | | | |
 +--------------+ +------+-----+-----+---+---+---+ +------+
 |mark * & 1 % | | 2 | | | | | | | |
 +--------------+ +------+-----+-----+---+---+---+ +------+
 |mark * & 1 | | % | 2 | | | | | | |
 +--------------+ +------+-----+-----+---+---+---+ +------+
 |mark * & | | 1 | % | 2 | | | | | |
 +--------------+ +------+-----+-----+---+---+---+ +------+
 |mark * | | & | 1 | % | 2 | | | | |
 +--------------+ +------+-----+-----+---+---+---+ +------+
 |mark | | * | & | 1 | % | 2 | | | |
 +--------------+ +------+-----+-----+---+---+---+ +------+
 | | | mark | * | & | 1 | % | 2 | |conj |
 +--------------+ +------+-----+-----+---+---+---+ +------+
 | | | mark | *&1 | % | 2 | | | |monad2|
 +--------------+ +------+-----+-----+---+---+---+ +------+
 | | | mark | *&1 | 0.5 | | | | |monad |
 +--------------+ +------+-----+-----+---+---+---+ +------+
 | | | mark | 0.5 | | | | | | |
 +--------------+ +------+-----+-----+---+---+---+ +------+

Appendix 1: Evaluating Expressions 564

A1.4.3 Operators Have Long Left Scope

In the following examples, note that values of verbs are shown in the
"parenthesized representation" (see Chapter 27) to show their structure.
An adverb or a conjunction takes as its left argument as much as
possible. Look at the structure of these verbs: evidently the / adverb and
the @ conjunction take everything to their left:

f @ g / f & g @ h 'f&g@h' EVM

(f@g)/ (f&g)@h (f&g)@h

 hist ''

 Queue Stack Rule

 +--------------+ +------+---------+---+---+---+---+ +----+
 |mark f & g @ h| | | | | | | | | |
 +--------------+ +------+---------+---+---+---+---+ +----+
 |mark f & g @ | | h | | | | | | | |
 +--------------+ +------+---------+---+---+---+---+ +----+
 |mark f & g | | @ | h | | | | | | |
 +--------------+ +------+---------+---+---+---+---+ +----+
 |mark f & | | g | @ | h | | | | | |
 +--------------+ +------+---------+---+---+---+---+ +----+
 |mark f | | & | g | @ | h | | | | |
 +--------------+ +------+---------+---+---+---+---+ +----+
 |mark | | f | & | g | @ | h | | | |
 +--------------+ +------+---------+---+---+---+---+ +----+
 | | | mark | f | & | g | @ | h | |conj|
 +--------------+ +------+---------+---+---+---+---+ +----+
 | | | mark | f&g | @ | h | | | |conj|
 +--------------+ +------+---------+---+---+---+---+ +----+
 | | | mark | (f&g)@h | | | | | | |
 +--------------+ +------+---------+---+---+---+---+ +----+

Thus operators are said to have a "long left scope". In the example of
f&g@h we see that the right argument of & is just g, not g@h . Thus
conjunctions have "short right scope".

 565 Appendix 1: Evaluating Expressions

A1.4.4 Train on the Left

The long left scope of an adverb does not extend through a train:
parentheses may be needed to get the desired effect. Suppose f g h is
intended as a train, then compare the following:

(f g h) / f g h / 'f g h / ' EVM

(f g h)/ f g (h/) f g (h/)

 hist ''

 Queue Stack Rule

 +------------+ +------+----------+----+----+ +-------+
 |mark f g h /| | | | | | | |
 +------------+ +------+----------+----+----+ +-------+
 |mark f g h | | / | | | | | |
 +------------+ +------+----------+----+----+ +-------+
 |mark f g | | h | / | | | | |
 +------------+ +------+----------+----+----+ +-------+
 |mark f | | g | h | / | | |adv |
 +------------+ +------+----------+----+----+ +-------+
 |mark f | | g | h/ | | | | |
 +------------+ +------+----------+----+----+ +-------+
 |mark | | f | g | h/ | | | |
 +------------+ +------+----------+----+----+ +-------+
 | | | mark | f | g | h/ | |trident|
 +------------+ +------+----------+----+----+ +-------+
 | | | mark | f g (h/) | | | | |
 +------------+ +------+----------+----+----+ +-------+

Similarly for a conjunction (with a right argument)

Appendix 1: Evaluating Expressions 566

f g h @ + 'f g h @ +' EVM

f g (h@+) f g (h@+)

 hist ''

 Queue Stack Rule

 +--------------+ +------+-----------+-----+-----+ +-------+
 |mark f g h @ +| | | | | | | |
 +--------------+ +------+-----------+-----+-----+ +-------+
 |mark f g h @ | | + | | | | | |
 +--------------+ +------+-----------+-----+-----+ +-------+
 |mark f g h | | @ | + | | | | |
 +--------------+ +------+-----------+-----+-----+ +-------+
 |mark f g | | h | @ | + | | | |
 +--------------+ +------+-----------+-----+-----+ +-------+
 |mark f | | g | h | @ | + | |conj |
 +--------------+ +------+-----------+-----+-----+ +-------+
 |mark f | | g | h@+ | | | | |
 +--------------+ +------+-----------+-----+-----+ +-------+
 |mark | | f | g | h@+ | | | |
 +--------------+ +------+-----------+-----+-----+ +-------+
 | | | mark | f | g | h@+ | |trident|
 +--------------+ +------+-----------+-----+-----+ +-------+
 | | | mark | f g (h@+) | | | | |
 +--------------+ +------+-----------+-----+-----+ +-------+

However, for a conjunction with no right argument, the left scope does
extend through a train:

f g h @ 'f g h @' EVM

(f g h)@ (f g h)@

 567 Appendix 1: Evaluating Expressions

 hist ''

 Queue Stack Rule

 +------------+ +------+----------+---+---+---+ +-------+
 |mark f g h @| | | | | | | | |
 +------------+ +------+----------+---+---+---+ +-------+
 |mark f g h | | @ | | | | | | |
 +------------+ +------+----------+---+---+---+ +-------+
 |mark f g | | h | @ | | | | | |
 +------------+ +------+----------+---+---+---+ +-------+
 |mark f | | g | h | @ | | | | |
 +------------+ +------+----------+---+---+---+ +-------+
 |mark | | f | g | h | @ | | | |
 +------------+ +------+----------+---+---+---+ +-------+
 | | | mark | f | g | h | @ | |trident|
 +------------+ +------+----------+---+---+---+ +-------+
 | | | mark | f g h | @ | | | |bident |
 +------------+ +------+----------+---+---+---+ +-------+
 | | | mark | (f g h)@ | | | | | |
 +------------+ +------+----------+---+---+---+ +-------+

By contrast, in the case of of f @ g /, notice how the "conj" rule is
applied before there is a chance to apply the "adverb" rule"

f @ g / 'f @ g / ' EVM

(f@g)/ (f@g)/

Appendix 1: Evaluating Expressions 568

 hist ''

 Queue Stack Rule

 +------------+ +------+--------+---+---+---+ +----+
 |mark f @ g /| | | | | | | | |
 +------------+ +------+--------+---+---+---+ +----+
 |mark f @ g | | / | | | | | | |
 +------------+ +------+--------+---+---+---+ +----+
 |mark f @ | | g | / | | | | | |
 +------------+ +------+--------+---+---+---+ +----+
 |mark f | | @ | g | / | | | | |
 +------------+ +------+--------+---+---+---+ +----+
 |mark | | f | @ | g | / | | | |
 +------------+ +------+--------+---+---+---+ +----+
 | | | mark | f | @ | g | / | |conj|
 +------------+ +------+--------+---+---+---+ +----+
 | | | mark | f@g | / | | | |adv |
 +------------+ +------+--------+---+---+---+ +----+
 | | | mark | (f@g)/ | | | | | |
 +------------+ +------+--------+---+---+---+ +----+

 569 Appendix 1: Evaluating Expressions

A1.4.5 Presumption of Verb

A name with no value assigned is presumed to be a verb. For example, in
the following the two names make a hook:

Blue Skies 'Blue Skies' EVM

Blue Skies Blue Skies

 hist ''

 Queue Stack Rule

 +---------------+ +-------+------------+-------+ +------+
 |mark Blue Skies| | | | | | |
 +---------------+ +-------+------------+-------+ +------+
 |mark Blue | | Skies | | | | |
 +---------------+ +-------+------------+-------+ +------+
 |mark | | Blue | Skies | | | |
 +---------------+ +-------+------------+-------+ +------+
 | | | mark | Blue | Skies | |bident|
 +---------------+ +-------+------------+-------+ +------+
 | | | mark | Blue Skies | | | |
 +---------------+ +-------+------------+-------+ +------+

Appendix 2: Collected Terminology 570

Appendix 2: Collected Terminology

In this book, the words "data", "function", "argument" and "expression"
are used with the meanings usual in programming.

Certain other words are used in this book with meanings given below, in
a sequence such that the explanation of each word depends only on
words previously explained.

VALUE Anything which can be produced by evaluating an
expression is said to be a value. Every value is a
data value or a function.

NOUN a data value

VERB a function which computes nouns from nouns.

MONAD a verb which takes a single argument.

DYAD a verb which takes two arguments. Every verb is a
monad or a dyad.

AMBIVALENT An expression is said to be ambivalent when it
denotes either a monad or a dyad (depending on
whether one or two arguments are supplied).

OPERATOR a function which takes, as its argument(s), nouns or
verbs, and produces as its result, a noun or verb or

 571 Appendix 2: Collected Terminology

operator. Every J function is a verb or an operator.

ADVERB an operator which takes a single argument.

CONJUNCTIO
N

an operator which takes two arguments. Every
operator is an adverb or a conjunction.

BIDENT a sequence of two expressions for which the J
grammar provides an interpretation as a single
function.

TRIDENT a sequence of three expressions for which the J
grammar provides an interpretation as a single
function.

TRAIN a sequence of two or more expressions for which
the J grammar provides an interpretation as a single
function.

HOOK a verb defined as a sequence of two verbs, that is, a
bident.

FORK a verb defined as a sequence of three verbs, that is,
a trident.

EXPLICIT a function is said to be explicitly defined, or just
explicit, when defined by an expression containing
argument variables for which values are to be
substituted.

Appendix 2: Collected Terminology 572

TACIT a function is said to be tacitly defined, or just tacit,
when defined without using argument variables.
Every J function is either built-in or explicit or
tacit.

ARRAY a noun, that is, a data value, consisting of a number
of simpler values arranged on rectangular
coordinates, or axes. Every noun is an array, with
zero or more axes.

DIMENSION (of an array) the length of an axis

SHAPE (of an array) the list of its dimensions

SCALAR a noun with no dimensions. The shape of a scalar is
an empty list.

RANK (of a noun) the number of its dimensions, that is,
the length of its shape.

BOX A scalar of a special type, such that its value can
represent any array.

CELL The list of dimensions of any array can be
arbitrarily partitioned into leading dimensions
followed by trailing dimensions. The original array
is thus described as an array of cells, where each
cell has only the trailing dimensions. The leading
dimensions are called a frame for those cells.

 573 Appendix 2: Collected Terminology

FRAME See Cell.

RANK (of a verb) The natural, or intrinsic, rank for its
argument(s). With an argument of any rank higher
than its intrinsic rank, the verb is applied separately
to each intrinsic-rank cell of the argument. A
monad has one rank, a dyad has two (one each for
left and right arguments) and hence an ambivalent
verb has three.

Table of Contents
Index

file:///C:/Users/homer/14/book.htm#toc

Index 574

Index

A B C D E F G H I J K L M N O
P

Q R

S T U V W ! "
#

$

% & ' * + , - .

/ : ; < = > ? @ [\] ^ _ ` { | } ~

Factorial monadic !

Out Of dyadic !

constant functions with the Rank
conjunction

"

Rank conjunction "

dyadic #

Tally monadic #

Base Two, monadic #.

Base Two monadic #.

Base, dyadic #.

 575 Index

Antibase Two, monadic #:

Antibase, dyadic #:

Shape dyadic $

Shape dyadic $

Shape Of monadic $

ShapeOf monadic $

SelfReference $:

Divide dyadic %

Reciprocal monadic %

matrix divide dyadic %.

matrix inverse monadic %.

Square Root monadic %:

bond conjunction &

Compose conjunction &

Under conjunction &.

Appose conjunction &:

Index 576

Signum monadic *

Times dyadic *

LCM dyadic *.

Square monadic *:

Conjugate monadic +

Plus dyadic +

GCD dyadic +.

Double monadic +:

Append dyadic ,

Append dyadic ,

Ravel monadic ,

Ravel Items monadic ,.

Stitch dyadic ,.

Itemize monadic ,:

Laminate dyadic ,:

Minus dyadic -

Negate monadic -

 577 Index

Less, or set difference, dyadic -.

Halve monadic -:

Match dyadic -:

Insert adverb /

Grade Up, monadic /:

Sort, dyadic /:

ExplicitDefinition Conjunction :

Link dyadic ;

Link dyadic ;

Raze monadic ;

Box monadic <

Floor monadic <.

Equal dyadic =

Open monadic >

Index 578

Ceiling monadic >.

Atop conjunction @

Agenda conjunction @.

At conjunction @:

Left dyadic [

Same monadic [

Cap [:

Grade Down, monadic \:

Sort, dyadic \:

Right dyadic]

Same monadic]

Exponential monadic ^

Power dyadic ^

Logarithm dyadic ^.

Natural Log monadic ^.

 579 Index

Power conjunction ^: for inverses of verbs

From dyadic {

From dyadic {

Head monadic {.

Take dyadic {.

Tail monadic {:

Magnitude monadic |

Residue dyadic |

Amend adverb }

Behead monadic }.

Drop dyadic }.

Curtail monadic }:

Nub ~.

Ace a:

absolute value

Index 580

Ace a:

adverbs

adverbs from conjunctions

Amend adverb }

APPEND adverb

Basic Characteristics adverb b. for ranks of a verb

composition of adverbs

Evoke Gerund adverb

Fix adverb

gerund with Amend adverb

gerund with Insert adverb

Insert adverb /

Key Adverb

Prefix adverb

Table adverb

Error handling with Adverse conjunction

Agenda conjunction @.

gerund with Agenda conjunction

agreement between arguments of
dyad

 581 Index

ambivalent composition

ambivalent verbs

Amend adverb }

gerund with Amend adverb

Amending arrays

Antibase Two, monadic #:

Base and Antibase functions

Antibase, dyadic #:

APPEND adverb

Append dyadic ,

Append dyadic ,

appending data to file

application

Appose conjunction &:

argument

symbolic arithmetic

arrays

arrays of boxes

arrays of characters

Amending arrays

Index 582

boxing and unboxing arrays

building large arrays

building small arrays

dense Arrays

indexing arrays

joining arrays together

linking arrays together

Razing and Ravelling arrays

reversing arrays

rotating arrays

selecting items from arrays

shape of array

shifting arrays

Sparse Arrays

Error handling with Assertions

indirect assignments

multiple assignments

variables and assignments

At conjunction @:

atomic representation

 583 Index

Atop conjunction @

Basic Characteristics adverb b. for ranks of a verb

Boolean adverb b.

Base and Antibase functions

Base Two, monadic #.

Number Base

Base Two monadic #.

Base, dyadic #.

Basic Characteristics adverb b. for
ranks of a verb

Behead monadic }.

bidents

binary data

binary data in files

binary representation as file format

bitwise logical functions on integers

blocks in control structures

bond conjunction &

booleans

Index 584

Boolean adverb b.

booleans as numbers

Box monadic <

arrays of boxes

boxed representation

boxing and unboxing arrays

calculus

Cap [:

Ceiling monadic >.

cells

Circle Functions dyadic o.

class as in object oriented
programming

class of a name

defining classes of objects

coefficients

collating sequence

Collatz function

Collatz sequence

 585 Index

comments

commuting arguments

tolerant
comparison of floating point
numbers

complex numbers

Compose conjunction &

composing verbs

composition of adverbs

composition of functions

ambivalent composition

conditional verbs

Conjugate monadic +

conjunctions

adverbs from conjunctions

Agenda conjunction @.

Appose conjunction &:

At conjunction @:

Atop conjunction @

bond conjunction &

Compose conjunction &

Index 586

constant functions with the Rank conjunction "

Cut conjunction

dot product conjunction

Error handling with Adverse conjunction

ExplicitDefinition Conjunction :

gerund with Agenda conjunction

gerund with Power conjunction

Power conjunction

Power conjunction ^: for inverses of verbs

Rank conjunction "

Tie conjunction

Under conjunction

Under conjunction &.

constant functions

constant functions with the Rank
conjunction "

control structures

blocks in control structures

for control structure

if control structure

 587 Index

introduction to control structures

while control structure

type conversions of data

Conway's Game of Life

cumulative sums and products

current locale

Curtail monadic }:

curve fitting

Cut conjunction

cutting text into lines

data files

data formats

appending data to file

binary data

binary data in files

type conversions of data

Decrement monadic <:

predefined mnemonic def

predefined mnemonic define

Index 588

local definitions in scripts

dense Arrays

partial derivatives

determinant

differentiation and integration

display of numbers

Divide dyadic %

matrix divide dyadic %.

dot product conjunction

Double monadic +:

Drop dyadic }.

agreement between arguments of dyad

monads and dyads

dyadic fork

dyadic hook

set membership dyadic e.

each

EACH

UTF-8 encoding of*Unicode characters

 589 Index

Equal dyadic =

equality and matching

simultaneous equations

rewriting definitions to equivalents

Erasing names from locales

Error handling with Adverse
conjunction

Error handling with Assertions

Error handling with Nonstop Script

Error handling with Suspended
Execution

Error handling with Try and Catch

Error-handling with Latent
Expression

Evoke Gerund adverb

execute a string

explicit functions

explicit operators

explicit verbs

generating tacit verbs from explicit

operators generating explicit verbs

Index 590

ExplicitDefinition Conjunction :

Exponential monadic ^

evaluating expressions for tacit verbs

extended integer numbers

factors of a number

Factorial monadic !

Fetch data from tree

appending data to file

binary data in files

binary representation as file format

data files

fixed length records in files

large files

library verbs for file handling

mapped files

mapping files with given format

persistent variables in files

reading and writing files

script files

 591 Index

script files described

text files

Fix adverb

fixed length records in files

fixedpoint of function

real or floating point numbers

tolerant comparison of floating point numbers

Floor monadic <.

for control structure

forks

capped fork

dyadic fork

monadic fork

n u v abbreviation for a fork

names formal and informal

data formats

mapping files with given format

formatting numbers

frames

frets and intervals

Index 592

From dyadic {

From dyadic {

function

functions as values

composition of functions

constant functions

defining functions

explicit functions

fixedpoint of function

identity functions

linear representation of functions

local functions

naming-scheme for built-in functions

parametric functions

Pythagorean functions

representation functions

scalar numeric functions

scalar numeric functions

Trigonometric functions

 593 Index

GCD dyadic +.

gerunds

gerund with Agenda conjunction

gerund with Amend adverb

gerund with Insert adverb

gerund with Power conjunction

gerund with user-defined operator

Evoke Gerund adverb

local and global variables

Grade Down, monadic \:

Grade Up, monadic /:

Hailstone sequence

Halve monadic -:

Head monadic {.

Height of tree

hooks

dyadic hook

monadic hook

Index 594

Index Of dyadic i.

Integers monadic i.

identity functions

identity matrix

if control structure

Increment monadic >:

indeterminate numbers

Index Of dyadic i.

Path of indexes within tree

indexing arrays

tree indexing

linear indices

indirect assignments

indirect locative names

infinity

infix scan

names formal and informal

inheritance of methods

input from keyboard

Insert adverb /

 595 Index

gerund with Insert adverb

inserting

Integers monadic i.

integer numbers

bitwise logical functions on integers

extended integer numbers

differentiation and integration

interactive use

frets and intervals

matrix inverse monadic %.

Power conjunction ^: for inverses of verbs

Items

Itemize monadic ,:

iterating while

iterative verbs

join of relations

Join of Relations

joining arrays together

Index 596

Key Adverb

input from keyboard

L. verb for path-length of tree

Laminate dyadic ,:

large files

building large arrays

Error-handling with Latent Expression

LCM dyadic *.

Left dyadic [

Less, or set difference, dyadic -.

The Level conjunction for trees

library scripts

library verbs for file handling

Conway's Game of Life

cutting text into lines

linear indices

linear representation of functions

linear representation

Link dyadic ;

 597 Index

Link dyadic ;

linking arrays together

list values

loading a script into a locale

loading definitions into locales

loading scripts

local and global variables

local definitions in scripts

local functions

local variables

local verbs in scripts

Locales

current locale

evaluating names in locales

loading a script into a locale

loading definitions into locales

paths between locales

locative name

indirect locative names

Logarithm dyadic ^.

Index 598

bitwise logical functions on integers

Magnitude monadic |

Mandelbrot Set

Map of tree structure

mapped files

mapped variables

mapping files with given format

Match dyadic -:

equality and matching

vectors and matrices

matrix divide dyadic %.

matrix inverse monadic %.

matrix product

identity matrix

singular matrix

transposition of matrix

set membership dyadic e.

defining methods for objects

inheritance of methods

 599 Index

Minus dyadic -

monads and dyads

monadic fork

monadic hook

multinomials

multiple assignments

names for variables

names formal and informal

evaluating names in locales

indirect locative names

locative name

naming-scheme for built-in
functions

Natural Log monadic ^.

Negate monadic -

nouns

operators generating nouns

type of a noun

Nub ~.

Index 600

numbers

Number Base

booleans as numbers

complex numbers

display of numbers

extended integer numbers

factors of a number

formatting numbers

generating prime numbers

indeterminate numbers

integer numbers

prime numbers

random numbers

rational numbers

real or floating point numbers

tolerant comparison of floating
point

numbers

numerals

scalar numeric functions

scalar numeric functions

 601 Index

Circle Functions dyadic o.

Pi Times monadic o.

defining classes of objects

defining methods for objects

making objects

Open monadic >

operators

operators generating explicit verbs

operators generating nouns

operators generating operators

operators generating tacit verbs

explicit operators

gerund with user-defined operator

operators generating operators

tacit operators

Out Of dyadic !

output to screen

parametric functions

Index 602

parentheses

parenthesized representation

partial derivatives

paths between locales

Path of indexes within tree

Performance

Performance Monitor

permutations

persistent variables in files

Pi Times monadic o.

Plus dyadic +

polynomials

roots of a polynomial

Power conjunction

Power conjunction ^: for inverses of
verbs

Power dyadic ^

gerund with Power conjunction

print precision

Prefix adverb

 603 Index

prefix scan

prime numbers

generating prime numbers

print precision

scripts for procedures

cumulative sums and products

matrix product

scalar product of vectors

Pythagorean functions

random numbers

Rank conjunction "

rank of array

Basic Characteristics adverb b. for ranks of a verb

constant functions with the Rank conjunction "

Intrinsic ranks of verbs

rational numbers

Ravel monadic ,

Ravel Items monadic ,.

Razing and Ravelling arrays

Index 604

Raze monadic ;

Razing and Ravelling arrays

reading and writing files

real or floating point numbers

Reciprocal monadic %

recursive verbs

relations

join of relations

Join of Relations

representation functions

atomic representation

boxed representation

linear representation

linear representation of functions

on screen representations

parenthesized representation

tree representation

require script

Residue dyadic |

reversing arrays

 605 Index

rewriting definitions to equivalents

Right dyadic]

rightmost first rule

Roll

Root dyadic %:

roots of a polynomial

Square Root monadic %:

rotating arrays

Same monadic [

Same monadic]

scalar numeric functions

scalar numeric functions

scalar product of vectors

infix scan

prefix scan

suffix scan

output to screen

scripts

script files

Index 606

script files described

scripts for procedures

Error handling with Nonstop Script

library scripts

loading scripts

loading a script into a locale

local definitions in scripts

local verbs in scripts

require script

startup script

selecting items from arrays

SelfClassify

SelfReference $:

Collatz sequence

Hailstone sequence

sets

set membership dyadic e.

Less, or set difference, dyadic -.

Shape dyadic $

Shape dyadic $

 607 Index

shape of array

Shape Of monadic $

ShapeOf monadic $

shifting arrays

Signum monadic *

simultaneous equations

singular matrix

building small arrays

Sort, dyadic /:

Sort, dyadic \:

sorting

Sparse Arrays

The Spread conjunction for trees

Square monadic *:

Square Root monadic %:

startup script

Stitch dyadic ,.

execute a string

suffix scan

cumulative sums and products

Index 608

Error handling with Suspended Execution

symbol datatype

saving and restoring the symbol table

symbolic arithmetic

Table adverb

building tables

tacit operators

evaluating expressions for tacit verbs

generating tacit verbs from explicit

operators generating tacit verbs

Tail monadic {:

Take dyadic {.

Tally

Tally monadic #

text

text files

cutting text into lines

Tie conjunction

tiling

 609 Index

Times dyadic *

measuring execution time

tolerant comparison of floating point
numbers

trains of verbs

trains of verbs

generating trains of verbs

transposition of matrix

Trees

tree representation

Fetch data from tree

Height of tree

L. verb for path-length of tree

Map of tree structure

Path of indexes within tree

The Level conjunction for trees

The Spread conjunction for trees

Trigonometric functions

Error handling with Try and Catch

type conversions of data

Index 610

type of a noun

boxing and unboxing arrays

Under conjunction

Under conjunction &.

gerund with user-defined operator

UTF-8 encoding of*Unicode
characters

value

functions as values

variables and assignments

local variables

local and global variables

mapped variables

names for variables

vectors and matrices

scalar product of vectors

verbs

ambivalent verbs

 611 Index

composing verbs

conditional verbs

evaluating expressions for tacit verbs

explicit verbs

generating tacit verbs from explicit

generating trains of verbs

iterative verbs

local verbs in scripts

operators generating tacit verbs

operators generating explicit verbs

recursive verbs

trains of verbs

trains of verbs

while control structure

iterating while

word formation

reading and writing files

Index 612

Table of Contents

file:///C:/Users/homer/14/book.htm#toc

 613 Index

	
	An Introduction to the J Programming Language
	Roger Stokes
	ABOUT THIS BOOK
	TABLE OF CONTENTS
	Part 1: Getting Acquainted
	Part 2: Arrays
	Part 3: Defining Functions: Verbs
	Part 4: Defining Functions: Operators
	Part 5: Structural Functions
	Part 6: Numerical and Mathematical Functions
	Part 7: Names and Objects
	Part 8: Facilities
	Appendices
	Acknowledgements

	Chapter 1: Basics
	1.1 Interactive Use
	1.2 Arithmetic
	1.3 Some Terminology: Function, Argument, Application, Value
	1.4 List Values
	1.5 Parentheses
	1.6 Variables and Assignments
	1.7 Terminology: Monads and Dyads
	1.8 More Built-In Functions
	1.9 Side By Side Displays
	1.10 Comments
	1.11 Naming Scheme for Built-In Functions

	Chapter 2: Lists and Tables
	2.1 Tables
	2.2 Arrays
	2.3 Terminology: Rank and Shape
	2.4 Arrays of Characters
	2.5 Some Functions for Arrays
	2.5.1 Joining
	2.5.2 Items
	2.5.3 Selecting
	2.5.4 Equality and Matching

	2.6 Arrays of Boxes
	2.6.1 Linking
	2.6.2 Boxing and Unboxing

	2.7 Summary

	Chapter 3: Defining Functions
	3.1 Renaming
	3.2 Inserting
	3.3 Terminology: Verbs, Operators and Adverbs
	3.4 Commuting
	3.5 Bonding
	3.6 Terminology: Conjunctions and Nouns
	3.7 Composition of Functions
	3.8 Trains of Verbs
	3.8.1 Hooks
	3.8.2 Forks

	3.9 Putting Things Together

	Chapter 4: Scripts and Explicit Functions
	4.1 Text
	4.2 Scripts for Procedures
	4.3 Explicitly-Defined Functions
	4.3.1 Heading
	4.3.2 Meaning
	4.3.3 Argument Variable(s)
	4.3.4 Local Variables
	4.3.5 Dyadic Verbs
	4.3.6 One-Liners
	4.3.7 Control Structures

	4.4 Tacit and Explicit Compared
	4.5 Functions as Values
	4.6 Script Files

	Chapter 5: Building Arrays
	5.1 Building Arrays by Shaping Lists
	5.1.1 Review
	5.1.2 Empty Arrays
	5.1.3 Building a Scalar
	5.1.4 Shape More Generally

	5.2 Appending, or Joining End-to-End
	5.2.1 Bringing To Same Rank
	5.2.2 Padding To Length
	5.2.3 Replicating Scalars

	5.3 Stitching, or Joining Side-to-Side
	5.4 Laminating, or Joining Face-to-Face
	5.5 Linking
	5.6 Unbuilding Arrays
	5.6.1 Razing
	5.6.2 Ravelling
	5.6.3 Ravelling Items
	5.6.4 Itemizing

	5.7 Arrays Large and Small

	Chapter 6: Indexing
	6.1 Selecting
	6.1.1 Common Patterns of Selection.
	6.1.2 Take, Drop, Head, Behead, Tail, Curtail

	6.2 General Treatment of Selection
	6.2.1 Independent Selections
	6.2.2 Shape of Index
	6.2.3 Scalars
	6.2.4 Selections on One Axis
	6.2.5 Excluding Things
	6.2.6 Simplifications
	6.2.7 Shape of the Result

	6.3 Amending (or Updating) Arrays
	6.3.1 Amending with an Index
	6.3.2 Amending with a Verb
	6.3.3 Linear Indices

	6.4 Tree Indexing

	Chapter 7: Ranks
	7.1 The Rank Conjunction
	7.1.1 Monadic Verbs
	7.1.2 Dyadic Verbs

	7.2 Intrinsic Ranks
	7.3 Frames
	7.3.1 Agreement

	7.4 Reassembly of Results
	7.5 More on the Rank Conjunction
	7.5.1 Relative Cell Rank
	7.5.2 User-Defined Verbs

	Chapter 8: Composing Verbs
	8.1 Composition of Monad and Monad
	8.2 Composition: Monad And Dyad
	8.3 Composition: Dyad And Monad
	8.4 Ambivalent Compositions
	8.5 More on Composition: Monad Tracking Monad
	8.6 Composition: Monad Tracking Dyad
	8.7 Composition: Dyad Tracking Monad
	8.8 Ambivalence Again
	8.9 Summary
	8.10 Inverses
	8.11 Composition: Verb Under Verb

	Chapter 9: Trains of Verbs
	9.1 Review: Monadic Hooks and Forks
	9.2 Dyadic Hooks
	9.3 Dyadic Forks
	9.4 Review
	9.5 Longer Trains
	9.6 Identity Functions
	9.6.1 Example: Hook as Abbreviation
	9.6.2 Example: Left Hook
	9.6.3 Example: Dyad

	9.7 The Capped Fork
	9.8 Constant Functions
	9.9 Constant Functions with the Rank Conjunction
	9.9.1 A Special Case

	Chapter 10: Conditional and Other Forms
	10.1 Conditional Forms
	10.1.1 Example with 3 Cases

	10.2 Recursion
	10.2.1 Ackermann's Function

	10.3 Iteration
	10.3.1 The Power Conjunction
	10.3.2 Iterating Until No Change
	10.3.3 Iterating While
	10.3.4 Iterating A Dyadic Verb

	10.4 Generating Tacit Verbs from Explicit

	Chapter 11: Tacit Verbs Concluded
	11.1 If In Doubt, Parenthesize
	11.2 Names of Nouns Are Evaluated
	11.3 Names of Verb Are Not Evaluated
	11.4 Unknowns are Verbs
	11.5 Parametric Functions

	Chapter 12: Explicit Verbs
	12.1 The Explicit Definition Conjunction
	12.1.1 Type
	12.1.2 Memnonics for Types
	12.1.3 Body Styles
	12.1.4 Ambivalent Verbs

	12.2 Assignments
	12.2.1 Local and Global Variables
	12.2.2 Local Functions
	12.2.3 Multiple and Indirect Assignments
	12.2.4 Unpacking the Arguments

	12.3 Control Structures
	12.3.1 Review
	12.3.2 Layout
	12.3.3 Expressions versus Control Structures
	12.3.4 Blocks
	12.3.5 Variants of if.
	12.3.6 The select. Control Structure
	12.3.7 The while. and whilst. Control Structures
	12.3.8 for.
	12.3.9 Other Control Structures

	Chapter 13: Explicit Operators
	13.1 Operators Generating Tacit Verbs
	13.1.1 Multiline Bodies

	13.2 New Definitions from Old
	13.3 Operators Generating Explicit Verbs
	13.3.1 Adverb Generating Monad
	13.3.2 Adverb Generating Explicit Dyad
	13.3.3 Conjunction Generating Explicit Monad
	13.3.4 Generating a Explicit Dyad
	13.3.5 Alternative Names for Argument-Variables
	13.3.6 Review
	13.3.7 Executing the Body (Or Not)

	13.4 Operators Generating Nouns
	13.5 Generating Noun or Verb
	13.6 Operators Generating Operators

	Chapter 14: Gerunds
	14.1 Making Gerunds: The Tie Conjunction
	14.2 Recovering the Verbs from a Gerund
	14.3 Gerunds As Arguments to Built-In Operators
	14.3.1 Gerund as Argument to APPEND Adverb
	14.3.2 Gerund as Argument to Agenda Conjunction
	14.3.3 Gerund as Argument to Insert
	14.3.4 Gerund as argument to POWER conjunction
	14.3.5 Gerund as Argument to Amend

	14.4 Gerunds as Arguments to User-Defined Operators
	14.4.1 The Abelson and Sussman Accumulator

	Chapter 15: Tacit Operators
	15.1 Introduction
	15.2 Adverbs from Conjunctions
	15.3 Compositions of Adverbs
	15.3.1 Example: Cumulative Sums and Products
	15.3.2 Generating Trains
	15.3.3 Rewriting

	Chapter 16: Rearrangements
	16.1 Permutations
	16.1.1 Abbreviated Permutations
	16.1.2 Inverse Permutation
	16.1.3 Atomic Representations of Permutations

	16.2 Sorting
	16.2.1 Predefined Collating Sequences
	16.2.2 User-Defined Collating Sequences

	16.3 Transpositions
	16.4 Reversing, Rotating and Shifting
	16.4.1 Reversing
	16.4.2 Rotating
	16.4.3 Shifting

	Chapter 17: Patterns of Application
	17.1 Scanning
	17.1.1 Prefix Scanning
	17.1.2 Infix Scanning
	17.1.3 Suffix Scanning
	17.1.4 Outfix

	17.2 Cutting
	17.2.1 Reversing
	17.2.2 Blocking
	17.2.3 Fretting
	17.2.4 Punctuation
	17.2.5 Word Formation
	17.2.6 Lines in Files
	17.2.7 Tiling

	Chapter 18: Sets, Classes and Relations
	18.1 Sets
	18.1.1 Membership
	18.1.2 Less
	18.1.3 Nub
	18.1.4 Nub Sieve
	18.1.5 Functions for Sets

	18.2 The Table Adverb
	18.3 Classes
	18.3.1 Self-Classify
	18.3.2 Classification Schemes
	18.3.3 The Key Adverb
	18.3.4 Letter-Counts Revisited

	18.4 Relations
	18.4.1 Join of Relations
	18.4.2 What are Symbols?
	18.4.3 Measurements Compared
	18.4.4 Saving and Restoring the Symbol Table

	Chapter 19: Numbers
	19.1 Numbers of Six Different Kinds
	19.1.1 Booleans
	19.1.2 Integers
	19.1.3 Bitwise Logical Functions on Integers
	19.1.4 Floating-Point Numbers
	19.1.5 Scientific Notation
	19.1.6 Comparison of Floating-Point Numbers
	19.1.7 Complex Numbers
	19.1.8 Extended Integers
	19.1.9 Rational Numbers
	19.1.10 Type Conversion

	19.2 Special Numbers
	19.2.1 "Infinity"
	19.2.2 "Indeterminate" Numbers

	19.3 Number Bases
	19.4 Notations for Numerals
	19.4.1 Combining the Notations

	19.5 How Numbers are Displayed
	19.5.1 The "Format" Verb

	19.6 Random Numbers
	19.6.1 Roll
	19.6.2 Uniform Distribution
	19.6.3 Other Distributions
	19.6.4 Deal

	Chapter 20: Scalar Numerical Functions
	20.1 Plus and Conjugate
	20.2 Minus and Negate
	20.3 Increment and Decrement
	20.4 Times and Signum
	20.5 Division and Reciprocal
	20.6 Double and Halve
	20.7 Floor and Ceiling
	20.8 Power and Exponential
	20.9 Square
	20.10 Square Root
	20.11 Root
	20.12 Logarithm and Natural Logarithm
	20.13 Factorial and OutOf
	20.14 Magnitude and Residue
	20.15 GCD and LCM
	20.16 Pi Times
	20.17 Trigonometric and Other Functions
	20.18 Pythagorean Functions

	Chapter 21: Factors and Polynomials
	21.1 Primes and Factors
	21.2 Polynomials
	21.2.1 Coefficients
	21.2.2 Roots
	21.2.3 Multiplier and Roots
	21.2.4 Multinomials

	Chapter 22: Vectors and Matrices
	22.1 The Dot Product Conjunction
	22.2 Scalar Product of Vectors
	22.3 Matrix Product
	22.4 Generalizations
	22.4.1 Various Verbs
	22.4.2 Symbolic Arithmetic
	22.4.3 Matrix Product in More than 2 Dimensions
	22.4.4 Dot Compared With @:

	22.5 Determinant
	22.5.1 Singular Matrices

	22.6 Matrix Divide
	22.6.1 Simultaneous Equations
	22.6.2 Complex, Rational and Vector Variables
	22.6.3 Curve Fitting
	22.6.4 Dividing by Higher-Rank Arrays

	22.7 Identity Matrix
	22.8 Matrix Inverse

	Chapter 23: Calculus
	23.1 Differentiation
	23.2 Integration
	23.3 The Domain of d.
	23.4 The Conjunction D.
	23.4.1 The Domain of D.
	23.4.2 Partial Derivatives with D.

	23.5 Numerical Integration

	Chapter 24: Names and Locales
	24.1 Background
	24.2 What are Locales?
	24.3 Example
	24.3.1 Review

	24.4 The Current Locale
	24.5 The z Locale Is Special
	24.6 Locative Names and the Evaluation of Expressions
	24.6.1 Assignments
	24.6.2 Evaluating Names
	24.6.3 Applying Verbs
	24.6.4 Applying Adverbs

	24.7 Paths
	24.8 Combining Locatives and Paths
	24.9 Indirect Locatives
	24.10 Erasing Names from Locales

	Chapter 25: Object-Oriented Programming
	25.1 Background and Terminology
	25.2 Defining a Class
	25.2.1 Introducing the Class
	25.2.2 Defining the Methods

	25.3 Making New Objects
	25.3.1 Dyadic Conew

	25.4 Listing the Classes and Objects
	25.5 Inheritance
	25.5.1 A Matter of Principle

	25.6 Using Inherited Methods
	25.6.1 First Question
	25.6.2 Second Question
	25.6.3 Third Question

	25.7 Library Verbs

	Chapter 26: Script Files
	26.1 Creating Scripts
	26.2 Loading Scripts
	26.3 The load Verb
	26.4 Local Definitions in Scripts
	26.4.1 Local Verbs in Scripts

	26.5 Loading Into Locales
	26.6 Repeated Loading, and How to Avoid It
	26.7 Load Status
	26.8 Library Scripts
	26.8.1 The Standard Library
	26.8.2 The J Application Library

	26.9 User-Defined Startup Script

	Chapter 27: Representations and Conversions
	27.1 Classes and Types
	27.1.1 Classes
	27.1.2 Types

	27.2 Execute
	27.3 On-Screen Representations
	27.3.1 Linear Representation
	27.3.2 Parenthesized
	27.3.3 Tree Representation
	27.3.4 Atomic Representation

	27.4 Representation Functions
	27.4.1 Atomic Representation
	27.4.2 Inverse of Atomic Representation
	27.4.3 Execute Revisited
	27.4.4 The Tie Conjunction Revisited

	27.5 Conversions for Binary Data
	27.6 Unicode

	Chapter 28: Data Files
	28.1 Reading and Writing Files
	28.1.1 Built-in Verbs
	28.1.2 Screen and Keyboard As Files
	28.1.3 Library Verbs

	28.2 Large Files
	28.3 Data Formats
	28.3.1 The Binary Representation for J-0nly Files
	28.3.2 Text Files
	28.3.3 Fixed Length Records with Binary Data

	28.4 Mapped Files
	28.4.1 Library Script for Mapped Files
	28.4.2 jmf Files and Persistent Variables
	28.4.3 Mapped Files are of Fixed Size
	28.4.4 Given Files
	28.4.5 Mapped Variables Are Special
	28.4.6 Unmapping Revisited

	Chapter 29: Error Handling
	29.1 Assertions
	29.1.1 Assertions and the Tacit Style
	29.1.2 Enabling and Disabling Assertions

	29.2 Continuing after Failure
	29.2.1 Nonstop Script
	29.2.2 Try and Catch Control Structure
	29.2.3 Adverse Conjunction

	29.3 Suspended Execution
	29.4 Programmed Error Handling

	Chapter 30: Sparse Arrays
	30.1 Introduction
	30.2 Sparse Array is Compact
	30.3 Inspecting A Sparse Array
	30.4 Computing with Sparse Arrays
	30.5 Constructing A Sparse Array
	30.6 Sparse and Dense Axes
	30.7 Deconstructing a Sparse Array
	30.8 Sparse Array From Relation
	30.9 Relation from Sparse Array

	Chapter 31: Performance
	31.1 Measuring the Time Taken
	31.2 The Performance Monitor
	31.3 The Golden Rule: Example 1
	31.4 Golden Rule Example 2: Conway's "Life"
	31.5 Golden Rule Example 3: Join of Relations
	31.5.1 Preliminaries
	31.5.2 First Method
	31.5.3 Second Method: Boolean Matrix
	31.5.4 Third method: boolean matrix with recursive splitting

	31.6 Golden Rule Example 4: Mandelbrot Set
	31.6.1 Scalar Versions
	31.6.2 Planar Version

	31.7 The Special Code of Appendix B of the Dictionary

	Chapter 32: Trees
	32.1 Introduction
	32.2 Fetching
	32.3 The Domain of Fetch
	32.4 The "Map" Verb
	32.5 What is the Height of This Tree?
	32.6 Levels and the L: Conjunction
	32.7 The Spread Conjunction
	32.8 Trees with Varying Path-lengths
	32.9 L. Revisited

	Appendix 1: Evaluating Expressions
	A1.1 Introduction
	A1.2 First Example
	A1.3 Parsing Rules
	A1.3.1 Monad Rule
	A1.3.2 Second Monad Rule
	A1.3.3 Dyad Rule
	A1.3.4 Adverb Rule
	A1.3.5 Conjunction Rule
	A1.3.6 Trident Rule
	A1.3.7 Bident Rule
	A1.3.8 Assignment Rule
	A1.3.9 Parenthesis Rule
	A1.3.10 Examples of Transfer
	A1.3.11 Review of Parsing Rules

	A1.4 Effects of Parsing Rules
	A1.4.1 Dyad Has Long Right Scope
	A1.4.2 Operators Before Verbs
	A1.4.3 Operators Have Long Left Scope
	A1.4.4 Train on the Left
	A1.4.5 Presumption of Verb

	Appendix 2: Collected Terminology
	Index

