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ABOUT THIS BOOK
This book is meant to help the reader to learn the computer-
programming language J. 

My hope is that the book will be useful to a wide readership. Care 
is taken to introduce only one new idea at a time, to provide 
examples at every step, and to make the examples very simple. 
Even so, the experienced programmer will find much to appreciate 
in the radical simplicity and power of the J notation. 

The scope of this book is the core J language defined in the J 
Dictionary. The coverage of the core language is meant to be 
relatively complete, covering (eventually) most of the Dictionary. 

Hence the book does not cover topics such as graphics, plotting, 
GUI, and database covered in the J User Guide, nor does it cover 
the J Application Library . I should make clear what the aims of the 
book are not: neither to teach principles of programming, nor to 
study algorithms, or topics in mathematics or other subjects using 
J as a vehicle, nor to provide definitive reference material. 

The book is organized as follows. Part 1 is a basic introduction 
which touches on a variety of themes. The aim is to provide the 
reader, by the end of Part 1, with an overview and a general 
appreciation of the J language. The themes introduced in Part 1 
are then developed in more depth and detail in the remainder of 
the book. 

All the examples have been executed with J701. 

http://www.jsoftware.com/jwiki/JAL
http://www.jsoftware.com/help/user/contents.htm
http://www.jsoftware.com/help/dictionary/contents.htm
http://www.jsoftware.com/help/dictionary/contents.htm
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Chapter 1:  Basics

1.1 Interactive Use

The user types a line at the keyboard. This input line may be an 
expression, such as 2+2. When the line is entered (by pressing the 
"enter" or "carriage return" key), the value of the expression is 
computed and displayed on the next line. 

   2+2
4

The user is then prompted for another line of input. The prompt is 
seen by the cursor being positioned a few spaces from the left 
margin. Thus in this book, a line indented by a few spaces 
represents input typed by a user, and a following line, not 
indented, represents the corresponding output. 

1.2 Arithmetic

The symbol for multiplication is * (asterisk). 

   2*3
6

If we try this again, this time typing 2 space * space 3 

   2 * 3
6
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the result is the same as before, showing that the spaces here are 
optional. Spaces can make an expression more readable. 

The symbol for division is % (percent). 

   3 % 4
0.75

For subtraction, we have the familiar - symbol: 

   3 - 2
1

The next example shows how a negative number is represented. 
The negative sign is a leading _ (underscore) symbol, with no 
space between the sign and the digits of the number. This sign is 
not an arithmetic function: it is part of the notation for writing 
numbers, in the same way that a decimal point is part of the 
notation. 

   2 - 3
_1

The symbol for negation is -, the same symbol as for subtraction: 

   - 3
_3

The symbol for the power function is ^ (caret). 2 cubed is 8: 

   2 ^ 3
8

The arithmetic function to compute the square of a number has 
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the symbol *: (asterisk colon). 

   *: 4
16

1.3 Some Terminology: Function, Argument, 
Application, Value

Consider an expression such as 2 * 3. We say that the 
multiplication function * is applied to its arguments. The left 
argument is 2 and the right argument is 3. Also, 2 and 3 are said 
to be the values of the arguments. 

1.4 List Values

Sometimes we may wish to repeat the same computation several 
times for several different numbers. A list of numbers can be given 
as 1 2 3 4, for example, written with a space between each 
number and the next. To find the square of each number in this list 
we could say: 

   *: 1 2 3 4
1 4 9 16

Here we see that the "Square" function (*:) applies separately to 
each item in the list. If a function such as + is given two list 
arguments, the function applies separately to pairs of 
corresponding items: 

   1 2 3 + 10 20 30
11 22 33
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If one argument is a list and the other a single item, the single 
item is replicated as needed: 

   1 + 10 20 30
11 21 31
      
   1 2 3 + 10
11 12 13

Sometimes it is helpful, when we are looking at a new function, to 
see how a pattern in a list of arguments gives rise to a pattern in 
the list of results. 

For example, when 7 is divided by 2 we can say that the quotient 
is 3 and the remainder is 1. A built-in J function to compute 
remainders is | (vertical bar), called the "Residue" function. 
Patterns in arguments and results are shown by: 

   2 | 0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1
      
   3 | 0 1 2 3 4 5 6 7
0 1 2 0 1 2 0 1

The Residue function is like the familiar "mod" or "modulo" 
function, except that we write (2 | 7) rather than (7 mod 2) 

1.5 Parentheses

An expression can contain parentheses, with the usual meaning; 
what is inside parentheses is, in effect, a separate little 
computation. 

   (2+1)*(2+2)
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12

Parentheses are not always needed, however. Consider the J 
expression: 3*2+1. Does it mean (3*2)+1, that is, 7, or does it 
mean 3*(2+1) that is, 9 ? 

   3 * 2 + 1
9

In school mathematics we learn a convention, or rule, for writing 
expressions: multiplication is to be done before addition. The point 
of this rule is that it reduces the number of parentheses we need 
to write. 

There is in J no rule such as multiplication before addition. We can 
always write parentheses if we need to. However, there is in J a 
parenthesis-saving rule, as the example of 3*2+1 above shows. 
The rule, is that, in the absence of parentheses, the right 
argument of an arithmetic function is everything to the right. Thus 
in the case of 3*2+1, the right argument of * is 2+1. Here is 
another example: 

   1 + 3 % 4 
1.75

We can see that % is applied before +, that is, the rightmost 
function is applied first. 

This "rightmost first" rule is different from, but plays the same role 
as, the common convention of "multiplication before addition". It is 
merely a convenience: you can ignore it and write parentheses 
instead. Its advantage is that there are, in J, many (something like 
100) functions for computation with numbers and it would be out 
of the question to try to remember which function should be 
applied before which. 
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In this book, I will on occasion show you an expression having 
some parentheses which, by the "rightmost first" rule, would not 
be needed. The aim in doing this is to emphasize the structure of 
the expression, by setting off parts of it, so as to make it more 
readable. 

1.6 Variables and Assignments

The English-language expression: 

let x be 100 can be rendered in J as: 

   x =: 100

This expression, called an assignment, causes the value 100 to be 
assigned to the name x. We say that a variable called x is created 
and takes on the value 100. When a line of input containing only 
an assignment is entered at the computer, then nothing is 
displayed in response. 

A name with an assigned value can be used wherever the value is 
wanted in following computations. 

   x - 1
99

The value in an assignment can itself be computed by an 
expression: 

      y =: x - 1

Thus the variable y is used to remember the results of the 
computation x-1 . To see what value has been assigned to a 
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variable, enter just the name of the variable. This is an expression 
like any other, of a particularly simple form: 

   y
99

Assignments can be made repeatedly to the same variable; the 
new value supersedes the current value: 

   z =: 6
   z =: 8
   z
8

The value of a variable can be used in computing a new value for 
the same variable: 

   z =: z + 1
   z
9

It was said above that a value is not displayed when a line 
consisting of an assignment is entered. Nevertheless, an 
assignment is an expression: it does have a value which can take 
part in a larger expression. 

   1 + (u =: 99)
100
   u
99

Here are some examples of assignments to show how we may 
choose names for variables: 

   x                       =: 0
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   X                       =: 1
   K9                      =: 2
   finaltotal              =: 3
   FinalTotal              =: 4
   average_annual_rainfall =: 5

Each name must begin with a letter. It may contain only letters 
(upper-case or lower-case), numeric digits (0-9) or the underscore 
character (_). Note that upper-case and lower-case letters are 
distinct; x and X are the names of distinct variables: 

   x
0
   X
1

1.7 Terminology: Monads and Dyads

A function taking a single argument on the right is called a 
monadic function, or a monad for short. An example is "Square", 
(*:). A function taking two arguments, one on the left and one on 
the right, is called a dyadic function or dyad. An example is + . 

Subtraction and negation provide an example of the same symbol 
(-) denoting two different functions. In other words, we can say 
that - has a monadic case (negation) and a dyadic case 
(subtraction). Nearly all the built-in functions of J have both a 
monadic and a dyadic case. For another example, recall that the 
division function is %, or as we now say, the dyadic case of % . The 
monadic case of % is the reciprocal function. 

   % 4
0.25
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1.8 More Built-In Functions

The aim in this section is convey a little of the flavour of 
programming in J by looking at a small further selection of the 
many built-in functions which J offers. 

Consider the English-language expression: add together the 
numbers 2, 3, and 4, or more briefly: 

add together 2 3 4 

We expect a result of 9. This expression is rendered in J as: 

   + / 2 3 4
9

Comparing the English and the J, "add" is conveyed by the + and 
"together" is conveyed by the / . Similarly, the expression: 

multiply together 2 3 4 

should give a result of 24. This expression is rendered in J as 

   * / 2 3 4
24

We see that +/2 3 4 means 2+3+4 and */2 3 4 means 2*3*4. The 
symbol / is called "Insert", because in effect it inserts whatever 
function is on its left between each item of the list on its right. The 
general scheme is that if F is any dyadic function and L is a list of 
numbers a, b, c, .... y, z then: 

         F / L     means    a F b F .... F y F z 
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Moving on to further functions, consider these three propositions: 

2 is larger than 
1

(which is clearly 
true)

2 is equal to 1 (which is false)

2 is less than 1 (which is false)
In J, "true" is represented by the number 1 and and "false" by the 
number 0. The three propositions are rendered in J as: 

   2 > 1
1
   
   2 = 1
0
   
   2 < 1
0

If x is a list of numbers, for example: 

   x =: 5 4 1 9

we can ask: which numbers in x are greater than 2? 

   x > 2
1 1 0 1

Evidently, the first, second and last, as reported by the 1's in the 
result of x > 2. Is it the case that all numbers in x are greater 
than 2? 

   * / x > 2
0
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No, because we saw that x>2 is 1 1 0 1. The presence of any zero 
("false") means the the multiplication (here 1*1*0*1) cannot 
produce 1. 

How many items of x are greater than 2? We add together the 1's 
in x>2: 

   + / x > 2
3

How many numbers are there altogether in x? We could add 
together the 1's in x=x. 

   x
5 4 1 9
   
   x = x
1 1 1 1
   
   +/ x = x
4

but there is a built-in function # (called "Tally") which gives the 
length of a list: 

   # x
4

1.9 Side By Side Displays

When we are typing J expressions into the computer, expressions 
and results follow each other down the screen. Let me show you 
the last few lines again: 
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   x
5 4 1 9
   x = x
1 1 1 1
   +/ x = x
4
   # x
4

Now, sometimes in this book I would like to show you a few lines 
such as these, not one below the other but side by side across the 
page, like this: 

x x = x +/ x = x # x

5 4 1 9 1 1 1 1 4 4

 

This means: at this stage of the proceedings, if you type in the 
expression x you should see the response 5 4 1 9. If you now 
type in x = x you should see 1 1 1 1, and so on. Side-by-side 
displays are not a feature of the J system, but merely figures, or 
illustrations, in this book. They show expressions in the first row, 
and corresponding values below them in the second row. 

When you type in an assignment (x=:something), the J system 
does not show the value. Nevertheless, an assignment is an 
expression and has a value. Now and again it might be helpful to 
see, or to be reminded of, the values of our assignments, so I will 
often show them in these side-by-side displays. To illustrate: 

x =: 1 + 2 3 4 x = x +/ x = x # x

3 4 5 1 1 1 3 3
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Returning now to the built-in functions, suppose we have a list. 
Then we can choose items from it by taking them in turn and 
saying "yes, yes, no, yes, no" for example. Our sequence of 
choices can be represented as 1 1 0 1 0. Such a list of 0's and 1's 
is called a bit-string (or sometimes bit-list or bit-vector). There is a 
function, dyadic #, which can take a bit-string (a sequence of 
choices) as left argument to select chosen items from the right 
argument. 

y =: 6 7 8 9 10 1 1 0 1 0 # y

6 7 8 9 10 6 7 9

 

We can select from y just those items which satisfy some 
condition, such as: those which are greater than 7 

y y > 7 (y > 7) # y

6 7 8 9 10 0 0 1 1 1 8 9 10

 

1.10 Comments

In a line of J, the symbol NB. (capital N, capital B dot) introduces a 
comment. Anything following NB. to the end of the line is not 
evaluated. For example 

   NB.   this is a whole line of annotation
   
   6 + 6   NB. ought to produce 12



 19 Chapter 1:  Basics

12

1.11 Naming Scheme for Built-In Functions

Each built-in function of J has an informal and a formal name. For 
example, the function with the formal name + has the informal 
name of "Plus". Further, we have seen that there may be monadic 
and dyadic cases , so that the formal name - corresponds to the 
informal names "Negate" and "Minus". 

The informal names are, in effect, short descriptions, usually one 
word. They are not recognised by the J software, that is, 
expressions in J use always the formal names. In this book, the 
informal names will be quoted, thus: "Minus". 

Nearly all the built-in functions of J have formal names with one 
character or two characters. Examples are the * and *: functions. 
The second character is always either : (colon) or . (dot, full stop, 
or period). 

A two-character name is meant to suggest some relationship to a 
basic one-character function. Thus "Square" (*:) is related to 
"Times" (*). 

Hence the built-in J functions tend to come in families of up to 6 
related functions. There are the monadic and dyadic cases, and for 
each case there are the basic, the colon and dot variants. This will 
be illustrated for the > family. 

Dyadic > we have already met as "Larger Than". 

Monadic > we will come back to later. 
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Monadic >. rounds its argument up to an integer. Note that 
rounding is always upwards as opposed to rounding to the nearest 
integer. Hence the name: "Ceiling" 

   >. _1.7 1 1.7
_1 1 2

Dyadic >. selects the larger of its two arguments 

   3 >. 1 3 5 
3 3 5

We can find the largest number in a list by inserting "Larger Of" 
between the items, using /. For example, the largest number in 
the list 1 6 5 is found by evaluating (>. / 1 6 5). The next few 
lines are meant to convince you that this should give 6. The 
comments show why each line should give the same result as the 
previous. 

   >. / 1 6 5
6
   1 >. 6 >. 5      NB. by the meaning of /
6
   1 >. (6 >. 5)    NB. by rightmost-first rule
6
   1 >. (6)         NB. by the meaning of >.
6
   1 >. 6           NB. by the meaning of ()
6
   6                NB. by the meaning of >.
6
   

Monadic >: is informally called "Increment". It adds 1 to its 
argument: 
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   >: _2 3 5 6.3
_1 4 6 7.3

Dyadic >: is "Larger or Equal" 

   3 >: 1 3 5 
1 1 0
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Chapter 2: Lists and Tables

Computations need data. So far we have seen data only as single 
numbers or lists of numbers. We can have other things by way of 
data, such as tables for example. Things like lists and tables are 
called "arrays". 

2.1 Tables

A table with, say, 2 rows and 3 columns can be built with the $ 
function: 

   table =: 2 3   $   5 6 7  8 9 10
   table
5 6  7
8 9 10

The scheme here is that the expression (x $ y) builds a table. 
The dimensions of the table are given by the list x which is of the 
form number-of-rows followed by number-of-columns. The 
elements of the table are supplied by the list y. 

Items from y are taken in order, so as to fill the first row, then the 
second, and so on. The list y must contain at least one item. If 
there are too few items in y to fill the whole table, then y is re-
used from the beginning. 
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2 4 $ 5 6 7 8 9 2 2 $ 1

5 6 7 8
9 5 6 7

1 1
1 1

 

The $ function offers one way to build tables, but there are many 
more ways: see Chapter 05. 

Functions can be applied to whole tables exactly as we saw earlier 
for lists: 

table 10 * table table + table

5 6  7
8 9 10

50 60  70
80 90 100

10 12 14
16 18 20

 

One argument can be a table and one a list: 

table 0 1 * table

5 6  7
8 9 10

0 0  0
8 9 10

 

In this last example, evidently the items of the list 0 1 are 
automatically matched against the rows of the table, 0 matching 
the first row and 1 the second. Other patterns of matching the 
arguments against each other are also possible - see Chapter 07. 
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2.2 Arrays

A table is said to have two dimensions (namely, rows and columns) 
and in this sense a list can be said to have only one dimension. 

We can have table-like data objects with more than two 
dimensions. The left argument of the $ function can be a list of any 
number of dimensions. The word "array" is used as the general 
name for a data object with some number of dimensions. Here are 
some arrays with one, two and three dimensions: 

3 $ 1 2 3 $ 5 6 7 2 2 3 $ 5 6 7 8

1 1 1 5 6 7
5 6 7

5 6 7
8 5 6

7 8 5
6 7 8

 

The 3-dimensional array in the last example is said to have 2 
planes, 2 rows and 3 columns and the two planes are displayed 
one below the other. 

Recall that the monadic function # gives the length of a list. 

# 6 7 # 6 7 8

2 3

 

The monadic function $ gives the list-of-dimensions of its 
argument: 
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L =: 5 6 7 $ L T =: 2 3 $ 1 $ T

5 6 7 3 1 1 1
1 1 1

2 3

 

Hence, if x is an array, the expression (# $ x) yields the length of 
the list-of-dimensions of x, that is, the dimension-count of x, which 
is 1 for a list, 2 for a table and so on. 

L $ L # $ L T $T # $ T

5 6 7 3 1 1 1 1
1 1 1

2 3 2

 

If we take x to be a single number, then the expression (# $ x) 
gives zero. 

   # $ 17
0

We interpret this to mean that, while a table has two dimensions, 
and a list has one, a single number has none, because its 
dimension-count is zero. A data object with a dimension-count of 
zero will be called a scalar. We said that "arrays" are data objects 
with some number of dimensions, and so scalars are also arrays, 
the number of dimensions being zero in this case. 

We saw that (# $ 17) is 0. We can also conclude from this that, 
since a scalar has no dimensions, its list-of-dimensions (given here 
by $ 17) must be a zero-length, or empty, list. Now a list of length 
2, say can be generated by an expression such as 2 $ 99 and so 
an empty list, of length zero, can be generated by 0 $ 99 (or 
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indeed, 0 $ any number) 

The value of an empty list is displayed as nothing: 

2 $ 99 0 $ 99 $ 17

99 99   

 

Notice that a scalar, (17 say), is not the same thing as a list of 
length one (e.g. 1 $ 17), or a table with one row and one column 
(e.g. 1 1 $ 17). The scalar has no dimensions, the list has one, 
the table has two, but all three look the same when displayed on 
the screen: 

   S =: 17
   L =: 1 $ 17
   T =: 1 1 $ 17

S L T # $ 
S

# $ 
L

# $ T

17 1
7

1
7

0 1 2

 

A table may have only one column, and yet still be a 2-dimensional 
table. Here t has 3 rows and 1 column. 

t =: 3 1 $ 5 6 7 $ t # $ t

5
6
7

3 1 2
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2.3 Terminology: Rank and Shape

The property we called "dimension-count" is in J called by the 
shorter name of of "rank", so a single number is a said to be a 
rank-0 array, a list of numbers a rank-1 array and so on. The list-
of-dimensions of an array is called its "shape". 

The mathematical terms "vector" and "matrix" correspond to what 
we have called "lists" and "tables" (of numbers). An array with 3 or 
more dimensions (or, as we now say, an array of rank 3 or higher) 
will be called a "report". 

A summary of terms and functions for describing arrays is shown 
in the following table. 

+--------+--------+-----------+------+
|        | Example| Shape     | Rank |
+--------+--------+-----------+------+
|        | x      | $ x       | # $ x|
+--------+--------+-----------+------+
| Scalar | 6      | empty list| 0    |
+--------+--------+-----------+------+
| List   | 4 5 6  | 3         | 1    |
+--------+--------+-----------+------+
| Table  |0 1 2   | 2 3       | 2    |
|        |3 4 5   |           |      |
+--------+--------+-----------+------+
| Report |0  1  2 | 2 2 3     | 3    |
|        |3  4  5 |           |      |
|        |        |           |      |
|        |6  7  8 |           |      |
|        |9 10 11 |           |      |
+--------+--------+-----------+------+
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This table above was in fact produced by a small J program, and is 
a genuine "table", of the kind we have just been discussing. Its 
shape is 6 4. However, it is evidently not just a table of numbers, 
since it contains words, list of numbers and so on. We now look at 
arrays of things other than numbers. 

2.4 Arrays of Characters

Characters are letters of the alphabet, punctuation, numeric digits 
and so on. We can have arrays of characters just as we have 
arrays of numbers. A list of characters is entered between single 
quotes, but is displayed without the quotes. For example: 

   title =: 'My Ten Years in a Quandary'
   title
My Ten Years in a Quandary

A list of characters is called a character-string, or just a string. A 
single quote in a string is entered as two successive single quotes. 

   'What''s new?'
What's new?

An empty, or zero-length, string is entered as two successive 
single quotes, and displays as nothing. 

'' # '' 

 0
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2.5 Some Functions for Arrays

At this point it will be useful to look at some functions for dealing 
with arrays. J is very rich in such functions: here we look at a just 
a few. 

2.5.1 Joining
The built-in function , (comma) is called "Append". It joins things 
together to make lists. 

a =: 'rear' b =: 'ranged' a,b

rear ranged rearranged

 

The "Append" function joins lists or single items. 

x =: 1 2 3 0 , x x , 0 0 , 0 x , x 

1 2 3 0 1 2 3 1 2 3 0 0 0 1 2 3 1 2 3

 

The "Append" function can take two tables and join them together 
end-to-end to form a longer table: 

T1=: 2 3 $ 'catdog' T2=: 2 3 $ 'ratpig' T1,T2

cat
dog

rat
pig

cat
dog
rat
pig

 

For more information about "Append", see Chapter 05. 
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2.5.2 Items
The items of a list of numbers are the individual numbers, and we 
will say that the items of a table are its rows. The items of a 3-
dimensional array are its planes. In general we will say that the 
items of an array are the things which appear in sequence along its 
first dimension. An array is the list of its items. 

Recall the built-in verb # ("Tally") which gives the length of a list. 

x # x

1 2 3 3

 

In general # counts the number of items of an array, that is, it 
gives the first dimension: 

T1 $ T1 # T1

cat
dog

2 3 2

 

Evidently # T1 is the first item of the list-of-dimensions $ T1. A 
scalar, with no dimensions, is regarded as a single item: 

   # 6
1

Consider again the example of "Append" given above. 
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T1 T2 T1 , T2

cat
dog

rat
pig

cat
dog
rat
pig

 

Now we can say that in general (x , y) is a list consisting of the 
items of x followed by the items of y. 

For another example of the usefulness of "items", recall the verb 
+/ where + is inserted between items of a list. 

+/ 1 2 3 1 + 2 + 3

6 6

 

Now we can say that in general +/ inserts + between items of an 
array. In the next example the items are the rows: 

T =: 3 2 $ 1 2 3 4 5 6 +/ T 1 2 + 3 4 + 5 6

1 2
3 4
5 6

9 12 9 12

 

2.5.3 Selecting
Now we look at selecting items from a list. Positions in a list are 
numbered 0, 1, 2 and so on. The first item occupies position 0. 
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To select an item by its position we use the function { (left brace, 
called "From") . 

Y =: 'abcd' 0 { Y 1 { Y 3 { Y

abcd a b d

 

A position-number is called an index. The { function can take as 
left argument a single index or a list of indices: 

Y 0 { Y 0 1 { Y 3 0 1 { Y

abcd a ab dab

 

There is a built-in function i. (letter-i dot). The expression (i. n) 
generates n successive integers from zero. 

i. 4 i. 6 1 + i. 3

0 1 2 3 0 1 2 3 4 5 1 2 3

 

If x is a list, the expression (i. # x) generates all the possible 
indexes into the list x. 

x =: 'park' # x i. # x

park 4 0 1 2 3

 

With a list argument, i. generates an array: 
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   i. 2 3
0 1 2
3 4 5

There is a dyadic version of i., called "Index Of". The expression 
(x i. y) finds the position, that is, index, of y in x. 

   'park' i. 'k'
3

The index found is that of the first occurrence of y in x. 

   'parka' i. 'a'
1

If y is not present in x, the index found is 1 greater than the last 
possible position. 

   'park' i. 'j'
4

For more about the many variations of indexing, see Chapter 06. 

2.5.4 Equality and Matching
Suppose we wish to determine whether two arrays are the same. 
There is a built-in verb -: (minus colon, called "Match"). It tests 
whether its two arguments have the same shapes and the same 
values for corresponding elements. 

X =: 'abc' X -: X Y =: 1 2 3 4 X -: Y

abc 1 1 2 3 4 0
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Whatever the arguments, the result of Match is always a single 0 
or 1. 

Notice that an empty list of, say, characters is regarded as 
matching an empty list of numbers: 

   '' -: 0 $ 0
1

because they have the same shapes, and furthermore it is true 
that all corresponding elements have the same values, (because 
there are no such elements). 

There is another verb, = (called "Equal") which tests its arguments 
for equality. = compares its arguments element by element and 
produces an array of booleans of the same shape as the 
arguments. 

Y Y = Y Y = 2

1 2 3 4 1 1 1 1 0 1 0 0

 

Consequently, the two arguments of = must have the same 
shapes, (or at least, as in the example of Y=2, compatible shapes). 
Otherwise an error results. 

Y Y = 1 5 6 4 Y = 1 5 6

1 2 3 4 1 0 0 1 error
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2.6 Arrays of Boxes

2.6.1 Linking
There is a built-in function ; (semicolon, called "Link"). It links 
together its two arguments to form a list. The two arguments can 
be of different kinds. For example we can link together a 
character-string and a number. 

   A =: 'The answer is'  ;  42
   A
+-------------+--+
|The answer is|42|
+-------------+--+

The result A is a list of length 2, and is said to be a list of boxes. 
Inside the first box of A is the string 'The answer is'. Inside the 
second box is the number 42. A box is shown on the screen by a 
rectangle drawn round the value contained in the box. 

A 0 { A

+-------------+--+
|The answer is|42|
+-------------+--+

+-------------+
|The answer is|
+-------------+

 

A box is a scalar whatever kind of value is inside it. Hence boxes 
can be packed into regular arrays, just like numbers. Thus A is a 
list of scalars. 
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A $ A s =: 1 { A # $ s

+-------------+--+
|The answer is|42|
+-------------+--+

2 +--+
|42|
+--+

0

 

The main purpose of an array of boxes is to assemble into a single 
variable several values of possibly different kinds. For example, a 
variable which records details of a purchase (date, amount, 
description) could be built as a list of boxes: 

   P =: 18 12 1998  ;  1.99  ;  'baked beans'
   P
+----------+----+-----------+
|18 12 1998|1.99|baked beans|
+----------+----+-----------+

Note the difference between "Link" and "Append". While "Link" 
joins values of possibly different kinds, "Append" always joins 
values of the same kind. That is, the two arguments to "Append" 
must both be arrays of numbers, or both arrays of characters, or 
both arrays of boxes. Otherwise an error is signalled. 

'answer is'; 42 'answer is' , 42

+---------+--+
|answer is|42|
+---------+--+

error
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On occasion we may wish to combine a character-string with a 
number, for example to present the result of a computation 
together with some description. We could "Link" the description 
and the number, as we saw above. However a smoother 
presentation could be produced by converting the number to a 
string, and then Appending this string and the description, as 
characters. 

Converting a number to a string can be done with the built-in 
"Format" function ": (double-quote colon). In the following 
example n is a single number, while s, the formatted value of n, is 
a string of characters of length 2. 

n =: 42 s =: ": n # s 'answer is ' , s

42 42 2 answer is 42

 

For more about "Format", see Chapter 19. Now we return to the 
subject of boxes. Because boxes are shown with rectangles drawn 
round them, they lend themselves to presentation of results on-
screen in a simple table-like form. 

   p =: 4 1 $ 1 2 3 4
   q =: 4 1 $ 3 0 1 1
   
   2 3 $ ' p ' ; ' q ' ; ' p+q ' ;  p ; q ; p+q
+---+---+-----+
| p | q | p+q |
+---+---+-----+
|1  |3  |4    |
|2  |0  |2    |
|3  |1  |4    |
|4  |1  |5    |
+---+---+-----+
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2.6.2 Boxing and Unboxing
There is a built-in function < (left-angle-bracket, called "Box"). A 
single boxed value can be created by applying < to the value. 

   < 'baked beans'
+-----------+
|baked beans|
+-----------+

Although a box may contain a number, it is not itself a number. To 
perform computations on a value in a box, the box must be, so to 
speak "opened" and the value taken out. The function > (right-
angle-bracket) is called "Open". 

b =: < 1 2 3 > b

+-----+
|1 2 3|
+-----+

1 2 3

 

It may be helpful to picture < as a funnel. Flowing into the wide 
end we have data, and flowing out of the narrow end we have 
boxes which are scalars, that is, dimensionless or point-like. 
Conversely for > . Since boxes are scalars, they can be strung 
together into lists of boxes with the comma function, but the 
semicolon function is often more convenient because it combines 
the stringing-together and the boxing: 
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(< 1 1) , (< 2 2) , (< 3 3) 1 1 ; 2 2 ; 3 3

+---+---+---+
|1 1|2 2|3 3|
+---+---+---+

+---+---+---+
|1 1|2 2|3 3|
+---+---+---+

 

2.7 Summary

In conclusion, every data object in J is an array, with zero, one or 
more dimensions. An array may be an array of numbers, or an 
array of characters, or an array of boxes (and there are further 
possibilities).         
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Chapter 3: Defining Functions

J comes with a collection of functions built-in; we have seen a few, 
such as * and +. In this section we take a first look at how to put 
together these built-in functions, in various ways, for the purpose 
of defining our own functions. 

3.1 Renaming

The simplest way of defining a function is to give a name of our 
own choice to a built-in function. The definition is an assignment. 
For example, to define square to mean the same as the built-in *: 
function: 

   square =: *:
   
   square 1 2 3 4
1 4 9 16

We might choose to do this if we prefer our own name as more 
memorable. We can give two different names to the same built-in 
function, intending to use one for the monadic case and the other 
for the dyadic. 
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   Ceiling =: >.
   Max     =: >.

Ceiling 1.7 3 Max 4

2 4
 

3.2 Inserting

Recall that (+/ 2 3 4) means 2+3+4, and similarly (*/ 2 3 4) 
means 2*3*4. We can define a function and give it a name, say 
sum, with an assignment: 

   sum =: + /
   
   sum 2 3 4
9

Here, sum =: +/ shows us that +/ is by itself an expression which 
denotes a function. 

This expression +/ can be understood as: "Insert" (/) applied to 
the function + to produce a list-summing function. 

That is, / is itself a kind of function. It takes one argument, on its 
left. Both its argument and its result are functions. 
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3.3 Terminology: Verbs, Operators and Adverbs

We have seen functions of two kinds. Firstly, there are "ordinary" 
functions, such as + and *, which compute numbers from 
numbers. In J these are called "verbs". 

Secondly, we have functions, such as /, which compute functions 
from functions. Functions of this kind will be called "operators", to 
distinguish them from verbs. 

Operators which take one argument are called "adverbs". An 
adverb always takes its argument on the left. Thus we say that in 
the expression (+ /) the adverb / is applied to the verb + to 
produce a list-summing verb. 

The terminology comes from the grammar of English sentences: 
verbs act upon things and adverbs modify verbs. 

3.4 Commuting

Having seen one adverb, (/), let us look at another. The adverb ~ 
has the effect of exchanging left and right arguments. 

'a' , 'b' 'a' ,~ 'b'

ab ba

 

The scheme is that for a dyad f with arguments x and y 

             x f~ y      means    y f x

For another example, recall the residue verb | where 2 | 7 



 43 Chapter 3: Defining Functions

means, in conventional notation, "7 mod 2". We can define a mod 
verb: 

   mod =: | ~
   

7 mod 2 2 | 7

1 1

 

Let me draw some pictures. Firstly, here is a diagram of function f 
applied to an argument y to produce a result (f y). In the 
diagram the function f is drawn as a rectangle and the arrows are 
arguments flowing into, or results flowing out of, the function. 
Each arrow is labelled with an expression. 

Here is a similar diagram for a dyadic f applied to arguments x 
and y to produce (x f y). 
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Here now is a diagram for the function (f~), which can be pictured 
as containing inside itself the function f, together with a crossed 
arrangement of arrows. 
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3.5 Bonding

Suppose we wish to define a verb double such that double x 
means x * 2 . That is, double is to mean "multiply by 2". We 
define it like this: 

   double =: * & 2
   
   double 3
6

Here we take a dyad, *, and produce from it a monad by fixing one 
of the two arguments at a chosen value (in this case, 2). The & 
operator is said to form a bond between a function and a value for 
one argument. The scheme is: if f is a dyadic function, and k is a 
value for the right argument of f, then 

            (f & k) y    means    y f k  

Instead of fixing the right argument we could fix the left, so we 
also have the scheme 

            (k & f)  y   means    k f y

For example, suppose that the rate of sales tax is 10%, then a 
function to compute the tax, from the purchase-price is: 

   tax =: 0.10 & *
   
   tax 50
5

Here is a diagram illustrating function k&f. 
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3.6 Terminology: Conjunctions and Nouns

The expression (*&2) can be described by saying that the & 
operator is a function which is applied to two arguments (the verb 
* and the number 2), and the result is the "doubling" verb. 

A two-argument operator such as & is called in J a "conjunction", 
because it conjoins its two arguments. By contrast, recall that 
adverbs are operators with only one argument. 

Every function in J, whether built-in or user-defined, belongs to 
exactly one of the four classes: monadic verbs, dyadic verbs, 
adverbs or conjunctions. Here we regard an ambivalent symbol 
such as - as denoting two different verbs: monadic negation or 
dyadic subtraction. 

Every expression in J has a value of some type. All values which 
are not functions are data (in fact, arrays, as we saw in the 
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previous section). 

In J, data values, that is, arrays, are called "nouns", in accordance 
with the English-grammar analogy. We can call something a noun 
to emphasize that it's not a verb, or an array to emphasize that it 
may have several dimensions. 

3.7 Composition of Functions

Consider the English language expression: the sum of the squares 
of the numbers 1 2 3, that is, (1+4+9), or 14. Since we defined 
above verbs for sum and square, we are in a position to write the J 
expression as: 

   sum square 1 2 3
14

A single sum-of-the-squares function can be written as a 
composite of sum and square: 

   sumsq =: sum @: square
   
   sumsq 1 2 3
14

The symbol @: (at colon) is called a "composition" operator. The 
scheme is that if f and g are verbs, then for any argument y 

           (f @: g) y    means  f (g y)

Here is a diagram for the scheme: 
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At this point, the reader may be wondering why we write (f @: g) 
and not simply (f g) to denote composition. The short answer is 
that (f g) means something else, which we will come to. 

For another example of composition, a temperature in degrees 
Fahrenheit can be converted to Celsius by composing together 
functions s to subtract 32 and m tomultiply by 5%9. 

   s       =: - & 32
   m       =: * & (5%9)
   convert =: m @: s
   

s 212 m s 212 convert 212

180 100 100
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For clarity, these examples showed composition of named 
functions. We can of course compose expressions denoting 
functions: 

   conv =: (* & (5%9)) @: (- & 32) 
   conv 212
100

We can apply an expression denoting a function, without giving it a 
name: 

   (* & (5%9)) @: (- & 32)  212
100

The examples above showed composing a monad with a monad. 
The next example shows we can compose a monad with a dyad. 
The general scheme is: 

         x (f @: g) y   means    f (x g y)

For example, the total cost of an order for several items is given by 
multiplying quantities by corresponding unit prices, and then 
summing the results. To illustrate: 

   P =:  2 3        NB. prices
   Q =:  1 100      NB. quantities 
   
   total =: sum @: *
   

P Q P*Q sum P * Q P total Q

2 3 1 100 2 300 302 302

 



Chapter 3: Defining Functions  50

For more about composition, see Chapter 08. 

3.8 Trains of Verbs

Consider the expression "no pain, no gain". This is a compressed 
idiomatic form, quite comprehensible even if not grammatical in 
construction - it is not a sentence, having no main verb. J has a 
similar notion: a compressed idiomatic form, based on a scheme 
for giving meaning to short lists of functions. We look at this next. 

3.8.1 Hooks
Recall the verb tax we defined above to compute the amount of 
tax on a purchase, at a rate of 10%. The definition is repeated 
here: 

   tax =: 0.10 & *

The amount payable on a purchase is the purchase-price plus the 
computed tax. A verb to compute the amount payable can be 
written: 

   payable =: + tax

If the purchase price is, say, $50, we see: 

tax 50 50 + tax 50 payable 50

5 55 55

 

In the definition (payable =: + tax) we have a sequence of two 
verbs + followed by tax. This sequence is isolated, by being on the 
right-hand side of the assignment. Such an isolated sequence of 
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verbs is called a "train", and a train of 2 verbs is called a "hook". 

We can also form a hook just by isolating the two verbs inside 
parentheses: 

   (+ tax) 50
55

The general scheme for a hook is that if f is a dyad and g is a 
monad, then for any argument y: 

            (f g) y       means   y f (g y)

Here is a diagram for the scheme: 

For another example, recall that the "floor" verb <. computes the 
whole-number part of its argument. Then to test whether a 
number is a whole number or not, we can ask whether it is equal 
to its floor. A verb meaning "equal-to-its-floor" is the hook (= 
<.) : 
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   wholenumber  =:  = <.
   

y =: 3 2.7 <. y y = <. y wholenumber y

3 2.7 3 2 1 0 1 0

 

3.8.2 Forks
The arithmetic mean of a list of numbers L is given by the sum of L 
divided by the number of items in L. (Recall that number-of-items 
is given by the monadic verb #.) 

L =: 3 5 7 9 sum L # L (sum L) % (# L)

3 5 7 9 24 4 6

 

A verb to compute the mean as the sum divided by the number of 
items can be written as a sequence of three verbs: sum followed by 
% followed by # . 

   mean =: sum % #
   
   mean L
6

An isolated sequence of three verbs is called a fork. The general 
scheme is that if f is a monad, g is a dyad and h is a monad then 
for any argument y, 

            (f g h) y     means   (f y) g (h y)

Here is a diagram of this scheme: 
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For another example of a fork, what is called the range of numbers 
in a list is given by the fork smallest , largest where the middle 
verb is the comma. 

Recall from Chapter 01 that the largest number in a list is given by 
the verb >./ and so the smallest will be given by <./ 

   range =: <./  ,  >./
   



Chapter 3: Defining Functions  54

L range L

3 5 7 9 3 9

 

Hooks and forks are sequences of verbs, also called "trains" of 
verbs. For more about trains, see Chapter 09. 

3.9 Putting Things Together

Let us now try a longer example which puts together several of the 
ideas we saw above. 

The idea is to define a verb to produce a simple display of a given 
list of numbers, showing for each number what it is as a 
percentage of the total. 

Let me begin by showing you a complete program for this 
example, so you can see clearly where we are going. I don't 
expect you to study this in detail now, because explanation will be 
given below. Just note that we are looking at a program of 7 lines, 
defining a verb called display and its supporting functions. 

   frac     =: % +/
   percent  =: (100 & *) @: frac
   round    =: <. @: (+ & 0.5)
   comp     =: round @: percent
   br       =: ,.  ;  (,. @: comp)
   tr       =: ('Data';'Percentages') & ,:
   display  =: tr @: br

If we start with some very simple data: 

   data =: 3 1 4
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then we see that the display verb shows each number as given 
and as a percentage (in round figures) of the total: 4 is 50% of 8. 

   display data
+----+-----------+
|Data|Percentages|
+----+-----------+
|3   |38         |
|1   |13         |
|4   |50         |
+----+-----------+

First, we aim to divide each number by the total, to show the 
contribution of each as a fraction. The hook (% +/) is suitable: it 
can be read as divide-by-sum. If we call it frac 

   frac =: % +/

then we see 

data +/dat
a

data % (+/data) frac data

3 1 4 8 0.375 0.125 0.5 0.375 0.125 0.5

 

The percentages are given by multiplying the fractions by 100. 

   percent  =: (100 & *) @: frac
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data frac data percent data

3 1 4 0.375 0.125 0.5 37.5 12.5 50

 

Let us round the percentages to the nearest whole number, by 
adding 0.5 to each and then taking the floor (the integer part) 
with the verb <. The verb round is: 

   round    =: <. @: (+&0.5)

Then the verb to compute the displayed values from the data is: 

   comp     =: round @: percent

percent data round percent data comp data

37.5 12.5 50 38 13 50 38 13 50

 

Now we want to show the data and computed values in columns. 
To make a 1-column table out of a list, we can use the built-in verb 
,. (comma dot, called "Ravel Items"). 

data ,. data ,. comp data

3 1 4 3
1
4

38
13
50

 

To make the bottom row of the display, we define verb br as a fork 
which links together the data and the computed values, both as 
columns: 
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   br  =: ,.  ;  (,. @: comp)

data br data

3 1 4 +-+--+
|3|38|
|1|13|
|4|50|
+-+--+

 

To add the top row of the display (the column headings), there is a 
useful built-in verb ,: (comma colon, "Laminate", which will be 
covered in Chapter 05) 

   tr  =: ('Data';'Percentages') & ,:
   

data br data tr br data

3 1 4 +-+--+
|3|38|
|1|13|
|4|50|
+-+--+

+----+-----------+
|Data|Percentages|
+----+-----------+
|3   |38         |
|1   |13         |
|4   |50         |
+----+-----------+

 

and so we put everything together: 
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   display =: tr @: br
   
   display data
+----+-----------+
|Data|Percentages|
+----+-----------+
|3   |38         |
|1   |13         |
|4   |50         |
+----+-----------+

This display verb has two aspects: the function comp which 
computes the values (the rounded percentages), and the 
remainder which is concerned to present the results. By changing 
the definition of comp, we can display a tabulation of the values of 
other functions. Suppose we define comp to be the built-in square-
root verb (%:) . 

   comp =: %:

We would also want to change the column-headings in the top row, 
specified by the tr verb: 

   tr   =: ('Numbers';'Square Roots') & ,:
   
   display 1 4 9 16
+-------+------------+
|Numbers|Square Roots|
+-------+------------+
| 1     |1           |
| 4     |2           |
| 9     |3           |
|16     |4           |
+-------+------------+
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In review, we have seen a small J program with some 
characteristic features of J: bonding, composition, a hook and a 
fork. As with all J programs, this is only one of the many possible 
ways to write it. 

In this chapter we have taken a first look at defining functions. 
There are two kinds of functions: verbs and operators. So far we 
have looked only at defining verbs. In the next chapter we look at 
another way of defining verbs, and in Chapter 13 onwards we will 
look at defining operators. 
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Chapter 4: Scripts and Explicit 
Functions

What is called a "script" is a sequence of lines of J where the whole 
sequence can be replayed on demand to perform a computation. 
The themes of this chapter are scripts, functions defined by 
scripts, and scripts in files. 

4.1 Text

Here is an assignment to the variable txt: 

   txt =: 0 : 0
What is called a "script" is
a sequence of lines of J.
)

The expression 0 : 0 means "as follows", that is, 0 : 0 is a verb 
which takes as its argument, and delivers as its result, whatever 
lines are typed following it, down to the line beginning with the 
solo right- parenthesis. 

The value of txt is these two lines, in a single character string. 
The string contains line-feed (LF) characters, which cause txt to 
be displayed as several lines. txt has a certain length, it is rank 1, 
that is, just a list, and it contains 2 line-feed characters. 
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   txt
What is called a "script" is
a sequence of lines of J.

$ txt # $ 
txt

+/ txt = LF

55 1 2

 

Let us say that txt is a "text" variable, that is, a character string 
with zero or more line-feed characters. 

4.2 Scripts for Procedures

Here we look at computations described as step-by-step 
procedures to be followed. For a very simple example, the 
Fahrenheit-to-Celsius conversion can be described in two steps. 
Given some temperature T say in degrees Fahrenheit: 

   T =: 212

then the first step is subtracting 32. Call the result t, say 

   t =: T - 32

The second step is multiplying t by 5%9 to give the temperature in 
degrees Celsius. 

   t * 5 % 9
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100

Suppose we intend to perform this computation several times with 
different values of T. We could record this two-line procedure as a 
script which can be replayed on demand. The script consists of the 
lines of J stored in a text variable, thus: 

   script =: 0 : 0
t =: T - 32
t * 5 % 9
)

Scripts like this can be executed with the built-in J verb given by 
the expression 0 !: 1 which we can call, say, do. 

   do =: 0 !: 1

Here the expression 0 !: 1 can be understood as the verb 
produced by giving a left argument of 0 and a right argument of 1 
to the conjunction !: (exclamation colon, called the "Foreign 
Conjunction" ). !: offers a set of utility functions or system 
services which are organised into groups of verbs. For more 
details, see the Dictionary here . 

In this example the left argument of 0 specifies the script-
executing group, and the right argument of 1 picks out a particular 
member of that group, namely a verb to execute the script to the 
end regardless of errors, and displaying the execution on screen. 

If we now enter do script we should now see the lines on the 
screen just as though they had been typed in from the keyboard: 

   do script 
   t =: T - 32

http://www.jsoftware.com/help/dictionary/xmain.htm
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   t * 5 % 9
100

We can run the script again with a different value for T 

   T =: 32
   do script
   t =: T - 32
   t * 5 % 9
0

4.3 Explicitly-Defined Functions

Functions can be defined by scripts. Here is an example, the 
Fahrenheit-to-Celsius conversion as a verb. 

   Celsius =: 3 : 0
t =: y - 32
t * 5 % 9
)

Celsius 32 212 1 + Celsius 32 212

0 100 1 101

 

The main features of this definition are: 

4.3.1 Heading
The function is introduced with the expression 3 : 0 which means: 
"a verb as follows". (By contrast, recall that 0 : 0 means "a 
character string as follows"). 
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The colon in 3 : 0 is a conjunction. Its left argument (3) means 
"verb". Its right argument (0) means "lines following". For more 
details, see Chapter 12. A function introduced in this way is called 
"explicitly-defined", or just "explicit". 

4.3.2 Meaning
The expression Celsius 32 212 applies the verb Celsius to the 
argument 32 212, by carrying out a computation which can be 
described, or modelled, like this: 

   y =: 32 212
   t =: y - 32
   t * 5 % 9
0 100

Notice that, after the first line, the computation proceeds according 
to the script. 

4.3.3 Argument Variable(s)
The value of the argument (32 212) is supplied to the script as a 
variable named y . This "argument variable" is named y in a 
monadic function. (In a dyadic function, as we shall see below, the 
left argument is named x and the right is y) 

4.3.4 Local Variables
Here is our definition of Celsius repeated: 

   Celsius =: 3 : 0
t =: y - 32
t * 5 % 9
)

We see it contains an assignment to a variable t. This variable is 
used only during the execution of Celsius. Unfortunately this 
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assignment to t interferes with the value of any other variable also 
called t, defined outside Celsius, which we happen to be using at 
the time. To demonstrate: 

   t =: 'hello' 
   
   Celsius 212
100
   
   t
180

We see that the variable t with original value ('hello') has been 
changed in executing Celsius. To avoid this undesirable effect, we 
declare that t inside Celsius is to be a strictly private affair, 
distinct from any other variable called t. 

For this purpose there is a special form of assignment, with the 
symbol =. (equal dot). Our revised definition becomes: 

   Celsius =: 3 : 0
t =. y - 32
t * 5 % 9
)

and we say that t in Celsius is a local variable, or that t is local 
to Celsius. By contrast, a variable defined outside a function is 
said to be global. Now we can demonstrate that in Celsius 
assignment to local variable t does not affect any global variable t 

   t =: 'hello'
    
   Celsius 212
100
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   t
hello

The argument-variable y is also a local variable. Hence the 
evaluation of (Celsius 32 212) is more accurately modelled by 
the computation: 

   y =. 32 212
   t  =. y - 32
   t * 5 % 9
0 100

4.3.5 Dyadic Verbs
Celsius is a monadic verb, introduced with 3 : 0 and defined in 
terms of the single argument y. By contrast, a dyadic verb is 
introduced with 4 : 0. The left and right arguments are always 
named x and y respectively Here is an example. The "positive 
difference" of two numbers is the larger minus the smaller. 

   posdiff =: 4 : 0
larger  =. x >. y
smaller =. x <. y
larger - smaller 
)

3 posdiff 4 4 posdiff 3

1 1

 

4.3.6 One-Liners
A one-line script can be written as a character string, and given as 
the right argument of the colon conjunction. 
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   PosDiff =: 4 : '(x >. y) - (x <. y)'
   4 PosDiff 3
1

4.3.7 Control Structures
In the examples we have seen so far of functions defined by 
scripts, execution begins with the expression on the first line, 
proceeds to the next line, and so on to the last. 

This straight-through path is not the only path possible. A choice 
can be made as to which expression to execute next. 

For an example, here is a function to compute a volume from 
given length, width and height. Suppose the function is to check 
that its argument is given correctly as a list of 3 items (length, 
width and height). If so, a volume is computed. If not, the result is 
to be the character-string 'ERROR'. 

   volume =: 3 : 0
if.   3 = # y
do.   * / y
else. 'ERROR'
end.
)

We see: 

volume 2 3 4 volume 2 3

24 ERROR

 

Everything from if. to end. together forms what is called a 
"control structure". Within it if. do. else. and end. are called 
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"control words". See Chapter 12 for more on control structures. 

4.4 Tacit and Explicit Compared

We have now seen two different styles of function definition. The 
explicit style, introduced in this chapter, is so called because it 
explicitly mentions variables standing for arguments. Thus in 
volume above, the variable y is an explicit mention of an 
argument. 

By contrast, the style we looked at in the previous chapter is called 
"tacit", because there is no mention of variables standing for 
arguments. For example, compare explicit and tacit definitions of 
the positive-difference function: 

   epd =: 4 : '(x >. y) - (x <. y)'
   
   tpd =: >. - <.

Many functions defined in the tacit style can also be defined 
explicitly, and vice versa. Which style is preferable depends on 
what seems most natural, in the light of however we conceive the 
function to be defined. The choice lies between breaking down the 
problem into, on the one hand, a scripted sequence of steps or, on 
the other hand, a collection of smaller functions. 

The tacit style allows a compact definition. For this reason, tacit 
functions lend themselves well to systematic analysis and 
transformation. Indeed, the J system can, for a broad class of tacit 
functions, automatically compute such transformations as inverses 
and derivatives. 
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4.5 Functions as Values

A function is a value, and a value can be displayed by entering an 
expression. An expression can be as simple as a name. Here are 
some values of tacit and explicit functions: 

   - & 32
+-+-+--+
|-|&|32|
+-+-+--+
   
   epd
+-+-+-------------------+
|4|:|(x >. y) - (x <. y)|
+-+-+-------------------+
   
   Celsius
+-+-+-----------+
|3|:|t =. y - 32|
| | |t * 5 % 9  |
+-+-+-----------+

The value of each function is here represented as a boxed 
structure. This is the default, but we can choose from several other 
possibilities: see Chapter 27. For now I will mention only the 
"linear representation", which shows a function as a sequence of 
characters which could be typed in again to produce the function. 
We can switch the session to to show functions in the linear 
representation by entering: 

   (9!:3) 5

and we see for example: 
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   epd
4 : '(x >. y) - (x <. y)'

In the following chapters, values of functions will often be shown in 
this linear representation. 

4.6 Script Files

We have seen scripts (lines of J) used for definitions of single 
variables: text variables or functions. By contrast, a file holding 
lines of J as text can store many definitions. Such a file is called a 
script file, and its usefulness is that all its definitions together can 
be executed by reading the file. 

Here is an example. Using a text-editor of your choice, create a file 
on your computer, containing 2 lines of text like the following. 

                 squareroot =: %:

                 z =: 1 , (2+2) , (4+5)

A J script file has a filename ending with .ijs by convention, so 
suppose the file is created (in Windows) with the full pathname 
c:\temp\myscript.ijs for example. 

Then in the J session it will be convenient to identify the file by 
defining a variable F say to hold this filename as a string. 

   F =: 'c:\temp\myscript.ijs'   
   

Having created this 2-line script file, we can execute it by typing at 
the keyboard: 
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       0!:1 < F

and we should now see the lines on the screen just as though they 
had been typed from the keyboard. 

   squareroot =: %:
   z =: 1 ,(2+2), (4+5)

We can now compute with the definitions we have just loaded in 
from the file: 

   z
1 4 9
   
   squareroot z
1 2 3

The activities in a J session will be typically a mixture of editing 
script files, loading or reloading the definitions from script files, 
and initiating computations at the keyboard. What carries over 
from one session to another is only the script files. The state, or 
memory, of the J system itself disappears at the end of the 
session, along with all the definitions entered during the session. 
Hence it is a good idea to ensure, before ending a J session, that 
any script file is up to date, that is, it contains all the definitions 
you wish to preserve. 

At the beginning of a session the J system will automatically load a 
designated script file, called the "profile". (See Chapter 26 for 
more details). The profile can be edited, and is a good place to 
record any definitions of your own which you find generally useful.

We have now come to the end of Chapter 4 and of Part 1. The 
following chapters will treat, in more depth and detail, the themes 
we have touched upon in Part 1. 
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Chapter 5: Building Arrays

This chapter is about building arrays. First we look at building 
arrays from lists, and then at joining arrays together in various 
ways to make larger arrays. 

5.1 Building Arrays by Shaping Lists

5.1.1 Review
Recall from Chapter 02 what we mean by the word "items". The 
items of a list of numbers are the numbers. The items of a table 
are its rows. The items of a 3-dimensional array are its planes. 

Recall also that x $ y produces an array of the items of the list y, 
with shape x, that is, with dimensions given by the list x. For 
example: 

2 2 $ 0 1 2 3 2 3 $ 'ABCDEF'

0 1
2 3

ABC
DEF

 

If the list y contains fewer than the number of items needed, then 
y is re-used in cyclical fashion to make up the number of items 
needed. This means that an array can be built to show some 
simple patterning, such as all elements being the same, for 
example. 



 73 Chapter 5: Building Arrays

2 3 $ 'ABCD' 2 2 $ 1 3 3 $ 1 0 0 0

ABC
DAB

1 1
1 1

1 0 0
0 1 0
0 0 1

 

The "Shape" verb, dyadic $, has a companion verb, "ShapeOf" 
(monadic $), which yields the list-of-dimensions, that is, shape, of 
its argument. To illustrate: 

A =: 2 3 $ 'ABCDEF' $ A a =: 'pqr' $ a

ABC
DEF

2 3 pqr 3

 

For any array A, its list-of-dimensions $ A is a 1-dimensional list 
(the shape). Hence $ $ A is a list of 1 item (the rank). Hence $ $ 
$ A is always a list containing just the number 1. 

A $ A $ $ 
A

$ $ $ A

ABC
DEF

2 3 2 1

 

5.1.2 Empty Arrays
An array can be of length zero in any of its dimensions. A zero 
length, or empty, list can be built by writing 0 for its list of 
dimensions, and any value (doesn't matter what) for the value of 
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the item(s). 

E =: 0 $ 99 $ E

 0

 

If E is empty, then it has no items, and so, after appending an item 
to it, the result will have one item. 

E $ E w =: E ,98 $ w

 0 98 1

 

Similarly, if ET is an empty table with no rows, and say, 3 columns, 
then after adding a row, the result will have one row. 

ET =: 0 3 $ 'x' $ ET $ ET , 'pqr' 

 0 3 1 3

 

5.1.3 Building a Scalar
Suppose we need to build a scalar. A scalar has no dimensions, 
that is, its dimension-list is empty. We can give an empty list as 
the left argument of $ to make a scalar: 

S =: (0$0) $ 17 $ S $ $ S

17  0
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5.1.4 Shape More Generally
We said that (x $ y) produces an x-shaped array of the items of 
y. That is, in general the shape of (x$y) will be not just x, but 
rather x followed by the shape of an item of y. 

If y is a table, then an item of y is a row, that is, a list. In the 
following example, the shape of an item of Y is the length of a row 
of Y, which is 4 . 

X =: 2 Y =: 3 4 $ 'A' Z =: X $ Y $ Z

2 AAAA
AAAA
AAAA

AAAA
AAAA

2 4

 

The next sections look at building new arrays by joining together 
arrays we already have. 

5.2 Appending, or Joining End-to-End

Recall that any array can be regarded as a list of items, so that for 
example the items of a table are its rows. The verb , (comma) is 
called "Append". The expression (x,y) is a list of the items of x 
followed by the items of y. 
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   B =: 2 3 $ 'UVWXYZ'
   b =:   3 $ 'uvw'
   

a b a , b A B A , B

pqr uvw pqruvw ABC
DEF

UVW
XYZ

ABC
DEF
UVW
XYZ

 

In the example of (A,B) above. the items of A are lists of length 3, 
and so are the items of B. Hence items of A are compatible with, 
that is, have the same rank and length as items of B. What if they 
do not? In this case the "Append" verb will helpfully try to stretch 
one argument to fit the other, by bringing them to the same rank, 
padding to length, and replicating scalars as necessary. This is 
shown the following examples. 

5.2.1 Bringing To Same Rank
Suppose we want to append a row to a table. For example, 
consider appending the 3-character list b (above) to the 2 by 3 
table A (above) to form a new row. 

A b A , b

ABC
DEF

uv
w

ABC
DEF
uvw
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Notice that we want the two items of A to be followed by the single 
item of b, but b is not a 1-item affair. We could do it by reshaping 
b into a 1 by 3 table, that is, by raising the rank of b. However, this 
is not necessary, because, as we see, the "Append" verb has 
automatically stretched the low-rank argument into a 1-item array, 
by supplying leading dimension(s) of 1 as necessary. 

A b A , (1 3 $ b) A , b b , A

ABC
DEF

uvw ABC
DEF
uvw

ABC
DEF
uvw

uvw
ABC
DEF

 

5.2.2 Padding To Length
When the items of one argument are shorter than the items of the 
other, they will be padded out to length. Characters arrays are 
padded with the blank character, numerical arrays with zero. 

A A , 'XY' (2 3 $ 1) , 9 9

ABC
DEF

ABC
DEF
XY

1 1 1
1 1 1
9 9 0

 

5.2.3 Replicating Scalars
A scalar argument of "Append" is replicated as necessary to match 
the other argument. In the following example, notice how the 
scalar '*' is replicated, but the vector (1 $ '*') is padded. 
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A A , '*' A , 1 $ '*'

ABC
DEF

ABC
DEF
***

ABC
DEF
*

 

5.3 Stitching, or Joining Side-to-Side

The dyadic verb ,. (comma dot) is called "Stitch". In the 
expression (x ,. y) each item of x has the corresponding item of 
y appended to produce an item of the result. 

a b a ,. b A B A ,. B

pqr uvw pu
qv
rw

ABC
DEF

UVW
XYZ

ABCUVW
DEFXYZ

 

5.4 Laminating, or Joining Face-to-Face

The verb ,: (comma colon) is called "Laminate". The result of 
(x ,: y) is always an array with two items, of which the first is x 
and the second is y 
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a b a ,: b

pqr uvw pqr
uvw

 

If x and y are tables, then we can imagine the result as one table 
laid on top of the other to form a 3-dimensional array, of length 2 
along its first dimension. 

A B A ,: B $ A ,: B

ABC
DEF

UVW
XYZ

ABC
DEF

UVW
XYZ

2 2 3

 

5.5 Linking

The verb ; (semicolon) is called "Link". It is convenient for building 
lists of boxes. 

'good' ; 'morning' 5 ; 12 ; 1995

+----+-------+
|good|morning|
+----+-------+

+-+--+----+
|5|12|1995|
+-+--+----+
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Notice how the example of 5;12;1995 shows that (x;y) is not 
invariably just (< x),(< y) . Since "Link" is intended for building 
lists of boxes, it recognises when its right argument is already a 
list of boxes. If we define a verb which does produce (< x),(< y) 

   foo =: 4 : '(< x) , (< y)'

we can compare these two: 

1 ; 2 ; 3 1 foo 2 foo 3

+-+-+-+
|1|2|3|
+-+-+-+

+-+-----+
|1|+-+-+|
| ||2|3||
| |+-+-+|
+-+-----+

 

5.6 Unbuilding Arrays

We have looked at four dyadic verbs: "Append" (,), "Stitch" (,.), 
"Laminate" (,:) and "Link" (;). Each of these has a monadic 
case, which we now look at. 
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5.6.1 Razing
Monadic ; is called "Raze". It unboxes elements of the argument 
and assembles them into a list. 

B =: 2 2 $ 1;2;3;4 ; B $ ; B

+-+-+
|1|2|
+-+-+
|3|4|
+-+-+

1 2 3 4 4

 

5.6.2 Ravelling
Monadic , is called "Ravel". It assembles elements of the argument 
into a list. 

B , B $ , B

+-+-+
|1|2|
+-+-+
|3|4|
+-+-+

+-+-+-+-+
|1|2|3|4|
+-+-+-+-+

4

 

5.6.3 Ravelling Items
Monadic ,. is called "Ravel Items". It separately ravels each item 
of the argument to form a table. 
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k =: 2 2 3 $ i. 12 ,. k

0  1  2
3  4  5

6  7  8
9 10 11

0 1 2 3  4  5
6 7 8 9 10 11

 

"Ravel Items" is useful for making a 1-column table out of a list. 

b ,. b

uvw u
v
w

 

5.6.4 Itemizing
Monadic ,: is called "Itemize". It makes a 1-item array out of any 
array, by adding a leading dimension of 1. 

A ,: A $ ,: A

ABC
DEF

ABC
DEF

1 2 3

 

5.7 Arrays Large and Small

As we have seen, an array can be built with the $ verb. 
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   3 2 $ 1 2 3 4 5 6
1 2
3 4
5 6

For small arrays, where the contents can be listed on a single line, 
there are alternatives to using $, which avoid the need to give the 
dimensions explicitly. 

> 1 2 ; 3 4 ; 5 6 1 2 , 3 4 ,: 5 6

1 2
3 4
5 6

1 2
3 4
5 6

 

To build large tables, a convenient method is as follows. First, here 
is a "utility" verb (that is, a verb which is useful for present 
purposes, but we don't need to study its definition now.) 

   ArrayMaker =: ". ;. _2

The purpose of ArrayMaker is to build a numeric table row by row 
from the lines of a script. 

   table =: ArrayMaker 0 : 0
1 2 3
4 5 6
7 8 9
)
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table $ table

1 2 3
4 5 6
7 8 9

3 3

 

(See Chapter 17 for an explanation of how ArrayMaker works). 
Arrays of boxes can also be entered from a script in the same way: 

   X =:  ArrayMaker  0 : 0
'hello' ; 1 2 3 ; 8
'Waldo' ; 4 5 6 ; 9
)

X $ X

+-----+-----+-+
|hello|1 2 3|8|
+-----+-----+-+
|Waldo|4 5 6|9|
+-----+-----+-+

2 3

 

We have reached the end of Chapter 5. 
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Chapter 6: Indexing

Indexing is the name given to selecting of elements of arrays by 
position. This topic includes selecting elements, rearranging 
selected elements to form new arrays, and amending, or updating, 
selected elements of arrays. 

6.1 Selecting

The verb { (left-brace) is called "From". The expression (x { y) 
selects elements from y according to positions given by x. For 
example, recall from Chapter 02 that if L is a list, then the 
positions of items of L are numbered 0 1 and so on. The 
expression (0 { L) gives the value of the first item of L and 1 { L 
gives the second item. 

L =: 'abcdef' 0 { L 1 { L

abcdef a b

 

The left argument of { is called the "index". 

6.1.1 Common Patterns of Selection.
Several items may be selected together: 

L 0 2 4 { L

abcdef ace
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Items selected from L may be replicated and re-ordered: 

L 5 4 4 3 { L

abcdef feed

 

An index value may be negative: a value of _1 selects the last 
item, _2 selects the next-to-last item and so on. Positive and 
negative indices may be mixed. 

L _1 { L _2 1 { L

abcdef f eb

 

A single element of a table at, say, row 1 column 2 is selected with 
an index (< 1 ; 2). 

T =: 3 3 $ 'abcdefghi' (< 1 ; 2) { T

abc
def
ghi

f

 

We can select from a table all elements in specified rows and 
columns, to produce a smaller table (called a subarray). To select a 
subarray consisting of, for example rows 1 and 2 and columns 0 
and 1, we use an index (< 1 2; 0 1) 
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T (< 1 2;0 1) { T

abc
def
ghi

de
gh

 

A complete row or rows may be selected from a table. Recall that a 
table is a list of items, each item being a row. Thus selecting rows 
from tables is just like selecting items from lists. 

T 1 { T 2 1 { T

abc
def
ghi

def ghi
def

 

To select a complete column or columns, a straightforward way is 
to select all the rows: 

T (< 0 1 2 ; 1 ){ T

abc
def
ghi

beh

 

but there are other possibilities: see below. 

6.1.2 Take, Drop, Head, Behead, Tail, Curtail
Next we look at a group of verbs providing some convenient short 
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forms of indexing. There is a built-in verb {. (left brace dot, called 
"Take"). The first n items of list L are selected by (n {. L) 

L 2 {. L

abcdef ab

 

If we take n items from L with (n {. L), and n is greater than the 
length of L, the result is padded to length n, with zeros, spaces or 
empty boxes as appropriate. 

For example, suppose we require to make a string of exactly 8 
characters from a given string, a description of some kind, which 
may be longer or shorter than 8. If longer, we shorten. If shorter 
we pad with spaces. 

s =: 'pasta' # s z =: 8 {. s # z

pasta 5 pasta   8

 

There is a built-in verb }. (right-brace dot, called "Drop"). All but 
the first n items of L are selected by (n }. L). 

L 2 }. L

abcdef cdef

 

The last n items of L are selected by (-n) {. L. All but the last n 
are selected by (-n) }. L 



Chapter 6: Indexing  90

L _2 {. L _2 }. L

abcdef ef abcd

 

There are abbreviations of Take and Drop in the special case where 
n=1. The first item of a list is selected by monadic {. (left-brace 
dot, called "Head"). All but the first are selected by }. (right-brace 
dot, called "Behead"). 

L {. L }. L

abcdef a bcdef

 

The last item of a list is selected by monadic {: (left-brace colon, 
called "Tail"). All but the last are selected by }: (right-brace colon, 
called "Curtail". 

L {: L }: L

abcdef f abcde

 

6.2 General Treatment of Selection

It will help to have some terminology. In general we will have an 
n-dimensional array, but consider a 3-dimensional array. A single 
element is picked out by giving a plane- number, a row-number 
and a column-number. We say that the planes are laid out in order 
along the first axis, and similarly the rows along the second axis, 
and the columns along the third. 
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There is no special notation for indexing; rather the left argument 
of { is a data structure which expresses, or encodes, selections 
and rearrangements. This data structure can be built in any way 
convenient. What follows is an explanation of how to build it. 

6.2.1 Independent Selections
The general expression for indexing is of the form index { array. 
Here index is an array of scalars. Each scalar in index gives rise 
to a separate independent selection, and the results are assembled 
together. 

L 0 1 { L

abcdef ab

 

6.2.2 Shape of Index
The shape of the results depends on the shape of index. 

L index =: 2 2 $ 2 0 3 1 index { L

abcdef 2 0
3 1

ca
db

 

The indices must lie within the range -#L to (#L)-1: 

L #L _7 { L 6 { L

abcdef 6 error error

 

6.2.3 Scalars
Each scalar in index is either a single number or a box (and of 
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course if one is a box, all are.) If the scalar is a single number it 
selects an item from array. 

A =: 2 3 $ 'abcdef' 1 { A

abc
def

def

 

If the scalar in index is a box however then it contains a list of 
selectors which are applied to successive axes. To show where a 
box is used for this purpose, we can use the name SuAx, say, for 
the box function. 

   SuAx =: <

The following example selects from A the element at row 1, column 
0. 

A (SuAx 1 0) { A

abc
def

d

 

6.2.4 Selections on One Axis
In a list of selectors for successive axes, of the form (SuAx p , r, 
c) say, each of p, r and c is a scalar. This scalar is either a number 
or a box (and if one is boxed, all are). A number selects one thing 
on its axis: one plane, row or column as appropriate, as in the last 
example. 

However, if the selector is a box it contains a list of selections all 
applicable to the same axis. To show where a box is used for this 
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purpose we can use the name Sel, say, for the box function. 

   Sel =: <

For example, to select from A elements at row 1, columns 0 2: 

A (SuAx (Sel 1), (Sel 0 2)) { A

abc
def

df

 

6.2.5 Excluding Things
Instead of selecting things on a particular axis, we can exclude 
things, by supplying a list of thing-numbers enclosed in yet 
another level of boxing. To show where a box is used for this 
purpose we can use the name Excl, say, for the box function. 

   Excl =: <

For example, to select from A elements at row 0, all columns 
excluding column 1: 

A (SuAx (Sel 0), (Sel (Excl 1))) { A

abc
def

ac

 

We can select all things on a particular axis by excluding nothing, 
that is, giving an empty list (0$0) as a list of thing-numbers to 
exclude. For example, to select from A elements at row 1, all 
columns: 
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A (SuAx (Sel 1),(Sel (Excl 0$0))) { A

abc
def

def

 

6.2.6 Simplifications
The expression (Excl 0$0) denotes a boxed empty list. There is a 
built-in J abbreviation for this, namely (a:) (letter-a colon, called 
"Ace"), which in this context we can think of as meaning "all". 

A (SuAx (Sel 1),(Sel a:)) { A

abc
def

def

 

If in any index of the form (SuAx p,q,..., z), the last selector z 
is the "all" form, (Sel (Excl 0$0)) or (Sel a:), then it can be 
omitted. 

A (SuAx (Sel 1),(Sel a:)) {A (SuAx (Sel 1)) {A

abc
def

def def

 

If in any index of the form (SuAx (Sel p),(Sel q),...), the "all" 
form is entirely absent, then the index can be abbreviated to 
(SuAx p;q;...). For example, to select elements at row 1, 
columns 0 and 2: 
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A (SuAx (Sel 1),(Sel 0 2)) {A (SuAx 1;0 2) {A

abc
def

df df

 

Finally, as we have already seen, if selecting only one thing on 
each axis, a simple unboxed list is sufficient. For example to select 
the element at row 1, column 2: 

A (SuAx 1;2) { A (SuAx 1 2) { A

abc
def

f f

 

6.2.7 Shape of the Result
Suppose that B is a 3-dimensional array: 

   B =: 10 + i. 3 3 3

and we define p to select planes along the first axis of B, and r to 
select rows along the second axis, and c to select columns along 
the third axis: 

   p =: 1 2
   r =: 1 2
   c =: 0 1

We see that, selecting with p;r;c, the shape of the result R is the 
concatenation of the shapes of p, r and c 
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B R =: (< p;r;c) { B $ R ($p),($r),($c)

10 11 12
13 14 15
16 17 18

19 20 21
22 23 24
25 26 27

28 29 30
31 32 33
34 35 36

22 23
25 26

31 32
34 35

2 2 2 2 2 2

 

B is 3-dimensional, and so is R. As we would expect, this 
concatenation-of-shapes holds when a selector (r, say) is a list of 
length one: 

r =: 1 $ 1 S =: (< p;r;c){B $ S ($p),($r),($c)

1 22 23

31 32

2 1 2 2 1 2

 

and the concatenation-of-shapes holds when selector r is a scalar: 

r =: 1 T =: (< p;r;c){B $ T ($p),($r),($c) $ r

1 22 23
31 32

2 2 2 2  
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In this last example, r is a scalar, so the shape of r is an empty 
list, and so the axis corresponding to r has disappeared, and so 
the result T is 2-dimensional. 

6.3 Amending (or Updating) Arrays

Sometimes we need to compute an array which is the same as an 
existing array except for new values at a comparatively small 
number of positions. We may speak of 'updating' or 'amending' an 
array at selected positions. The J function for amending arrays is } 
(right brace, called "Amend"). 

6.3.1 Amending with an Index

To amend an array we need three things: 

• the original array 
• a specification of the position(s) at which the original is to 

be amended. This can be an index exactly like the index we 
have seen above for selection with {. 

• new values to replace existing elements at specified 
positions. 

Consequently the J expression to perform an amendment may 
have the general form: 

        newvalues index } original

For example: to amend list L to replace the first item (at index 0) 
with '*': 
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L new=:'*' index=:0 new index } L

abcdef * 0 *bcdef

 

} is an adverb, which takes index as its argument to yield the 
dyadic amending verb (index }). 

   ReplaceFirst =: 0 }
   '*' ReplaceFirst L
*bcdef

(index }) is a verb like any other, dyadic and yielding a value in 
the usual way. Therefore to change an array by amending needs 
the whole of the result to be reassigned to the old name. Thus 
amendment often takes place on the pattern: 

                 A  =:  new index } A 

The J system ensures that this is an efficient computation with no 
unnecessary movement of data. 

To amend a table at row 1 column 2, for example: 

A '*' (< 1 2) } A

abc
def

abc
de*

 

To amend multiple elements, a list of new values can be supplied, 
and they are taken in turn to replace a list of values selected by an 
index 
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L '*#' 1 2 } L

abcdef a*#def

 

6.3.2 Amending with a Verb
Suppose that Y is a list of numbers, and we wish to amend it so 
that all numbers exceeding a given value X are replaced by X. (For 
the sake of this example, we here disregard the built-in J verb 
(<.) for this function.) 

The indices at which Y is to be amended must be computed from X 
and Y. Here is a function f to compute the indices: 

   f =: 4 : '(y > x) # (i. # y)'
   

X =: 100 Y =: 98 102 101 99 Y > X X f Y

100 98 102 101 99 0 1 1 0 1 2

 

The amending is done, in the way we have seen above, by 
supplying indices of (X f Y): 

Y X (X f Y) } Y

98 102 101 99 98 100 100 99
 

The "Amend" adverb } allows the expression (X (X f Y) } Y) to 
be abbreviated as (X f } Y). 
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X (X f Y) } Y X f } Y

98 100 100 99 98 100 100 99

 

Since } is an adverb, it can accept as argument either the indices 
(X f Y) or the verb f. 

   cap =: f }
   
   10 cap 8 9 10 11
8 9 10 10

Note that if verb f is to be supplied as argument to adverb }, then 
f must be a dyad, although it may ignore X or Y. 

6.3.3 Linear Indices
We have just looked at amending lists with a verb. The purpose of 
the verb is to find the places at which to amend, that is, to 
compute from the values in a list the indices at which to amend. 
With a table rather than a list, the indices would have to be 2- 
dimensional, and the task of the verb in constructing the indices 
would be correspondingly more difficult. It would be easier to 
flatten a table into a linear list, amend it as a list, and rebuild the 
list into a table again. 

For example, suppose we have a table: 

   M =: 2 2 $ 13 52 51 14

Then, using our index-finding verb f, the flattening, amending and 
rebuilding is shown by: 
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M LL =: ,M Z =: 50 f } LL ($M) $ Z

13 52
51 14

13 52 51 14 13 50 50 14 13 50
50 14

 

However, there is a better way. First note that our index-finding 
verb f takes as argument, not M but (LL =: , M). Thus 
information about the original shape of M is not available to the 
index-finder f. In this example, this does not matter, but in 
general we may want the index-finding to depend upon both the 
shape and the values in M. It would be better if f took the whole of 
M as argument. In this case f must do its own flattening. Thus we 
redefine f: 

   f =: 4 : 0
y =. , y
(y > x) # (i. # y)
)
   

M 50 f M

13 52
51 14

1 2

 

Now the index finder f takes an array as argument, and delivers 
indices into the flattened array, so-called "linear indices". The 
amending process, with this new f, is shown by: 
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M ($M) $ 50 (50 f M) } (, M)

13 52
51 14

13 50
50 14

 

Finally, provided f delivers linear indices, then (}) allows the last 
expression to be abbreviated as: 

M 50 f } M

13 52
51 14

13 50
50 14

 

6.4 Tree Indexing

So far we have looked at indexing into rectangular arrays. There is 
also a form of indexing into boxed structures, which we can picture 
as "trees" having branches and leaves. For example: 

   branch =: <
   leaf   =: <
   
   branch0 =: branch (leaf 'J S'),(leaf 'Bach')
   branch1 =: branch (leaf 1), (leaf 2), (leaf 1777)
   tree    =: branch0,branch1
   tree
+----------+----------+
|+---+----+|+-+-+----+|
||J S|Bach|||1|2|1777||
|+---+----+|+-+-+----+|
+----------+----------+
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Then data can be fetched from the tree by specifying a path from 
the root. The path is a sequence of choices, given as left argument 
to the verb {:: (left-brace colon colon,called "Fetch") The path 0 
will fetch the first branch, while the path 0;1 fetches the second 
leaf of the first branch: 

0 {:: tree (0;1) {:: tree

+---+----+
|J S|Bach|
+---+----+

Bach

 

The monadic form {:: tree is called the "Map" of tree. it has the 
same boxed structure as tree and shows the path to each leaf. 

   {:: tree
+-------------+-------------------+
|+-----+-----+|+-----+-----+-----+|
||+-+-+|+-+-+|||+-+-+|+-+-+|+-+-+||
|||0|0|||0|1|||||1|0|||1|1|||1|2|||
||+-+-+|+-+-+|||+-+-+|+-+-+|+-+-+||
|+-----+-----+|+-----+-----+-----+|
+-------------+-------------------+

This is the end of Chapter 6. 
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Chapter 7: Ranks

Recall that the rank of an array is its number of dimensions. A 
scalar is of rank 0, a list of numbers is of rank 1, a table of rank 2, 
and so on. 

The subject of this chapter is how the ranks of arguments are 
taken into account when verbs are applied. 

7.1 The Rank Conjunction

First, some terminology. An array can be regarded as being divided 
into "cells" in several different ways. Thus, a table such as 

   M =: 2 3 $ 'abcdef'
   M
abc
def

may be regarded as being divided into 6 cells each of rank 0, or 
divided into 2 cells each of rank 1, or as being a single cell of rank 
2. A cell of rank k will be called a k-cell. 

7.1.1 Monadic Verbs
The box verb (monadic <) applies just once to the whole of the 
argument, to yield a single box, whatever the rank of the 
argument. 
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L =: 2 3 4 < L M < M

2 3 4 +-----+
|2 3 4|
+-----+

ab
c
de
f

+---+
|abc|
|def|
+---+

 

However, we may choose to box each cell separately. There is a 
conjunction " (double-quote, called "Rank"), we write (< " 0) to 
box each scalar, that is, each 0-cell. 

M < " 0 M < " 1 M < " 2 M

abc
def

+-+-+-+
|a|b|c|
+-+-+-+
|d|e|f|
+-+-+-+

+---+---+
|abc|def|
+---+---+

+---+
|abc|
|def|
+---+

 

The general scheme is that in the expression (u " k y), the 
monadic verb u is applied separately to each k-cell of y. 

We can define a verb to exhibit the k-cells of an array, each cell in 
its own box:: 

   cells  =: 4 : '< " x y'
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M 0 cells M 1 cells M

abc
def

+-+-+-+
|a|b|c|
+-+-+-+
|d|e|f|
+-+-+-+

+---+---+
|abc|def|
+---+---+

 

7.1.2 Dyadic Verbs
Given a table, how do we multiply each row by a separate 
number? We multiply with the verb (* " 1 0) which can be 
understood as "multiply 1-cells by 0-cells", For example, 

X =: 2 2 $ 0 1 2 3 Y =: 2 3 X (* " 1 0) Y

0 1
2 3

2 3 0 2
6 9

 

The general scheme is that the expression 

                X (u " (L,R)) Y 

means: apply dyad u separately to each pair consisting of an L-cell 
from X and the corresponding R-cell from Y. To multiply each 
column by a separate number, we combine each 1-cell of x with 
the solitary 1-cell of y 
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X Y X (* " 1 1) Y

0 1
2 3

2 3 0 3
4 9

 

7.2 Intrinsic Ranks

In J, every verb has what might be called a natural, or intrinsic, 
rank for its argument(s). Here are some examples to illustrate. For 
the first example, consider: 

*: 2 *: 2 3 4 

4 4 9 16

 

Here, the arithmetic function "square" naturally applies to a single 
number(a 0-cell). When a rank-1 array (a list) is supplied as 
argument, the function is applied separately to each 0-cell of the 
argument. In other words, the natural rank of (monadic) *: is 0.

 For another example, there is a built-in verb #. (hash dot called 
"Base Two"). Its argument is a bit-string (a list) representing a 
number in binary notation, and it computes the value of that 
number. For example, 1 0 1 in binary is 5 

   #. 1 0 1
5

The verb #. applies naturally to a list of bits, that is, to a 1-cell. 
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When a rank-2 array (a table) is supplied as argument, the verb is 
applied separately to each 1-cell, that is, to each row of the table. 

t =: 3 3 $ 1 0 1 0 0 1 0 1 1 #. t

1 0 1
0 0 1
0 1 1

5 1 3

 

Thus the natural rank of monadic #. is 1. 

For a third example, as we have already seen, the monadic case of 
< applies just once to the whole of its argument, whatever the 
rank of its argument. The natural rank of < is thus an indefinitely 
large number, that is, infinity, denoted by _ . These examples 
showed monadic verbs. In the same way every dyadic verb will 
have two natural ranks, one for each argument. For example, the 
natural ranks of dyadic + are 0 0 since + takes a number (rank-0) 
on left and right. In general, a verb has both a monadic and a 
dyadic case, and hence altogether 3 ranks, called its "intrinsic 
ranks". 

The intrinsic ranks of a verb are shown with the aid of a built-in 
adverb b. (lowercase b dot, called "Basic Characteristics"). For any 
verb u, the expression u b. 0 gives the ranks in the order 
monadic, left, right. 

*: b. 0 #. b. 0 < b. 0

0 0 0 1 1 1 _ 0 0

 

For convenience, the rank conjunction " can accept a right 
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argument consisting of a single rank (for a monad) or two ranks 
(for a dyad) or three ranks (for an ambivalent verb). 

One rank or two are automatically expanded to three as shown by: 

(<"1) b. 0 (<"1 2) b. 0 (<"1 2 3) b. 0

1 1 1 2 1 2 1 2 3

 

7.3 Frames

Suppose u is to be a verb which sums all the numbers in a table, 
by summing the columns and then summing the column-sums. We 
specify that u is to have monadic rank 2. 

   u =: (+/) @: (+/) " 2

w =: 4 5 $ 1 u w u b. 0

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

20 2 2 2

 

Suppose a four-dimensional array A has shape 2 3 4 5. 

   A =: 2 3 4 5 $  1  

We can regard A as a 2-by-3 array of 2-cells, each cell being 4-by-
5. Now consider computing (u A). The verb u, being of rank 2, 
applies separately to each 2-cell, giving us a 2-by-3 array of 
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results. 

Each result is a scalar (because u produces scalars), and hence the 
overall result will be 2 by 3 scalars. 

u A $ u A

20 20 20
20 20 20

2 3

 

The shape 2 3 is called the "frame" of A with respect to its 2-cells, 
or its 2-frame for short. The k-frame of A is given by dropping the 
last k dimensions from the shape of A, or equivalently, as the 
shape of the array of k-cells of A. 

   frame =: 4 : '$ x cells y'

$ A 2 frame A

2 3 4 5 2 3

 

In general, suppose that verb u has rank k, and from each k-cell it 
computes a cell of shape s. (The same s, we are supposing, for 
each cell). Then the shape of the overall result (u A)is: the k-
frame of A followed by the shape s. 

To demonstrate that this is the case, we can find k from u, as the 
first (monadic) rank of u: 

   k =: 0 { u b. 0

We can find the shape s by applying u to a typical k-cell of A, say 
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the first. 

   s =: $ u  0 { > (, k cells A)

In this example, the shape s is an empty list, because u produces 
scalars. 

k s kfr =: k frame A kfr, s $ u A

2  2 3 2 3 2 3

 

Here we supposed that verb u gives the same-shaped result for 
each cell in its argument. This is not necessarily the case - see the 
section on "Reassembly of Results" below. 

7.3.1 Agreement
A dyad has two intrinsic ranks, one for the left argument, one for 
the right. Suppose these ranks are L and R for a verb u. 

When u is applied to arguments X and Y, u is applied separately to 
each pair consisting of an L-cell from x and the corresponding R-
cell from Y. For example, suppose dyad u has ranks (0 1). It 
combines a 0-cell from X and a 1-cell from Y. 

   u =: < @ ,  " 0 1
   X =: 2  $ 'ab'
   Y =: 2 3 $ 'ABCDEF'
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X Y X u Y

ab ABC
DEF

+----+----+
|aABC|bDEF|
+----+----+

 

Notice that here the 0-frame of X is the same as the 1-frame of Y. 
These two frames are said to agree. 

X Y $
X

$Y 0 frame X 1 frame Y

ab AB
C
DE
F

2 2 3 2 2

 

What if these two frames are not the same? They can still agree if 
one is a prefix of the other. That is, if one frame is the vector f, 
and the other frame can be written as (f,g) for some vector g. 
Here is an example. With 

   X =: 2 3 2 $ i. 12
   Y =: 2     $ 0 1

and a dyad such as +, with ranks (0 0), we are interested in the 
0-frame of X and the 0-frame of Y. 
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X Y 0 frame X 0 frame Y X+Y

0  1
2  3
4  5

6  7
8  9
10 11

0 1 2 3 2 2 0  1
2  3
4  5

7  8
9 10
11 12

 

We see that the two frames are 2 and 2 3 2 and their difference g 
is therefore 3 2. 

Here Y has the shorter frame. Then each cell of Y corresponds to, 
not just a single cell of X, but rather a 3 2-shaped array of cells. 

In such a case, a cell of Y is automatically replicated to form a 3 2-
shaped array of identical cells. In effect the shorter frame is made 
up to length, so as to agree with the longer. Here is an example. 
The expression (3 2 & $) " 0 Y means " a 3 by 2 replication of 
each 0-cell of Y". 

X Y YYY =: (3 2&$)"0 Y X + YYY X + Y 

0  1
2  3
4  5

6  7
8  9
10 11

0 1 0 0
0 0
0 0

1 1
1 1
1 1

0  1
2  3
4  5

7  8
9 10
11 12

0  1
2  3
4  5

7  8
9 10
11 12
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What we have seen is the way in which a low-rank argument is 
automatically replicated to agree with a high-rank argument, which 
is possible provided one frame is a prefix of the other. Otherwise 
there will be a length error. The frames in question are determined 
by the intrinsic dyadic ranks of the verb. 

The general scheme for automatically replicating one argument is: 
for arguments x and y, if u is a dyad with ranks L and R, and the L-
frame of x is f,g and the R-frame of y is f (supposing y to have 
the shorter frame) 

then (x u y) is computed as (x u (g& $)"R y) 

7.4 Reassembly of Results

We now look briefly at how the results of the computations on the 
separate cells are reassembled into the overall result. 

Suppose that the frame of application of a verb to its argument(s) 
is f, say. Then we can visualise each individual result as being 
stuffed into its place in the f-shaped framework of results. If each 
individual result-cell has the same shape, s say, then the shape of 
the overall result will be (f,s). However, it is not necessarily the 
case that all the individual results are the same shape. For 
example, consider the following verb R, which takes a scalar y and 
produces a rank-y result. 

   R =: (3 : '(y $ y) $ y') " 0
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R 1 R 2 

1 2 2
2 2

 

When R is applied to an array, the overall result may be explained 
by envisaging each separate result being stufffed into its 
appropriate box in an f-shaped array of boxes. Then everything is 
unboxed all together. Note that it is the unboxing which supplies 
padding and extra dimensions if necessary to bring all cells to the 
same shape. 

(R 1); (R 2) > (R 1) ; (R 2) R 1 2

+-+---+
|1|2 2|
| |2 2|
+-+---+

1 0
0 0

2 2
2 2

1 0
0 0

2 2
2 2

 

Consequently the shape of the overall result is given by (f, m) 
where m is the shape of the largest of the individual results. 

7.5 More on the Rank Conjunction

7.5.1 Relative Cell Rank
The rank conjunction will accept a negative number for a rank. 
Thus the expression (u " _1 y) means that u is to be applied to 
cells of rank 1 less than the rank of y, that is, to the items of y. 
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X $ X < " _1 X < " _2 X

0  1
2  3
4  5

6  7
8  9
10 11

2 3 2 +---+-----+
|0 1| 6  7|
|2 3| 8  9|
|4 5|10 11|
+---+-----+

+---+---+-----+
|0 1|2 3|4 5  |
+---+---+-----+
|6 7|8 9|10 11|
+---+---+-----+

 

7.5.2 User-Defined Verbs
The rank conjunction " has a special significance for user-defined 
verbs. The significance is that it allows us to define a verb 
considering only its "natural" rank: we ignore the possibility that it 
may be applied to higher-rank arguments. In other words, we can 
write a definition assuming the verb will be applied only to 
arguments of the natural rank. Afterwards, we can then put the 
finishing touch to our definition with the rank conjunction. Here are 
two examples. 

The factorial of a number n is the product of the numbers from 1 
to n. Hence (disregarding for the moment J's built-in verb !) we 
could define factorial straightforwardly as 

      f =: */ @: >: @: i.

because i. n gives the numbers 0 1 ... (n-1), and >: i. n 
gives 1 2 ... n. We see: 

f 2 f 3 f 4 f 5

2 6 24 120
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Will f work as expected with a vector argument? 

   f 2 3
4 10 18

Evidently not. The reason is that (f 2 3) begins by computing (i. 
2 3), and (i. 2 3) does NOT mean (i. 2) followed by (i. 3). 
The remedy is to specify that f applies separately to each scalar 
(rank-0 cell) in its argument: 

   f  =: (*/ @: (>: @: i.)) " 0
   
   f 2 3 4 5
2 6 24 120

For a second example of the significance of the rank-conjunction 
we look at explicitly defined verbs. The point being made here is, 
to repeat, that it is useful to be able to write a definition on the 
assumption that the argument is a certain rank say, a scalar, and 
only later deal with extending to arguments of any rank. 

Note that for any explicit verb, its intrinsic ranks are always 
assumed to be infinite. This is because the J system does not look 
at the definition until the verb is executed. Since the rank is 
infinite, the whole argument of an explicit verb is always treated as 
a single cell (or pair of cells for a dyad) and there is no automatic 
extension to deal with multiple cells. 

For example, the absolute value of a number can be computed by 
the verb: 

   abs =: 3 : 'if. y < 0 do. - y else. y end.'
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abs 3 abs _3

3 3

 

Since abs is explicitly defined, we see that its monadic (first) rank 
is infinite: 

   abs b. 0
_ _ _

This means that if abs is applied to an array y, of any rank, it will 
be applied just once, and we can see from the definition that the 
result will be y or -y. There are no other possibilities. 

It is indeed the case that if y is a vector then (y < 0) yields a 
vector result, but the expression (if. y < 0) makes ONE 
decision. (This decision will in fact be based, not on the whole of y 
< 0 but only on its first element. See Chapter 12 for more details). 
Hence if the argument contains both positives and negatives, this 
decision must be wrong for some parts of the argument. 

   abs 3 _3
3 _3

Hence with abs defined as above, it is important to say that it 
applies separately to each scalar in its argument. Thus a better 
definition for abs would be: 

   abs =:(3 : 'if. y < 0 do. -y else. y end.') " 0
   

file:///C:/Users/homer/14/12.htm#aaa
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   abs 3 _3
3 3
   

This brings us to the end of Chapter 7. 
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Chapter 8: Composing Verbs

This chapter is concerned with operators which combine two verbs 
to produce new composite verbs. 

8.1 Composition of Monad and Monad

Recall from Chapter 03 the composition conjunction @: (at colon, 
called "At"). Given verbs sum and square we can define a 
composite verb, sum-of-the-squares. 

   sum    =: +/
   square =: *:

sumsq =: sum @: square sumsq 3 4

sum@:square 25

 

The general scheme is that if f and g are monads then 

               (f @: g) y    means   f (g y)

Note in particular that f is applied to the whole result (g y). To 
illustrate, suppose g applies separately to each row of a table, so 
we have: 

   g =: sum " 1 
   f =: <
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y =: 2 2 $ 1 2 3 4 g y f g y (f @: g) y

1 2
3 4

3 7 +---+
|3 7|
+---+

+---+
|3 7|
+---+

 

We have just seen the most basic of kind of composition. Now we 
look at some variations. 

8.2 Composition: Monad And Dyad

If f is a monad and g is a dyad, then (f @: g) is a dyadic verb 
such that 

           x (f @: g) y    means    f (x g y)

For example, the sum of the product of two vectors x and y is 
called the "scalar product". 

   sp =: +/ @: *

x =: 1 2 y =: 2 3 x * y +/(x * y) x sp y

1 2 2 3 2 6 8 8

 

The last example showed that, in the expression (x (f @: g) y) 
the verb f is applied once to the whole of (x g y) 
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8.3 Composition: Dyad And Monad

The conjunction &: (ampersand colon, called "Appose") will 
compose dyad f and monad g. The scheme is: 

               x (f &: g) y   means   (g x) f (g y)

For example, we can test whether two lists are equal in length, 
with the verb (= &: #) 

   eqlen =: = &: #

x y #
x

#
y

(#x) = (#y) x eqlen y

1 2 2 3 2 2 1 1

 

Here f is applied once to the whole of (g x) and (g y). 

8.4 Ambivalent Compositions

To review, we have seen three different schemes for composition. 
These are: 

              (f @: g) y    =    f (g y)

            x (f @: g) y    =    f (x g y)

            x (f &: g) y    =    (g x) f (g y)

There is a fourth scheme, 
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              (f &: g) y    =    f (g y) 

which is, evidently, the same as the first. This apparent duplication 
may be useful if we are interested in writing an ambivalent 
definition, that is, with both a monadic and a dyadic case. 

Notice that from the first and second schemes it follows that if 
verb g is ambivalent then the composition f @: g is also 
ambivalent. For example, suppose g is the ambivalent built-in verb 
|. with |. y being the reverse of y and x |. y being the rotation 
of y by x places. 

y =: 'abcdef' (< @: |.) y 1 (< @: |.) y 

abcdef +------+
|fedcba|
+------+

+------+
|bcdefa|
+------+

 

From the third and fourth schemes above it follows that if verb f is 
ambivalent, then (f &: g) is ambivalent. For example, suppose 
that f is the verb % (reciprocal or divide). and g is *: (square). 

% *: 2 (% &: *:) 2 (*: 3) % (*:2) 3 (% &: *:) 2

0.25 0.25 2.25 2.25

 

8.5 More on Composition: Monad Tracking Monad

There is a conjunction @ (at, called "Atop"). It is a variation of the 
@: conjunction. Here is an example to show the difference between 
(f @: g) and (f @ g). 
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   y =: 2 2 $ 0 1 2 3

y f g (f @: g) y (f @ g) y

0 1
2 3

< sum"1 +---+
|1 5|
+---+

+-+-+
|1|5|
+-+-+

 

We see that with (f @: g) verb f is applied once. However, with 
(f@g), for each separate application of g there is a corresponding 
application of f. We could say that applications of f track the 
applications of g. 

Recall from Chapter 07 that a verb has in general three ranks, 
monadic, left and right, and for a verb f these ranks are yielded by 
the expression f b. 0. For example 

g g b. 0

sum"1 1 1 1

 

Suppose that the monadic rank of g is G. 

   G =: 0 { (g b. 0)

Then (f @ g) means (f @: g) applied separately to each G-cell, 
that is, (f @: g)"G. 
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(f @ g) y (f @: g)"G y

+-+-+
|1|5|
+-+-+

+-+-+
|1|5|
+-+-+

 

and so the general scheme is: 

             (f @ g) y    means     (f @: g) " G   
y

8.6 Composition: Monad Tracking Dyad

Next we look at the composition (f @ g) for a dyadic g. Suppose f 
and g are defined by: 

   f =: <
   g =: |. " 0 1  NB. dyadic

Here x g y means: rotate vectors in y by corresponding scalars in 
x. For example: 

x=: 1 2 y=: 2 3 $ 'abcdef' x g y

1 2 abc
def

bca
fde

 

Here now is an example to show the difference between f @: g 
and f @ g 
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f (x g y) x (f @: g) y x (f @ g) y 

+---+
|bca|
|fde|
+---+

+---+
|bca|
|fde|
+---+

+---+---+
|bca|fde|
+---+---+

 

We see that with (f @: g) verb f is applied once. With (f@g), for 
each separate application of g there is a corresponding application 
of f. 

Suppose that the left and right ranks of dyad g are L and R. Then 
(f @ g) means (f @: g) applied separately to each pair of an L-
cell from x and corresponding R-cell from y. That is, (f@g) means 
(f @: g)"G where G = L,R. 

G =: 1 2 { (g b. 0) x (f @:g)" G y x (f @ g) y

0 1 +---+---+
|bca|fde|
+---+---+

+---+---+
|bca|fde|
+---+---+

 

The scheme is: 

              x (f@g) y =  x (f@:g) " G y

8.7 Composition: Dyad Tracking Monad 

Recall that in Chapter 03 we met the conjunction & as a bonding 
operator. With one argument a noun and the other argument a 
dyadic verb the result is a monad. For example +&6 is a monad 
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which adds 6 to its argument. 

If both arguments of & are verbs then & has a different 
interpretation. In this case it is is a composition operator, called 
"Compose". Now we look at the composition f & g for dyadic f. 

Suppose g is the "Square" function, and f is the "comma" function 
which joins two lists. 

   f =: ,
   g =: *: 

x =: 1 2 y =: 3 4 g x g y

1 2 3 4 1 4 9 16

 

Here now is an example to show the difference between (f &: g) 
and (f & g) 

(g x) f (g y) x (f &: g) y x (f & g) y

1 4 9 16 1 4 9 16 1  9
4 16

 

We see that in (f &: g) the verb f is applied just once, to give 1 
4 , 9 16. By contrast, in (f & g) there are two separate 
applications of f, giving firstly 1,9 and secondly 4,16. 

The scheme is that 

              x (f & g) y  means  (g x) (f " G,G) 
(g y)
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where G is the monadic rank of g. Here f is applied separately to 
each combination of a G-cell from x and a corresponding G-cell 
from y. To illustrate: 

G=: 0 { (g b. 0) (g x)(f" (G,G))(g y) x(f&g)y 

0 1  9
4 16

1  9
4 16

 

8.8 Ambivalence Again

The composition f&g can be ambivalent. The dyadic case, x f&g y, 
we saw above. For the monadic case, f&g y means the same as 
f@g y. 

   f =: <
   g =: *:

f&g 1 2 3 f@g 1 2 3

+-+-+-+
|1|4|9|
+-+-+-+

+-+-+-+
|1|4|9|
+-+-+-+

 

8.9 Summary

Here is a summary of the 8 cases we have looked at so far. 
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   @:       (f @: g) y  =  f (g y)
   @:     x (f @: g) y  =  f (x g y)

   &:       (f &: g) y  =  f (g y)
   &:     x (f &: g) y  =  (g x) f (g y)

   @        (f @ g)  y  =  (f @: g) " G  y
   @      x (f @ g)  y  =  x (f @: g) " LR y

   &        (f & g)  y  =  (f @: g) " G  y
   &      x (f & g)  y  =  (g x) (f " (G,G)) (g y)

where G is the monadic rank of g and LR is the vector of left and 
right ranks of g. 

8.10 Inverses

The "Square" verb, (*:), is said to be the inverse of the "Square-
root" verb (%:). The reciprocal verb is its own inverse. 

*: 2 %: 
4

% 4 % 0.25

4 2 0.2
5

4

 

Many verbs in J have inverses. There is a built-in conjunction ^: 
(caret colon, called "Power") such that the expression f ^: _1 is 
the inverse of verb f. (This is like writing f-1 in conventional 
notation.) 
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For example, the inverse of square is square root: 

sqrt =: *: ^: _1 sqrt 16

*:^:_1 4

 

^: can automatically find inverses, not only of built-in verbs, but of 
user-defined verbs such as compositions. For example, the inverse 
of "twice the square-root of" is "the square of half of" 

   foo    =: (2&*) @: %:
   fooINV =: foo ^: _1
   

foo 16 fooINV 8 foo fooINV 36

8 16 36

 

8.11 Composition: Verb Under Verb

We now look at composition with the conjunction &. (ampersand 
dot, called "Under"). The idea is that the composition "f Under g" 
means: apply g, then f, then the inverse of g. 

For an example, the square root of a number can be found by 
taking the logarithm, halving and taking the antilog, that is, 
halving under logarithm. Recall that halve is -: and logarithm is ^. 

SQRT =: -: &. ^. SQRT 16

-:&.^. 4
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The general scheme is that 

             (f &. g) y   means  (g ^: _1) f g y

This is the end of Chapter 8. 



Chapter 9: Trains of Verbs  132

Chapter 9: Trains of Verbs

In this chapter we continue the topic of trains of verbs begun in 
Chapter 03. Recall that a train is an isolated sequence of functions, 
written one after the other, such as (+ * -). 

9.1 Review: Monadic Hooks and Forks

Recall from Chapter 03 the monadic hook, with the scheme: 

               (f g) y   means    y f (g y)

Here is an example, as a brief reminder: a whole number is equal 
to its floor: 

y =: 2.1 3 <. y y = <. y (= <.) y

2.1 3 2 3 0 1 0 1

 

Recall also the monadic fork, with the scheme: 

               (f g h) y   means    (f y) g (h y)

For example: the mean of a list of numbers is the sum divided by 
the number-of-items: 

   sum  =: +/
   mean =: sum % #
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y =: 1 2 3 4 sum y # y (sum y)%(# y) mean y

1 2 3 4 10 4 2.5 2.5

 

Now we look at some further variations. 

9.2 Dyadic Hooks

3 hours and 15 minutes is 3.25 hours. A verb hr, such that (3 hr 
15) is 3.25, can be written as a hook. We want x hr y to be x + 
(y%60) and so the hook is: 

   hr =: + (%&60)
   3 hr 15
3.25

The scheme for dyadic hook is: 

           x (f g) y   means   x f (g y)

with the diagram: 
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9.3 Dyadic Forks

Suppose we say that the expression "10 plus or minus 2" is to 
mean the list 12 8. A verb to compute x plus-or-minus y can be 
written as the fork (+,-): 

(10+2) , (10-2) 10 (+,-) 2

12 8 12 8

 

The scheme for a dyadic fork is: 

              x (f g h) y   means    (x f y) g (x h 
y)

Here is a diagram for this scheme: 
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9.4 Review

There are four basic schemes for trains of verbs. 

 (f g h) y    =    (f y) g (h y)       monadic fork 

x (f g h) y   =  (x f y) g (x h y)    dyadic  fork

 (f g)   y    =       y  f (g y)       monadic hook 

x (f g)   y   =       x  f (g y)       dyadic  hook

9.5 Longer Trains

Now we begin to look at ways to broaden the class of functions 
which can be defined as trains. In general a train of any length can 
be analysed into hooks and forks. For a train of 4 verbs, e f g h, 
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the scheme is that 

                    e f g h    means   e (f g h)

that is, a 4-train (e f g h) is a hook, where the first verb is e and 
the second is the fork (f g h). For example, Suppose that y is a 
list of numbers: 

   y =: 2 3 4

Then the "norm" of y is defined as (y - mean y), where mean is 
defined above as (sum % #). We see that the following expressions 
for the norm of y are all equivalent: 

   y - mean y
_1 0 1
   
   (- mean) y       NB. as a hook
_1 0 1
   
   (- (sum % #)) y  NB. by definition of mean
_1 0 1
   
   (- sum % #) y    NB. as 4-train
_1 0 1

A certain amount of artistic judgement is called for with long 
trains. This last formulation as the 4-train (- sum % #) does not 
bring out as clearly as it might that the key idea is subtracting the 
mean. The formulation ( - mean) is clearer. 

For a train of 5 verbs d e f g h the scheme is: 

                 d e f g h   means  d e (f g h)
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That is, a 5-train (d e f g h) is a fork with first verb d, second 
verb e and third verb the fork (f g h) For example, if we write a 
calendar date in the form day month year: 

   date =: 28 2 1999

and define verbs to extract the day month and year separately: 

   Da =: 0 & {
   Mo =: 1 & {
   Yr =: 2 & {

the date can be presented in different ways by 5-trains: 

(Da , Mo , Yr) date (Mo ; Da ; Yr) date

28 2 1999 +-+--+----+
|2|28|1999|
+-+--+----+

 

The general scheme for a train of verbs (a b c ...) depends 
upon whether the number of verbs is even or odd: 

  even:  (a b c ...)    means   hook (a (b c ...))  

  odd :  (a b c ...)    means   fork (a b (c ...))

9.6 Identity Functions

There is a built-in verb, monadic [ (left bracket, called "Same"). It 
gives a result identical to its argument. 
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[ 99 [ 'a b c'

99 a b c

 

There is a dyadic case, and also a similar verb ] . Altogether we 
have these schemes: 

            [ y   means y 

          x [ y   means x

            ] y   means y

          x ] y   means y

[ 3 2 [ 3 ] 3 2 ] 3

3 2 3 3

 

Monadic [ and monadic ] are both called "Same". Dyadic [ is 
called "Left". Dyadic ] is "Right". 

The expression (+ % ]) is a fork; for arguments x and y it 
computes: 

                 (x+y) % (x ] y)

that is, 

                 (x+y) % y
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2 ] 3 (2 + 3) % (2 ] 3) 2 (+ % ]) 3

3 1.66667 1.66667

 

Another use for the identity function [ is to cause the result of an 
assignment to be displayed. The expression foo =: 42 is an 
assignment while the expression [ foo =: 42 is not: it merely 
contains an assignment. 

       foo =: 42       NB.  nothing displayed
       [ foo =: 42
42

Yet another use for the [ verb is to allow several assignments to 
be combined on one line. 

a =: 3 [ b =: 4 [ c =: 5 a,b,c

3 3 4 5

 

Since [ is a verb, its arguments must be nouns, (that is, not 
functions). Hence the assignments combined with [ must all 
evaluate to nouns. 

9.6.1 Example: Hook as Abbreviation
The monadic hook (g h) is an abbreviation for the monadic fork 
([ g h). To demonstrate, suppose we have: 

   g =: ,
   h =: *:
   y =: 3
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Then each of the following expressions is equivalent. 

   ([ g h) y       NB. a fork
3 9
   ([ y) g (h y)   NB. by defn of fork
3 9
   y g (h y)       NB. by defn of [
3 9
   (g h) y         NB. by defn of hook
3 9
   

9.6.2 Example: Left Hook
Recall that the monadic hook has the general scheme 

             (f g) y    =   y f (g y)

How can we write, as a train, a function with the scheme 

             (  ?   ) y  =   (f y) g y

There are two possibilities. One is the fork (f g ]): 

   f =: *:
   g =: ,
    
   (f g ]) y        NB. a fork
9 3
   (f y) g (] y)    NB. by meaning of fork  
9 3
   (f y) g y        NB. by meaning of ]
9 3

For another possibility, recall the ~ adverb with its scheme: 
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             (x f~ y) means   y f x

Our train can be written as the hook (g~ f). 

   (g~ f) y      NB. a hook
9 3
   y (g~) (f y)  NB. by meaning of hook
9 3
   (f y) g y     NB. by meaning of ~
9 3
   

9.6.3 Example: Dyad
There is a sense in which [ and ] can be regarded as standing for 
left and right arguments. 

   f =: 'f' & ,
   g =: 'g' & ,
   

foo =: (f @: [) , (g @: ]) 'a' foo 'b'

f@:[ , g@:] fagb

 

9.7 The Capped Fork

The class of functions which can be written as unbroken trains can 
be widened with the aid of the "Cap" verb [: (leftbracket colon) 

The scheme is: for verbs f and g, the fork: 

             [: f g     means   f @: g
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For example, with f and g as above, we have 

y=:'y' f g y (f @: g) y ([: f g) y

y fgy fgy fgy

 

Notice how the sequence of three verbs ([: f g) looks like a fork, 
but with this "capped fork" it is the MONADIC case of the middle 
verb f which is applied. 

The [: verb is valid ONLY as the left-hand verb of a fork. It has no 
other purpose: as a verb it has an empty domain, that is, it cannot 
be applied to any argument. Its usefulness lies in building long 
trains. Suppose for example that: 

   h =: 'h'&,

then the expression (f , [: g h) is a 5-train which denotes a 
verb: 

   (f , [: g h) y        NB. a 5-train
fyghy
   
   (f y) , (([: g h) y)  NB. by meaning of 5-train
fyghy
   
   (f y) , (g @: h y)    NB. by meaning of [:
fyghy
   
   (f y) , (g h y)       NB. by meaning of @:
fyghy
   
   'fy'  , 'ghy'         NB. by meaning of f g h 
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fyghy

9.8 Constant Functions

Here we continue looking at ways of broadening the class of 
functions that we can write as trains of verbs. There is a built-in 
verb 0: (zero colon) which delivers a value of zero regardless of its 
argument. There is a monadic and a dyadic case: 

0: 99 0: 2 3 4 0: 'hello' 88 0: 99

0 0 0 0

 

As well as 0: there are similar functions 1: 2: 3: and so on up to 
9: and also the negative values: _9: to _1: 

1: 2 3 4 _3: 'hello'

1 _3

 

0: is said to be a constant function, because its result is constant. 
Constant functions are useful because they can occur in trains at 
places where we want a constant but must write a verb, (because 
trains of verbs, naturally, contain only verbs). 

For example, a verb to test whether its argument is negative (less 
than zero) can be written as (< & 0) but alternatively it can be 
written as a hook: 

   negative =:  < 0:
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x =: _1 0 2 0: x x < (0: x) negative x

_1 0 2 0 1 0 0 1 0 0

 

9.9 Constant Functions with the Rank Conjunction

The constant functions _9: to 9: offer more choices for ways of 
defining trains. Neverthless they are limited to single-digit scalar 
constants. We look now at at a more general way of writing 
constant functions. Suppose that k is the constant in question: 

   k =: 'hello'

An explicit verb written as (3 : 'k') will give a constant result of 
k: 

k (3 : 'k') 1 (3 : 'k') 1 2

hello hello hello

 

Since the verb (3 : 'k') is explicit, its rank is infinite. To apply it 
separately to scalars then (as we saw in Chapter 07) we need to 
specify a rank R of 0, with the aid of the Rank conjunction " : 

k R =: 0 ((3 : 'k') " R) 1 2

hello 0 hello
hello
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The expression ((3 : 'k') " R) can be abbreviated as (k " R), 
because " can take, as its left argument, a verb, as above, or a 
noun: 

k R ((3 : 'k') " R) 1 2 ('hello' " R) 1 2

hello 0 hello
hello

hello
hello

 

Note that if k is a noun, then the verb (k"R) means: the constant 
value k produced for each rank-R cell of the argument. By 
contrast, if v is a verb, then the verb (v"R) means: the verb v 
applied to each rank-R cell of the argument. 

The general scheme for constant functions with " is: 

                 k " R   means   (3 : 'k') " R

9.9.1 A Special Case
Given a temperature in degrees Fahrenheit, the equivalent in 
Celsius is computed by subtracting 32 and multiplying by five-
ninths. 

   Celsius =: ((5%9) & *) @: (- &32)
   
   Celsius 32 212
0 100
   

Another way to define Celsius is as a fork - a train of three verbs. 

   Celsius =: (5%9 "_ ) * (-&32)
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   Celsius 32 212
0 100
   

Notice that the fork in Celsius above has its left verb as a 
constant function. Here we have a special case of a fork which can 
be abbreviated in the form (noun verb verb). 

   Celsius =: (5%9) * (-&32) 
   
   Celsius 32 212
0 100
   

The general scheme (new in J6) for this abbreviation for a fork is: 
if n is a noun, u and v are verbs, then 

           n u v  means the fork  (n"_) u v

We have come to the end of of Chapter 9. 
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Chapter 10: Conditional and Other 
Forms

Tacit verbs, that is, verbs defined without the use of argument 
variables, were introduced in Chapter 03. Continuing this theme of 
tacit definition, in Chapter 08 we looked at the use of composition-
operators and in Chapter 09 at trains of verbs. 

The plan for this chapter is to look at further ways of defining 
verbs tacitly: 

• Conditional forms 
• Recursive forms 
• Iterative forms 
• Generating tacit definitions from explicit definitions 

10.1 Conditional Forms

Think of a number (some positive whole number). If it is odd, 
multiply by 3 and then add 1. Otherwise, halve the number you 
thought of. This procedure computes from 1 the new number 4, 
and from 4 the new number 2. 

A sequence of numbers generated by iterating the procedure is 
called a Collatz sequence, or sometimes a Hailstone sequence. For 
example: 

          17 52 26 13 40
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To write a function for this procedure, we start with three verbs, 
say halve to halve, mult to multiply-and-add-one, and odd to test 
for an odd number: 

   halve =: -:
   mult  =: 1: + (* 3:)
   odd   =: 2 & |

halve 6 mult 6 odd 6

3 19 0

 

Now our procedure for a new number can be written as an explicit 
verb: 

   COLLATZ =: 3 : 'if. odd y do. mult y else. halve y end.'

and equivalently as a tacit verb: 

   collatz =: halve ` mult @. odd

COLLATZ 17 collatz 17

52 52
 

In the definition of collatz, the symbol ` (backquote) is called the 
"Tie" conjunction. It ties together halve and mult to make a list of 
two verbs. (Such a list is called a "gerund" and we look at more 
uses of gerunds in Chapter 14). The conjunction @. is called 
"Agenda". Its right argument is a verb, which selects another verb 
from the list of verbs which is the left argument. Thus in 
evaluating collatz y the value of odd y is used to index the list 
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(halve`mult). Then the selected verb is applied to y. That is, 
halve y or mult y is computed accordingly as odd y is 0 or 1. 

In this example, we have two cases to consider: the argument is 
odd or not. In general, there may be several cases. The general 
scheme is, if u0, u1, ... un are verbs, and t is a verb computing an 
integer in the range 0 .. n, then the verb: 

              foo =: u0 ` u1 ` ...` un  @. t  

can be modelled by the explicit verb: 

   FOO =: 3 : 0
if.     (t y) = 0  do. u0 y 
elseif. (t y) = 1  do. u1 y

      ...

elseif. (t y) = n  do. un y
end.
)

That is, verb t tests the argument y and then u0 or u1 or ... is 
applied to y according to whether (t y) is 0 or 1 or .... 

10.1.1 Example with 3 Cases
Suppose that, each month, a bank pays or charges interest 
according to the balances of customers' accounts as follows. There 
are three cases: 

• If the balance is $100 or more, the bank pays interest of 
0.5% 

• If the balance is negative, the bank charges interest at 2%. 
• Otherwise the balance is unchanged. 



Chapter 10: Conditional and Other Forms  150

Three verbs, one for each of the three cases, could be: 

   pi =: * & 1.005        NB.  pay interest 
   ci =: * & 1.02         NB.  charge interest
   uc =: * & 1            NB.  unchanged
   

pi 1000 ci _100 uc 50

1005 _102 50
 

Now we want a verb to compute, from a given balance, 0 or 1 or 2, 
according to the case. We are free to choose how we number the 
cases. The following verb scores 1 for a balance of $0 or more plus 
another 1 for $100 or more. 

   case =: (>: & 0) + (>: & 100)
   
   case _50 0 1 100 200
0 1 1 2 2

Now the processing of a balance can be represented by the verb 
PB say, being careful to write the three verbs in the correct case-
number order. 

   PB =: ci ` uc  ` pi  @. case 
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PB _50 PB 0 PB 1 PB 100 PB 200

_51 0 1 100.5 201

 

The balance (the argument of PB) is expected to fall under exactly 
one of the three possible cases. Suppose the argument is a list of 
balances. The case verb delivers not just one but a list of case-
numbers. This is an error. The remedy is to apply the PB function 
separately to each item of its argument. 

PB 99 100 (PB "0) 99 100

error 99 100.5

 

10.2 Recursion

To compute the sum of a list of numbers, we have seen the verb 
+/ but let us look at another way of defining a summing verb. 

The sum of an empty list of numbers is zero, and otherwise the 
sum is the first item plus the sum of the remaining items. If we 
define three verbs, to test for an empty list, to take the first item 
and to take the remaining items: 

   empty =: # = 0:
   first =: {.
   rest  =: }.

then the two cases to consider are: 

• an empty list, in which case we apply the 0: function to 
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return zero 
• a non-empty list, in which case we want the first plus the 

sum of the rest: 

   Sum =: (first + Sum @ rest) ` 0:  @. empty 
   
   Sum 1 1 2
4

Here we see that the verb "Sum" recurs in its own definition and 
so the definition is said to be recursive. In such a recursive 
definition, the name which recurs can be written as $: (dollar 
colon, called "Self-Reference"), meaning "this function". This 
enables us to write a recursive function as an expression, without 
assigning a name. Here is the "Sum" function as an expression: 

   ((first + $: @ rest) ` 0: @. empty)  1 2 3
6
   

10.2.1 Ackermann's Function
Ackermann's function is celebrated for being extremely recursive. 
Textbooks show it in a form something like this explicit definition of 
a dyad: 

   Ack =: 4 : 0
if.       x = 0  do.  y + 1                     
elseif.   y = 0  do.  (x - 1) Ack 1                 
elseif.   1      do.  (x - 1) Ack (x Ack y -1) 
end.
)
   
   2 Ack 3
9
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A tacit version is due to Roger Hui (Vector, Vol 9 No 2, Oct 1992, 
page 142): 

   ack =: c1 ` c1 ` c2 ` c3 @. (#. @(,&*))
   
   c1 =: >:@]                NB. 1 + y
   c2 =: <:@[ ack 1:         NB. (x-1) ack 1
   c3 =: <:@[ ack [ack <:@]  NB. (x -1) ack x ack y 
-1
   
   2 ack 3
9

Notice that in the line defining c2 the function is referred to as 
ack, not as $:, because here $: would mean c2. 

Here is yet another version. The tacit version can be made to look 
a little more conventional by first defining x and y as the verbs 
[ and ]. Also, we test for only one case on a line. 

   x =: [
   y =: ]
   
   ACK =: A1 `  (y + 1:)                    @. (x = 0:)
   A1  =: A2 ` ((x - 1:) ACK 1:)            @. (y = 0:)
   A2  =:       (x - 1:) ACK (x ACK y - 1:)
   
   2 ACK 3
9

10.3 Iteration

10.3.1 The Power Conjunction
Think of a number, double it, double that result, double again. The 
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result of three doublings is eight times the original number. The 
built-in verb +: is "double", and the verb "three doublings" can be 
written using the "Power" conjunction (^:) as +: ^: 3 

+: +: +: 1 (+: ^: 3 ) 1

8 8

 

The general scheme is that for a verb f and an integer n 

         (f ^: n) y  means  f f f ... f f f f  y

                            <---  n f's  --->

Notice that f ^: 0 y is just y and then f ^: 1 y is f y. For 
example, recall the collatz verb "halve or multiply-by-3-and-add-
1 if odd". 

(collatz ^: 0) 6 (collatz ^: 1) 6 collatz 6

6 3 3

 

With the Power conjunction we can generate a series by applying 
collatz 0 times, once, twice and so on, starting with 6 for 
example 

   (collatz ^: 0 1 2 3 4 5 6 ) 6
6 3 10 5 16 8 4
   

10.3.2 Iterating Until No Change
The expression f ^: _ where the Power conjunction is given a 
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right argument of infinity (_), is a verb where f is applied until a 
result is reached which is the same as the previous result. The 
scheme is: 

        f ^: _ y    means   

                     r  such that r = f f ... f f y

                              and r = f r 

Here is an example. Suppose function P is defined as: 

   P =: 3 : '2.8  * y * (1 - y)'

Then if we repeatedly apply the function to an argument in the 
neighbourhood of 0.5, after 20 or so iterations the result will settle 
on a value of about 0.643 

   (P ^: 0 1 2 3    19 20 _) 0.5
0.5 0.7 0.588 0.6783 0.6439 0.642 0.6429

and this value, r say, is called a fixed point of P because r = P r 

r =: (P ^: _) 0.5 P r

0.6429 0.6429

 

10.3.3 Iterating While 
The right argument of the "Power" conjunction can be a verb which 
computes the number of iterations to be performed. The scheme 
is: 

           (f ^: g) y  means  f ^: (g y) y
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If g y computes 0 or 1, then f will be applied 0 times or 1 time: 
For example, here is a verb which halves an even number and 
leaves an odd number alone: 

   halve =: -:
   even  =: 0: = 2 & |

foo =: halve ^: even (foo " 0) 1 2 3 4

halve^:even 1 1 3 2

 

Now consider the function 

   w =: (halve ^: even) ^: _

This means "halve if even, and keep doing this so long as the 
result keeps changing". 

   w (3 * 16)
3

The scheme is that if g returns 0 or 1 then a function written (f ^: 
g ^: _ ) can be modelled by an explicit definition: 

   model =: 3 : 0
while. (g y) 
   do. y =.  f y 
end.
y
)
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   f =: halve
   g =: even
   

(f ^: g ^: _) 3 * 16 model 3*16

3 3

 

10.3.4 Iterating A Dyadic Verb
Adding 3, twice, to 0 gives 6 

   ((3&+) ^: 2) 0
6

This expression can be abbreviated as: 

   3 (+ ^: 2) 0
6

The given left argument (3) is fixed at the outset, so the iterated 
verb is the monad 3&+. The general scheme is: 

         x (u ^: w) y  means   ((x&u) ^: w) y

where w is a noun or verb. 

10.4 Generating Tacit Verbs from Explicit

Suppose that e is a verb, defined explicitly as follows: 

   e =: 3 : '(+/ y) % # y'
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The right argument of the colon conjunction we can call the 
"body". Then a tacit verb, t say, equivalent to e, can be produced 
by writing 13 : instead of 3 : with the same body. 

   t =: 13 : '(+/ y) % # y'

e t e 1 2 3 t 1 2 3

3 : '(+/ y) % # y' +/ % # 2 2

 

Here now is an example of an explicit dyad. 

   ed =:  4 : 'y % x'

The equivalent tacit dyad can be generated by writing 13 : rather 
than 4 : with the same body. 

   td =: 13 : 'y % x'

ed td 2 ed 6 2 td 6

4 : 'y % x' %~ 3 3

 

We can conclude that if we write 13 : body, and body contains y 
(but not x) then the result is a tacit verb of which the monadic 
case is equivalent to 3 : body. On the other hand, if body 
contains both x and y then the result is a tacit verb of which the 
dyadic case is equivalent to 4 : body. 

For the purpose of generating tacit functions, the body is restricted 
to being a single string or one line. Recall that with 3 : body, the 
body is not evaluated when the definition is entered. However, with 



 159 Chapter 10: Conditional and Other Forms

13 : body, then in effect the body is evaluated. For example: 

k =: 99 p =: 3 : 'y+k' q =: 13 : 'y+k' p 6 q 6

99 3 : 'y+k' 99 + ] 105 105

 

We see that p is defined in terms of k while q is not. While p and q 
are at present equivalent, any subsequent change in the value of k 
will render them no longer equivalent. 

k =: 0 p 6 q 6

0 6 105

 

A name with no assigned value is assumed to denote a verb. In 
the following example, note that f is unassigned, C is a predefined 
conjunction and g is a predefined verb. 

   C =: @:
   g =: %:

foo =: 13 : '(f C f y) , g y' f =: 
*:

foo 4

f@:f , g *: 256 2
 

This is the end of Chapter 10 
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Chapter 11: Tacit Verbs Concluded

In this chapter we consider some general points in writing 
expressions for tacit verbs. 

Here is an example of a tacit verb. It multiplies its argument by 3: 

f =: * & 3 f 4

*&3 12

 

Recall from Chapter 03 that the bonding operator & produces a 
monad from a dyad by fixing one of the arguments of the dyad. 
The scheme is that if N is a noun and V a dyadic verb, then: 

            (N & V) y    means   N V y

            (V & N) y    means   y V N

We take the bonding operator & as an example of a typical 
operator, where arguments may be nouns or verbs. In general, N 
can be an expression denoting an noun, and V an expression 
denoting a verb. We look now at how these expressions get 
evaluated. The general rules are set out formally in Appendix 1 but 
here we take an informal first look at a few of the main points. 
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11.1 If In Doubt, Parenthesize

Here is another tacit verb. Its general form is V&N. It multiplies its 
argument by 5%4, that is, by 1.25 

scale =: * & (5 % 4) scale 8

*&1.25 10

 

Are the parentheses around 5 % 4 necessary here? If we omit 
them, we see: 

   SCALE =: * & 5 % 4
   SCALE
1.25

so they evidently make a difference. SCALE is a number, not a 
verb. The result of 1.25 is produced by applying the verb *&5 to 
the argument % 4 (the reciprocal of 4) 

% 4 (* & 5) (% 4) * & 5 % 4

0.25 1.25 1.25

 

We have a general rule: informally we can say that conjunctions 
get applied before adjacent verbs. Thus in the expression * & 5 % 
4 the first step is to apply the & operator to its arguments * and 5. 

Why is the right argument of & just 5 and not 5%4? Because of 
another general rule: the right argument of a conjunction is as 
short as possible. We say that a conjunction has a "short right 
scope". By contrast, we say that a verb has a "long right scope" to 
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express what we earlier called the "rightmost first" rule for verbs. 

What about the left argument of an operator? An adverb or 
conjunction is said to have "long left scope", that is, as much as 
possible. For example, here is a verb z which adds 3 to the square 
of its argument. 3 plus the square of 2 is 7. 

z =: 3 & + @: *: z 2

3&+@:*: 7

 

We see that the left argument of @: is the whole of 3&+. 

If we are in doubt in any particular case we can always make our 
intention clear. We can write parentheses around a part of an 
expression, that is, around a function - verb or operator - together 
with its intended argument(s). For example, verb z can be written 
with parentheses as: 

z =: (3 & +) @: *: z 2

3&+@:*: 7

 

Sometimes parentheses are necessary and sometimes not, but, let 
me emphasize, if in doubt, parenthesize. 

11.2 Names of Nouns Are Evaluated

In an expression of the general form N&V or V&N, the the names of 
any nouns occurring in N are evaluated right away. Here is an 
example of a function f to multiply by five-fourths. The numerical 
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value is given as a%b where a and b are nouns. 

a =: 5 b =: 4 f =: * & (a % b) f 8

5 4 *&1.25 10

 

We see that function f contains the computed number 1.25 so that 
a%b has been evaluated. 

11.3 Names of Verb Are Not Evaluated

In N&V the verb-expression V is not necessarily fully evaluated. If 
expression V is the name of a verb, then the name is enough: 

w =: * g =: w & (a % b) g 8

* w&1.25 10

 

11.4 Unknowns are Verbs

When a new name is encountered, it is assumed to be a yet-to-be-
defined verb if it possibly can be. 
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h =: ytbd & (a%b) ytbd =: * h 8

ytbd&1.25 * 10

 

Any sequence of hitherto-unknown names is assumed to be a train 
of verbs: 

   Ralph Waldo Emerson
Ralph Waldo Emerson

Consequently, a verb can be defined in "top-down" fashion, that is, 
with detail presented later. For example, here is a Celsius-to-
Fahrenheit converter presented top-down. 

   ctof =: shift @ scale
           shift =: + & 32
           scale =: * & (9 % 5)        
   

ctof ctof 0 100

shift@scale 32 212

 

We can see that ctof is defined solely in terms of (the names) 
scale and shift. Hence if we now change scale or shift we will 
effectively change the definition of ctof. 

   ctof 100
212
   scale =: * & 2
   ctof 100
232
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   scale =: * & (9 % 5)
   ctof 100
212

The possibility of changing the definition of a function simply by 
changing one of its subordinate functions, may or may not be 
regarded as desirable. It is useful, in so far as we can correct a 
definition just by changing a small part. However, it may be a 
source of error: we may introduce a new verb, scale say, 
forgetting that scale is already defined as subordinate in ctof. 

There are ways to protect ctof against accidental redefinition of its 
subordinate functions. Firstly, we can put a wrapper of explicit 
definition around it, making scale and shift local, thus: 

   CTOF =: 3 : 0
shift =. + & 32
scale =. * & (9 % 5)
shift @ scale y
)
   CTOF 100
212

A second method is to, so to speak, "freezing" or "fixing" the 
definition of ctof, with the "Fix" adverb f. (letter-f dot). Observe 
the difference between the values of the verbs ctof and (ctof 
f.) 

ctof ctof f.

shift@scale +&32@(*&1.8)

 

We see that adverb f. applied to a tacit verb replaces names by 
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definitions, giving an equivalent verb defined only in terms of built-
in functions. Here is yet another definition of ctof. 

   scale =: * & (9 % 5)
   shift =: + & 32
   ctof  =: (shift @ scale) f.

ctof ctof 0 100

+&32@(*&1.8) 32 212

 

After this definition, the names scale and shift are still defined, 
but are no longer important in the definition of ctof. 

11.5 Parametric Functions

The following example shows the consequences of nouns being 
evaluated and verbs not in an expression for a tacit verb. 

A curve may be specified by an equation such as, for example: 

                y  =  lambda * x * (1 - x)

This equation describes a family of similar parabolic curves, and 
different members of the family are picked out by choosing 
different values for the number lambda. 

A function to correspond to this equation might be written 
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explicitly as verb P: 

   P =: 3 : 'lambda * y * (1-y)'

Here lambda is not an argument to function P, but a variable, a 
number, which makes a difference to the result. We say that 
lambda is a parameter, or that function P is parametric. 

x=:0.6 lambda=: 3.0 P x lambda=: 3.5 P x

0.6 3 0.72 3.5 0.84

 

Now, can we write a tacit version of P taking lambda as a 
parameter? 

lambda is currently 3.5. If we now generate a tacit form of P 

   tP =: 13 : 'lambda * y * (1-y)'
   tP
3.5 * ] * 1 - ]

then we see that lambda is treated as a constant, not a parameter. 
This is not what we want. We try again, this time ensuring that 
lambda is not specified beforehand, by erasing it: 

   erase <'lambda'
1
   tP =: 13 : 'lambda * y * (1-y)'
   tP
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[: lambda [: * ] * 1 - ]

Now we see that tP is a train of verbs, where lambda (being 
unknown) is assumed to be a verb. This assumption conflicts with 
the intended meaning of lambda as a number. Hence with lambda 
as a number, we get an error: 

lambda=: 3.5 tP x

3.5 error

 

Whether or not lambda is specified in advance, it appears that a 
fully tacit exact equivalent to P is not possible. However we can 
come close. 

One possibility is to compromise on "fully tacit". Here tP is a train 
of verbs, where the first is explicitly-defined to deliver the value of 
lambda regardless of its argument. 

tP =: (3 : 'lambda') * ] * (1: - ]) tP x

3 : 'lambda' * ] * 1: - ] 0.84

 

Another possibility is to compromise on "exact equivalent". Here 
we take parameter lambda to be, not a number, but a constant 
function (see Chapter 09) which delivers a number. 

For example, a value for the parameter could be written as 

   lambda =: 3.5 " 0

and tP could be defined as: 
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tP =: lambda * ] * (1: - ]) tP x

lambda * ] * 1: - ] 0.84

 

Now we can vary the parameter without redefining the function: 

lambda =: 3.75 " 0 tP x

3.75"0 0.9

 

This is the end of Chapter 11 
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Chapter 12: Explicit Verbs

This chapter continues from Chapter 04 the theme of the explicit 
definition of verbs. 

12.1    The Explicit Definition Conjunction

Recall from Chapter 04 the example of an explicit dyadic verb, the 
"positive difference" of two numbers, defined as larger minus 
smaller. 

   PosDiff =: 4 : '(x >. y) - (x <. y)'
   
   3 PosDiff 4
1

The general scheme for the explicit definition of a function is to 
provide two arguments to the Explicit Definition conjunction ( : ,   
colon) in the form 

             type : body

In the body, the variables x and y are the arguments. 

12.1.1 Type
The type is a number: type-3 functions are monadic verbs or 
ambivalent verbs. Type-4 functions are strictly dyadic verbs (that 
is, with no monadic case). There are other types: types 1 and 2 
are operators, covered in Chapter 13 . Type 13 is covered in 
Chapter 10 . 
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12.1.2 Memnonics for Types
The standard J profile predefines several variables to provide 
mnemonic names for the types, and other things, thus: 

   noun        =: 0
   adverb      =: 1
   conjunction =: 2
   verb        =: 3
   monad       =: 3
   dyad        =: 4
   def         =: :
   define      =: : 0

Thus the PosDiff example above could be also written as: 

   PosDiff =: dyad def '(x >. y) - (x <. y)'
   
   3 PosDiff 4
1
   

12.1.3 Body Styles
The body of an explicit definition consists of one or more lines of 
text. There are several ways to provide the body The example 
above, PosDiff, shows a single line written as a string. 

A multi-line body can be introduced with a right argument of 0 for 
the colon operator. 

   PosDiff =: 4 : 0
larger  =. x >. y
smaller =. x <. y
larger - smaller
)
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   3 PosDiff 4
1

Another variation allows a multi-line body to be written compactly 
by embedding line-feeds. LF is predefined to be the line-feed 
character. Notice that the whole body must be parenthesized. 

   PosDiff =: 4 : ('la =. x >. y', LF, 'sm =. x <. 
y', LF, 'la - sm')
   

PosDiff 3 PosDiff 4

+-+-+------------+
|4|:|la =. x >. y|
| | |sm =. x <. y|
| | |la - sm     |
+-+-+------------+

1

 

Another variation uses a boxed list of lines (again with the body 
parenthesized): 

   PosDiff =: 4 : ('la =. x >. y' ; 'sm =. x <. 
y' ;  'la - sm')

PosDiff 3 PosDiff 4

+-+-+------------+
|4|:|la =. x >. y|
| | |sm =. x <. y|
| | |la - sm     |
+-+-+------------+

1
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Notice that these are not variations of syntax, but rather 
alternative expressions for constructing a data-structure 
acceptable as the right-argument of the : operator. 

12.1.4 Ambivalent Verbs
An ambivalent verb has both a monadic and a dyadic case. In the 
definition, the monadic case is presented first, then a line 
consisting of a solo colon, and then the dyadic case. For example: 

   log =: 3 : 0
^. y     NB. monad - natural logarithm 
:
x ^. y   NB. dyad  - base-x  logarithm  
)
   

log 2.7182818 10 log 100

1 2

 

12.2 Assignments

In this section we consider assignments, which are of significance 
in defining explicit functions. 

12.2.1 Local and Global Variables
Consider the example 

   foo =: 3 : 0
L =.  y
G =:  y
L
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)

Here, the assignment of the form 

               L =. expression

causes the value of expression to be assigned to a local variable 
named L. Saying that L is local means that L exists only while the 
function foo is executing, and furthermore this L is distinct from 
any other variable named L. By contrast, the assignment of the 
form 

               G =: expression

causes the value of expression to be assigned to a global variable 
named G. Saying that G is global means that the unique variable G 
exists independently, in its own right. 

To illustrate, we define two GLOBAL variables called L and G, then 
execute foo to show that the L mentioned in foo is not the same 
as global L, while the G mentioned in foo is the same as global G: 

   L =: 'old L'
   G =: 'old G'
   

foo foo 'new' L G

+-+-+-------+
|3|:|L =.  y|
| | |G =:  y|
| | |L      |
+-+-+-------+

new old L new
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With versions of J from J6 onward, it is regarded as an error to 
make a global assignment (with =:) to a variable with the same 
name as an already-existing local variable. 

For example, the argument variables x and y are local, so it would 
normally be an error in an explicit verb to make a global 
assignment to a variable named y . 

   foo =: 3 : 0
z =. y + 1
y =: 'hello'
z
)
   
   foo 6 
|domain error: foo
|   y    =:'hello'
   

If we really, really wanted to assign to a global named y from 
within an explicit definition, the local y must first be erased. 

   foo =: 3 : 0
z =. y+1
erase <'y'
y =: 'hello'
z
)
   
   foo 6
7
   y
hello
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12.2.2 Local Functions
We have seen local variables, which are nouns. We may also have 
local functions. A local function may be tacit or explicit, as in the 
following example 

   foo =: 3 : 0
Square  =. *:
Cube    =. 3 : 'y * y * y'
(Square y) + (Cube y)
)
   
   foo 2
12

However, what we can't have is an explicit local function defined by 
an inner multiline body Recall that a multiline body is a script 
terminated by a solo right parenthesis, so we cannot have one 
such body inside another. Instead, we could use an alternative 
form for the body of an inner function, such as scale in the 
following example: 

   FTOC =: 3 : 0
   line1   =. 'k =. 5 % 9'
   line2   =. 'k * y'
scale =. 3 : (line1 ; line2)  
scale y - 32
)
   
   FTOC 212
100

One final point on the topic of inner functions. A name, of a 
variable or function, is either global or local. If it is local, then that 
means it is recognised in the function in which it is defined. 
However it is not recognised in any inner function. For example: 
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   K =: 'hello '
   
   zip =: 3 : 0
K =. 'goodbye '
zap =. 3 : 'K , y'
zap y
)
   
   zip 'George'
hello George

We see that there is a global K and a local K. The inner function 
zap uses the global K because the K which is local to zip is not 
local to zap. 

12.2.3 Multiple and Indirect Assignments
J provides a convenient means of unpacking a list by assigning 
different names to different items. 

'day mo yr' =: 16 10 95 da
y

m
o

yr

16 10 95 16 1
0

95

 

Instead of a simple name to the left of the assignment, we have a 
string with names separated by spaces. 

A variation uses a boxed set of names: 
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('day';'mo';'yr') =: 17 11 96 da
y

m
o

yr

17 11 96 17 1
1

96

 

The parentheses around the left hand of the assignment force 
evaluation as a set of names, to give what is called "indirect 
assignment". To illustrate: 

   N =: 'DAY';'MO';'YR'

(N) =: 18 12 97 DAY MO YR

18 12 97 18 12 97

 

As a convenience, a multiple assignment will automatically remove 
one layer of boxing from the right-hand side: 

(N) =: 19;'Jan';98 DAY MO YR

+--+---+--+
|19|Jan|98|
+--+---+--+

19 Ja
n

98

 

12.2.4 Unpacking the Arguments
Every J function takes exactly one or exactly two arguments - not 
zero and not more than two. This may appear to be a limitation 
but in fact is not. A collection of values can be packaged up into a 
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list, or boxed list, to form in effect multiple arguments to the J 
function. However, the J function must unpack the values again. A 
convenient way to do this is with the multiple assignment. For 
example, the familiar formula to find the roots of a quadratic 
(a*x^2) +(b*x)+c, given the vector of coefficients a,b,c might 
be: 

   rq =: 3 : 0
'a b c' =. y
((-b) (+,-) %: (b^2)-4*a*c) % (2*a)
)

rq 1 1 _6 rq 1 ; 1 ; _6

2 _3 2 _3

 

12.3 Control Structures

12.3.1 Review
Recall from Chapter 04 the positive-difference function defined as: 

   POSDIFF =: 4 : 0
if.   x > y
do.   x - y
else. y - x
end.
)
   
   3 POSDIFF 4
1

Everything from if. to end. is called a "control structure". In it, 
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if. do. else. and end. are called "control words". 

The plan for this section is to use this example for a general 
discussion of control structures, and then go on to look at a 
number of particular control structures. 

12.3.2 Layout
We can freely choose a layout for the expressions and control 
words forming a control structure. Immediately before or 
immediately after any control word, any end-of-line is optional, so 
that we can choose to remove one or insert one. For example, by 
removing as many as possible from POSDIFF we get 

   PD =: 4 : 'if.  x > y  do.  x - y  else.  y - x  
end. '
   
   3 PD 4
1
   

12.3.3 Expressions versus Control Structures
We speak of evaluating an expression. We regard assignments as 
expressions, since they produce values, but in this case it is 
natural to speak of "executing" the assignment, since there is an 
effect as well as a value produced. We will use the words "execute" 
and "evaluate" more or less interchangeably. 

Executing (or evaluating) a control structure produces a value, the 
value of one of the expressions within it. Nevertheless, a control 
structure is not an expression, and cannot form part of an 
expression. The following is a syntax error: 

   foo =: 3 : '1 + if. y > 0 do. y else. 0 end.'
   
   foo 6
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|syntax error: foo
|       1+

Observing the distinction between expressions and control 
structures, we can say that the body of an explicit definition is a 
sequence of items, where an item is either an expression or a 
control structure. Here is an example where the body is an 
expression followed by a control structure followed by an 
expression. 

   PD1 =: 4 : 0
w =. x - y
if. x > y do. z =. w  else. z =. - w end.
z
)
   
   3 PD1 4
1
   

The value produced by a control structure is discarded if the 
control structure it is not the last item in the sequence. However, 
this value can be captured when the item is the last, so that the 
value becomes the result delivered by the function. 

Hence the previous example can be simplified to: 

   PD2 =: 4 : 0
w =. x - y
if. x > y do. w else. - w end.
)
   
   3 PD 4
1
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12.3.4 Blocks
The examples above show the pattern: 

                if. T do. B1 else. B2 end.

meaning: if the expression T evaluates to "true", then execute the 
expression B1, and otherwise execute the expression B2. 

Expression T is regarded as evaluating to "true" if T evaluates to 
any array of which the first element is not 0. 

   foo =: 3 : 'if.  y do. ''yes''  else. ''no''  
end.'
   

foo 1 1 1 foo 'abc' foo 0 foo 0 1

yes yes no no

 

More generally, T, B1 and B2 may be what are called "blocks". A 
block is a sequence of items, where an item is either an expression 
or a control structure. The result delivered by a block is the value 
of the last item of the block. 

Here is an example, to form the sum of a list, where the T-block 
and the B2-block each consist of a sequence. 

   sum =: 3 : 0
if. 
    length  =. # y      NB. T block
    length  = 0         NB. T block
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do. 
    0                   NB. B1 block
else. 
    first =. {. y       NB. B2 block
    rest  =. }. y       NB. B2 block
    first + sum rest    NB. B2 block
end.
)
   
   sum 1 2 3
6

Here we see that the value of the T-block (true or false) is the 
value of the last expression in the sequence, (length = 0) 

The items of a block may be (inner) control structures. For 
example, here is a function to classify the temperature of porridge: 

   ClaTePo =: 3 : 0
if. y > 80  do.      'too hot'
else.
      if. y < 60 do. 'too cold'
      else.          'just right'
      end.
end.
)
   
   ClaTePo 70
just right

12.3.5 Variants of if.
A neater version of the last example is: 

   CLATEPO =: 3 : 0
if.     y > 80 do. 'too hot'
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elseif. y < 60 do. 'too cold'
elseif. 1      do. 'just right'
end.
)
   
   CLATEPO 70
just right
   

showing the pattern: 

         if. T1 do. B1 elseif. T2 do. B2  ... 
elseif. Tn do. Bn end.

Notice that according to this scheme, if all of the tests T1 ... Tn 
fail, then none of the blocks B1 .. Bn will be executed. 
Consequently we may wish to make Tn a catch-all test, with the 
constant value 1, as in the example of CLATEPO above. 

If all the tests do fail, so that none of the blocks B0 ... Bn is 
executed, then the result will be i. 0 0 which is a J convention for 
a null value. 

   foo =: 3 : 'if. y = 1 do. 99 elseif. y = 2 do. 
77 end. '
   
   (i. 0 0) -: foo 0
1
   

There is also the pattern: 

          if. T do. B end.
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Here either B is executed or it is not. For example, positive-
difference yet again: 

   PD =: 4 : 0
z =. x - y
if. y > x do. z =. y - x end.
z
)
   
   3 PD 4
1

12.3.6 The select. Control Structure
Consider this example of a verb to classify a name, using an if. 
control structure. 

   class =: 3 : 0
t =. 4 !: 0 < y
if.     t = 0 do. 'noun'
elseif. t = 1 do. 'adverb'
elseif. t = 2 do. 'conjunction'
elseif. t = 3 do. 'verb'
elseif. 1     do. 'bad name'
end.
)
   
   class 'class'
verb
   class 'oops'
bad name
   

A neater formulation is allowed by the select. control structure. 

   CLASS =: 3 : 0
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select.  4 !: 0 < y
case. 0 do. 'noun'
case. 1 do. 'adverb'
case. 2 do. 'conjunction'
case. 3 do. 'verb'
case.   do. 'bad name'
end.
)
   
   CLASS 'CLASS'
verb
   CLASS 'oops'
bad name
   

Suppose we are interested only in a three-way classification, into 
nouns, verbs and operators (meaning adverbs or conjunctions). 
We could of course write: 

   Class =: 3 : 0
select.  4 !: 0 < y
case. 0 do. 'noun'
case. 1 do. 'operator'
case. 2 do. 'operator'
case. 3 do. 'verb'
case.   do. 'bad name'
end.
)
   

but this can be abbreviated as: 

   Clss =: 3 : 0
select.  4 !: 0 < y
case. 0    do. 'noun'
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case. 1;2  do. 'operator'
case. 3    do. 'verb'
case.      do. 'bad name'
end.
)
   

Clss 'Clss' o =: @: Clss 'o' Clss 'oops' 

verb +--+
|@:|
+--+

operator bad name

 

12.3.7 The while. and whilst. Control Structures
In the general pattern 

             while. T do. B end.

block B is executed repeatedly so long as block T evaluates to true. 
Here is an example, a version of the factorial function: 

   fact =: 3 : 0
r =. 1
while. y > 1
do.    r  =. r * y
       y =. y - 1
end.
r
)
   
   fact 5
120
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The variation whilst. T do. B end. means 

             B

             while. T do. B end.

that is, block B is executed once, and then repeatedly so long as 
block T is true. 

12.3.8 for. 
The pattern 

             for_a. A do. B. end.

means: for each item a in array A, execute block B. Here a may be 
any name; the variable a takes on the value of each item of A in 
turn. For example, to sum a list: 

   Sum =: 3 : 0
r =. 0
for_term. y do.  r =. r+term end.
r
)
   
   Sum 1 2 3
6

In addition to the variable a for the value of an item, the variable 
a_index is available to give the index of the item. For example, 
this function numbers the items: 
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   f3 =: 3 : 0
r =. 0 2 $ 0
for_item. y do.  r =. r , (item_index; item) end.
r
)
   
   f3 'ab';'cdef';'gh'
+-+----+
|0|ab  |
+-+----+
|1|cdef|
+-+----+
|2|gh  |
+-+----+

Another variation is the pattern for. A do. B end. in which block 
B is executed as many times as there are items of A. For example, 
here is a verb to count the items of a list. 

   f4 =: 3 : 0
count =. 0
for. y do. count =. count+1 end.
)
   
   f4 'hello'
5
    
12.3.9 Other Control Structures
Chapter 29 covers the control structure try. catch. end. . Other 
control words and structures are covered in the J Dictionary 

This is the end of Chapter 12. 
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Chapter 13: Explicit Operators

This chapter covers explicit definition of operators, that is, adverbs 
and conjunctions defined with the colon conjunction. 

The scheme for explicit definition is: 

            1 : body     is an adverb

            2 : body     is a conjunction

where body is one or more lines of text. The possibilities for the 
result produced by an operator so defined are: a tacit verb, an 
explicit verb, a noun or another operator. We will look at each case 
in turn. 

13.1 Operators Generating Tacit Verbs

Recall from Chapter 07 the built-in rank conjunction ". For any 
verb u, the expression u"0 is a verb which applies u to the 0-cells 
(scalars) of its argument. 

Now suppose we aim to define an adverb A, to generate a verb 
according to the scheme: for any verb u 

         u A   is to be     u " 0

Adverb A is defined explicitly like this: 
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A =: 1 : 'u " 0' f =: < A f 1 2

1 : 'u " 0' <"0 +-+-+
|1|2|
+-+-+

 

In the definition (A =: 1 : 'u " 0') the left argument of the 
colon is 1, meaning "adverb". 

The right argument is the string 'u " 0'. This string has the form 
of a tacit verb, where u stands for whatever verb will be supplied 
as argument to the adverb A. In the explicit definition of an 
adverb, the argument-variable is always u. 

Adverbs are so called because, in English grammar, adverbs 
modify verbs. In J, by contrast, adverbs and conjunctions in 
general can take nouns or verbs as arguments. In the following 
example, adverb W is to generate a verb according to the scheme: 
for integer u 

        u W    is to be   < " u

that is, u W boxes the rank-u cells of the argument. The definition 
of W is shown by: 
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W =: 1 : '< " u' 0 W z =: 'abc' 0 W z 1 W z

1 : '< " u' <"0 abc +-+-+-+
|a|b|c|
+-+-+-+

+---+
|abc|
+---+

 

For another example of an adverb, recall the dyad # where x # y 
selects items from y according to the bitstring x. 

y =: 1 0 2 3 1 0 1 1 # y

1 0 2 3 1 2 3

 

To select items greater than 0, we can apply the test-verb (>&0) 

y >&0 y (>&0 y) # y

1 0 2 3 1 0 1 1 1 2 3

 

A tacit verb to select items greater than 0 can be written as a fork 
f: 

f =: >&0 # ] f y

>&0 # ] 1 2 3

 

This fork can be generalised into an adverb, B say, to generate a 
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verb to select items according to whatever verb is supplied in place 
of the test >&0. 

   B =: 1 : 'u # ]'

If we supply >&1 as a test-verb: 

g =: (>&1) B y g y

>&1 # ] 1 0 2 3 2 3

 

We see that the body of B is the fork to be generated, with u 
standing for the argument-verb to be supplied. Conjunctions, 
taking two arguments, are defined with (2 : '...'). The left 
argument is u and the right is v 

For example, consider a conjunction THEN, to apply one verb and 
then apply another to the result, that is, a composition. The 
scheme we want is: 

           u THEN v     is to be v @: u

and the definition of THEN is: 

THEN =: 2 : 'v @: u' h =: *: THEN < h 1 2 3

2 : 'v @: u' <@:*: +-----+
|1 4 9|
+-----+

 

For another example, consider counting (with #) those items of a 
list which are greater than 0. A verb to do this might be: 
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foo =: # @: (>&0 # ]) y foo y

#@:(>&0 # ]) 1 0 2 3 3

 

We can generalize foo to apply a given verb u to items selected by 
another given verb v. We define a conjunction C with the scheme 

             u C v   is to be   u @: (v # ]) 

and the definition of C is straightforwardly: 

C =: 2 : 'u @: (v # ])' f =: # C (>&0) y f y

2 : 'u @: (v # ])' #@:(>&0 # ]) 1 0 2 3 3

 

13.1.1 Multiline Bodies
The right argument of colon we may call the body of the definition 
of our operator. In the examples so far, the body was a string, a 
schematic tacit verb, for example 'v .@: u' . This is the verb to 
be delivered by our operator. More generally, the body can be 
several lines. The idea is that, when the operator is applied to its 
argument, the whole body is executed. That is, each line is 
evaluated in turn and the result delivered is the value of the last 
line evaluated. This is exactly analogous to explicit verbs, except 
that here the result is a value of type "function" rather than of type 
"array". 

Here is an example of a multi-line body, the previous example 
done in two steps. To apply u to items selected by v, a scheme for 
conjunction D could be written: 

         u D v  is to be  (u @: select) where 
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select is v # ] 

and D defined by 

   D =: 2 : 0
select =: v # ]
u @: select
)

Again counting items greater than 0, we have 

f =: # D (>&0) y f y

#@:select 1 0 2 3 3

 

The first line of D computes an inner function select from the right 
argument. The second line composes select with the left 
argument, and this is the result-verb delivered by D. 

Now this definition has an undesirable feature: we see that select 
is defined as a global (with =:). It would be better if select were 
local. 

However, we can see, by looking at the value of the verb f above, 
that select must be available when we apply f. If select is local 
to D, it will not be available when needed. 

We can in effect make select local by using the "Fix" adverb (f.) 
(letter-f dot.) The effect of applying "Fix" to a verb is to produce 
an equivalent verb in which names are replaced by by their 
corresponding definitions. That is, "Fix" resolves a tacit verb into 
its primitives. For example: 



Chapter 13: Explicit Operators  198

p =: + q =: * r =: p,q r f.

+ * p , q + , 
*

 

Here is how we use Fix to enable select to be local. In the 
example below, notice that we Fix the result-expression on the last 
line: 

   E =: 2 : 0
select =. v # ]
(u @: select) f.
)
   

Now a verb to count greater-than-0 items can be written: 

g =: # E (>&0) y g y

#@:(>&0 # ]) 1 0 2 3 3

 

We see that g, unlike f, has no local names. 

13.2 New Definitions from Old

Suppose we aim to develope a function which, given a list of 
numbers, replaces each number by the mean of its two neighbours 
in the list, the previous and the next. For the first or last, we 
assume a neighbour is zero. 
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A suitable "data smoothing" function could be written 

   sh    =: |. !. 0    NB. shift, entering zero
   prev  =: _1 & sh    NB. right shift
   next  =: 1 & sh     NB. left shift
   halve =: -:
   
   smoo  =: halve @: (prev + next)
   

so for a list of numbers N we might see : 

N =: 6 2 8 2 4 prev N next N smoo N

6 2 8 2 4 0 6 2 8 2 2 8 2 4 0 1 7 2 6 1

 

Now suppose we also want another smoothing function which 
rotates the data rather than shifting in zero. (The data might be, 
say, samples of a repeated waveform.) 

The only change needed from smoo is that the shift verb sh must 
become a rotate verb, that is, (|.). 

If the definition of smoo were large and complicated we might 
prefer to avoid entering it again. Instead, we could re-evaluate the 
definition we already have, in an environment in which the name 
sh means "rotate". This environment can be conveniently provided 
by a little adverb, SMOO say, with |. (rotate) for its argument: 

   SMOO =: 1 : ('sh =. u' ; 'smoo f.')

so the rotating variant of smoo is given by 
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   rv =: |. SMOO
   
   rv
-:@:(_1&|. + 1&|.)
   

N smoo N rv N

6 2 8 2 4 1 7 2 6 1 3 7 2 6 4

 

This example shows using an adverb to generalise an expression 
(smoo) to a function In summary, since smoo is defined in terms of 
sh, we have generalised it to a function taking sh as argument. 

13.3 Operators Generating Explicit Verbs

Suppose we aim to define a conjunction H say, with the scheme: 

  u H v    is to be     3 : 0
                        z =. v y
                        y u z
                        )
   

There is a messy way and a neat way to do this. Let me show you 
the messy way first, so that the merits of the neat way can be 
appreciated. 

The messy way: we can write H in the same style as the previous 
examples. That is, the body of the definition computes a value 
which is delivered when the operator is applied to arguments. In 
this case the value is to be of the form 3 : string where string 
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must be built from the arguments. For example: 

   H =:  2 : 0
    U =. 5!:5 < 'u'
    V =. 5!:5 < 'v'
    string =. 'z =. ', V , 'y',  LF
    string =. string , 'y ', U , ' z', LF
    3 : string
)
   

and we see 

   foo =: + H *:
   foo 5
30
   

The conjunction H is pretty ugly but the value of the generated 
function foo is plain to see: 

   foo
3 : 0
z =. *:y
y + z
)
   

Now we come to the neat way to define this conjunction. So far we 
have seen operators where the body is executed to deliver the 
result. Let us say they are operators of the first kind. Now we look 
at operators of the second kind, where the body of the operator is 
not executed but instead serves as a template for the verb to be 
generated. For example: 
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   K =: 2 : 0
z =. v y
y u z
)
   

Clearly the definition of K is neater than the definition of H but 
nevertheless they are equivalent. Notice that the body of K 
contains both the argument-variables u and v for the operator, and 
also the argument-variable y of the generated verb. It is this 
combination of argument variables which determines that the 
operator is of the second kind. 

   bar =: + K *:
   
   bar 5
30
   

The generated verb bar is equivalent to foo but it is displayed 
differently. 

   bar
+ (2 : 0) *:
z =. v y
y u z
)
   

Now we look in more detail at examples of operators of the second 
kind. 

13.3.1 Adverb Generating Monad
Consider the following explicit monadic verb, e. It selects items 
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greater than 0, by applying the test-verb >&0. 

e =: 3 : '(>&0 y) # y' y e y

3 : '(>&0 y) # y' 1 0 2 3 1 2 3

 

We can generalise e to form an adverb, F say, which selects items 
according to a supplied test-verb. The scheme we want is: for any 
verb u: 

         u F   is to be    3 : '(u y) # y'

Adverb F is defined by: 

   F  =: 1 : '(u y) # y'

Now the verb >&1 F will select items greater than 1: 

y >&1 F y

1 0 2 3 2 3

 

In the body of F the variable u stands for a verb to be supplied as 
argument to adverb F. If this argument is say >&1, then y stands 
for an argument to the generated explicit verb 3 : '(>&1 y) # 
y'. 

That is, our method of defining the generated verb is to write out 
the body of an explicit definition, with u at places where a supplied 
verb is to be substituted. 
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13.3.2 Adverb Generating Explicit Dyad
Suppose we want an adverb W, say, with the scheme: for any verb 
u 

           u W     is to be      4 : '(u x) + (u 
y)'

Recall from Chapter 12 that there is another way to write an 
explicit dyad. Rather than beginning with 4 : we can begin with 3 
: and write a multi-line body in which a solo colon separates 
monadic and dyadic cases. Here we have no monadic case, so the 
scheme above can be equivalently written as: 

           u W    is to be     3 : 0

                               :    

                               (u x) + (u y)

                               )

The explicit definition of adverb W follows straightforwardly: 

   W =: 1 : 0
:
(u x) + (u y)
)
      

We see: 

(*: 2) + (*: 16) 2 (*: W) 16

260 260
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For another example, suppose we want an adverb, T say, to apply 
a given verb u to every combination of a scalar in vector argument 
x with a scalar in vector argument y. There is a built-in adverb / 
called "Table" for this, but here is a home-made version. The 
scheme is: 

       u T   is to be 4 : ' x (u " 0 0) " 0 1  y' 

that is, 

       u T   is to be 3 : 0
                      x  (u " 0 0) " 0 1  y
                      )

and so T is defined by 

   T =: 1 : 0
:
x  ((u " 0 0) " 0 1)  y
)
   
   

so we see: 

   1 2 3 + T 4 5 6 7
5 6 7  8
6 7 8  9
7 8 9 10
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13.3.3 Conjunction Generating Explicit Monad
A conjunction takes two arguments, called u and v. 

As before, we specify the generated verb by writing out the body 
of an explicit verb. Here y stands for the argument of the 
generated verb and u and v stand for argument-verbs to be 
supplied to the conjunction. In this example the body is multi-line. 
As before, u will be applied to items selected by v 

   G  =: 2 : 0
selected =. (v y) # y
u selected
)

Now a verb to count greater-than-zero items can be written as # G 
(>&0): 

y # G (>&0) y

1 0 2 3 3

 

13.3.4 Generating a Explicit Dyad
Suppose we want a conjunction H such that, schematically, for 
verbs u and v 

         u H v    is to be    4 : '(u x) + (v y)'

or equivalently, as we saw above: 

         u H v    is to be   3 : 0
                             : u x) + (v y)
                             ) 
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The explicit definition of H follows straightforwardly: 

   H =: 2 : 0
:
(u x) + (v y)
)
      

We see: 

(*: 2) + (%: 16) 2 (*: H %:) 16

8 8

 

13.3.5 Alternative Names for Argument-Variables
For the sake of completeness, it should be mentioned that 
arguments to operators may be named m and n rather than u and 
v, to constrain arguments to be nouns, that is, to cause verbs to 
be signalled as errors. 

Furthermore, for historical reasons, if the only argument variables 
are x or y or both, we get an operator of the first kind. That is, in 
the absence of u or v or m or n then x and y are equivalent to u 
and v. 

These alternative names will not be further considered. 

13.3.6 Review
So far, we have seen that for operators introduced with 1 : body 
or 2 : body, there are two kinds of definition. 

• With operators of the first kind, the body is executed (that, 
is evaluated) to compute the value of the result. The result 
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can be of any type. The argument-variables occurring in the 
body are u or v or both. 

• With operators of the second kind, the result is always an 
explicit function. The body of the operator is not executed, 
but rather becomes the body of the generated function. Here 
x and y are arguments to the generated function in the 
usual way, and u or v in this body are placeholders which 
receive the values of arguments to the operator. 

The J system recognises which kind is intended by determining 
which of the argument-variables u v x y occur in the the body. If 
we have BOTH (u or v) AND (x or y) then the operator is of the 
second kind. Otherwise it is of the first kind. 

13.3.7 Executing the Body (Or Not)
We said above that, for an operator of the first kind, the body is 
executed (or evaluated) when arguments are supplied. This can be 
demonstrated. 

First, here is a utility verb which displays its argument on-screen. 

   display =: (1 !: 2) & 2

Now insert display 'hello' into an operator of the first kind: 

     R =: 2 : 0
display 'hello'
select =. v # ]   
(u @: select) f.
)

When R is applied to its argument, the body is demonstrably 
executed: 
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   f =: # R (>&0)
hello
   
   f 1 0 2 0 3
3

By contrast, for an operator of the second kind, when arguments 
are supplied, the body is not executed, but rather becomes the 
body of the result function (after substituting the arguments). We 
can demonstrate this by inserting display 'hello' into the body 
of the operator, and observing that it becomes part of the result-
function. 

   S =: 2 : 0
display 'hello'
selected =. (v y) # y  
u selected
)

we see that the body of S is NOT executed when S is applied to its 
argument, but it IS executed when the generated verb g is 
applied. 

   g =: # S (>&0)
   g 1 0 2 0 3
hello
3
    
   

13.4 Operators Generating Nouns

Operators can generate nouns as well as verbs. Here is an 
example. 
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A fixed point of a function f is a value p such that (f p) = p. If 
we take f to be 

   f =: 3 : '2.8 * y * (1-y)'

then we see that 0.642857 is a fixed-point of f 

   f 0.642857
0.642857

Not every function has a fixed point, but if there is one we may be 
able to find it. We can iterate the function until there is no change 
(with ^: _ - see Chapter 10), choosing a suitable starting value. A 
crude fixed-point-finder can be written as an adverb FPF which 
takes the given function as argument, with 0.5 for a starting 
value. 

FPF =: 1 : '(u ^: _ ) 0.5' p =: f FPF f p

1 : '(u ^: _ ) 0.5' 0.642857 0.642857

 

13.5 Generating Noun or Verb

Consider two lines of J, such as 

               sum  =: +/

               mean =: sum  % #

Sometimes a smoother presentation might be: 

               mean =: sum % #  where sum =: +/
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provided we had available a suitable definition for where. How 
about this? 

   where =: 2 : 'u'

so we can say: 

   mean =: sum % # where sum =: +/

with results as expected: 

mean mean 1 2 3 4

sum % # 2.5

 

The right argument of where can be a verb or noun: 

    (z+1) * (z-1)     where z =: 7
48
   

where is a conjunction which ignores its right argument, but 
evaluating the right argument makes it available to the left 
through the assignment. Note that the assignments to sum and z 
above are regular global assignments, so where does not localize 
sum or z. 

13.6 Operators Generating Operators

Here is an example of an adverb generating an adverb. 

First note that (as covered in Chapter 15) if we supply one 



Chapter 13: Explicit Operators  212

argument to a conjunction we get an adverb. The expression (@: 
*:) is an adverb which means "composed with square". To 
illustrate: 

CS =: @: *: - CS - CS 2 3 - *: 2 3

@:*: -@:*: _4 _9 _4 _9

 

Now back to the main example of this section. We aim to define an 
explicit adverb, K say, which generates an adverb according to the 
scheme: for a verb u 

          u K    is to be     @: u

Adverb K can be defined as below. We see that adverb K delivers 
as a result adverb L: 

K =: 1 : '@: u' L =: *: K - L - L 2 3

1 : '@: u' @:*: -@:*: _4 _9

 

This is the end of Chapter 13. 
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Chapter 14: Gerunds

What is a gerund, and what is it good for?  Briefly, a gerund 
represents a list of verbs. It is useful mainly for supplying a list of 
verbs as a single argument to an operator. 

The plan for this chapter is: 

• to introduce gerunds 
• to look at some built-in operators which can take gerunds as 

arguments 
• to look at user-defined operators taking gerund arguments 

14.1 Making Gerunds: The Tie Conjunction

Recall from Chapter 10 how we defined a verb with several cases. 
Here is a small example as a reminder. To find the absolute value 
of a number x we compute (+x), or (-x) if the number is 
negative, thus: 

abs =: + ` - @. (< & 0) abs _3

+`-@.(<&0) 3

 

The expression (+`-) looks like a list of verbs. Here the two verbs 
+ and - are tied together with the "Tie" conjunction (`, backquote, 
different from ') to produce a gerund. 

   + ` -
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+-+-+
|+|-|
+-+-+

We see that the gerund (+ ` -) is a list of two boxes, each of 
which contains a representation of a verb. A gerund is a noun - a 
list of boxes. Here is another gerund which represents three verbs: 

   G =: + ` - ` abs 
   G
+-+-+---+
|+|-|abs|
+-+-+---+

Inside each box there is a data structure which represents, or 
encodes, a verb. Here we will not be concerned with the details of 
this representation, which will be covered in Chapter 27. 

14.2 Recovering the Verbs from a Gerund

The verbs packed into a gerund can be unpacked again with the 
built-in adverb "Evoke Gerund" which is denoted by the expression 
(`: 6). Let us call this EV. 

   EV =: `: 6

Adverb EV applied to a gerund yields a train of all the verbs in the 
gerund. In the next example, the result foo is a 3-train, that is a 
fork. 

   f =: 'f' & ,
   g =: 'g' & ,
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H=: f ` , ` g foo =: H EV foo 'o'

+-+-+-+
|f|,|g|
+-+-+-+

f , g fogo

 

Individual verbs can be unpacked by indexing the boxed list H and 
then applying EV. 

H 2{H vb =: (2{H) EV vb 'o'

+-+-+-+
|f|,|g|
+-+-+-+

+-+
|g|
+-+

g go

 

Shorter trains can be unpacked from a gerund, again by indexing. 

H 1 2 { H tr =: (1 2 { H) EV tr 'a' 

+-+-+-+
|f|,|g|
+-+-+-+

+-+-+
|,|g|
+-+-+

, g aga

 

Now we come to the uses of gerunds. 

14.3 Gerunds As Arguments to Built-In Operators

A major use of gerunds is that they can be supplied to operators 
as a single argument containing multiple verbs. We look first at 
further built-in operators taking gerund arguments, and then at 
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examples of home-made operators. 

14.3.1 Gerund as Argument to APPEND Adverb

There is a built-in adverb called "APPEND", denoted by the 
expression (`: 0). It applies a list of verbs to a single argument 
to give a list of results. For example: 

   APPEND =: `: 0
   sum    =: +/
   count  =: #
   mean   =: sum % count
   G1     =: count ` sum ` mean 
   

G1 foo =: G1 APPEND foo 1 2 3

+-----+---+----+
|count|sum|mean|
+-----+---+----+

count`sum`mean`:0 3 6 2

 

The adverb is called APPEND because the results of the individual 
verbs in the gerund are appended, that is formed into a list. The 
general scheme is that for verbs u, v, w , ... then 

  (u`v`w...) APPEND y  means  (u y),(v y),(w y), ... 

Here is another example, showing that a gerund can be, not just a 
one-dimensional list, but an array of verbs. The list of verbs G1 
formed by "Tie" can be reshaped into an array, a table say, and the 
shape of the result is the same. 
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G2 =: 2 2 $ G1 G2 APPEND 4 5

+-----+-----+
|count|sum  |
+-----+-----+
|mean |count|
+-----+-----+

  2 9
4.5 2

 

14.3.2 Gerund as Argument to Agenda Conjunction
Recall the abs verb defined above. Here is a reminder: 

abs =: + ` - @. (< & 0) abs 6 abs _6

+`-@.(<&0) 6 6

 

Here, the "Agenda" conjunction (@.) takes a verb on the right. As 
a variation, (@.) can also take a noun on the right. This noun can 
be a single number or a list of numbers. A single number is taken 
as an index selecting a verb from the gerund. For example. 

G =: + ` - ` % f =: G @. 0 1 f 1

+-+-+-+
|+|-|%|
+-+-+-+

+ 2

 

A list of numbers is taken as a list of indices selecting verbs from 
the gerund to form a train. In the following example the selected 
two verbs form a hook. 
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G h =: G @. 0 2 h 4

+-+-+-+
|+|-|%|
+-+-+-+

+ % 4.25

 

The scheme is, for a gerund G and indices I : 

               G @. I   means   (I { G) EV

For example: 

G (G @. 0 2) 4 ((0 2 { G)) EV 4

+-+-+-+
|+|-|%|
+-+-+-+

4.25 4.25

 

This scheme gives us an abbreviation for the unpacking by 
indexing we saw above. Next, we look at how to build trains with 
more structure. Consider the train T: 

T =: * (- 1:) T 3 T 4

* (- 1:) 6 12

 

which computes (T x) = x * (x -1) . The parentheses mean 
that T is a hook where the second item is also a hook. Trains 
structured with parentheses in this way can be built with Agenda, 
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by indexing items from a gerund, using boxed indices to indicate 
the parenthesisation. 

   foo =: (* ` - ` 1:) @. (0 ; 1 2)
      

T foo foo 3

* (- 1:) * (- 
1:)

6

 

14.3.3 Gerund as Argument to Insert

We have previously encountered the insert adverb applied to a 
single verb: the verb is inserted between successive items of a list. 
More generally, when insert is applied to a gerund it inserts 
successive verbs from the gerund between successive items from 
the list. That is, if G is the gerund (f`g`h`...) and and X is the 
list (x0, x1, x2, x3, ...) then 

             G/X    means   x0 f x1 g x2 h x3 ...

ger =: + ` % ger / 1 2 3 1 + 2 % 3

+-+-+
|+|%|
+-+-+

1.66667 1.66667

 

If the gerund is too short, it is re-used cyclically to make up the 
needed number of verbs. This means that a one-verb gerund, 
when inserted, behaves the same as a single inserted verb. 
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14.3.4 Gerund as argument to POWER conjunction

Recall from Chapter 10 that the POWER conjunction (^:) can take, 
as right argument, a number which specifies the number of 
iterations of the verb given as left argument. As a brief reminder, 3 
doublings of 1 is 8: 

   double =: +:  
   (double ^: 3) 1
8

As a variation, the number of iterations can be computed by a verb 
right-argument. The scheme is, for verbs u and v: 

             (u ^: v) y   means   u ^: (v y) y

For example: 

   decr =: <:

double ^: (decr 3) 3 (double ^: decr) 3

12 12

 

More generally, the right argument can be given as a gerund, and 
the verbs in it do some computations at the outset of the iteration 
process. The scheme is: 

             u ^: (v1 ` v2) y   means    u ^: (v1 
y) (v2 y)

To illustrate, we define a verb to compute a Fibonacci sequence. 
Here each term is the sum of the preceding two terms. The verb 
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will take an argument to specify the number of terms, so for 
example we want FIB 6 to give 0 1 1 2 3 5 

The verb to be iterated, u say, generates the next sequence from 
the previous sequence by appending the sum of the last two. If we 
define: 

   u        =: , sumlast2
   sumlast2 =: +/ @ last2
   last2    =: _2 & {.

then the iteration scheme beginning with the sequence 0 1 is 
shown by 

u 0 1 u u 0 1 u u u 0 1

0 1 1 0 1 1 2 0 1 1 2 3

 

Now we define the two verbs of the gerund. We see that to 
produce a sequence with n terms the verb u must be applied (n-2) 
times, so the verb v1, which computes the number of iterations 
from the argument y is: 

         v1 =: -&2

The verb v2, which computes the starting value from the argument 
y, we want to be the constant function which computes 0 1 
whatever the value of y. 

         v2 =: 3 : '0 1'

Now we can put everything together: 
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FIB =: u ^: (v1 `v2) FIB 6

(, sumlast2)^:(v1`v2) 0 1 1 2 3 5

 

This example showed a monadic verb (u) with the two verbs in the 
gerund (v1 and v2) performing some computations at the outset of 
the iteration. What about dyadic verbs? 

Firstly, recall that with an iterated dyadic verb the left argument is 
bound at the outset to give a monad which is what is actually 
iterated, so that the scheme is: 

           x  u ^: k  y    means    (x&u) ^: k y 

Rather than constant k, we can perform pre-computations with 
three verbs U V and W presented as a gerund. The scheme is: 

   x u ^: (U`V`W) y  means  (((x U y)&u) ^: (x V y))  (x W y)

or equivalently as a fork: 

          u ^: (U`V`W)   means   U (u ^: V) W

For example, suppose we define:: 

   U =: [
   V =: 2:
   W =: ]

Then we see that p and q below are equivalent. 3 added twice to 4 
gives 10. 
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p =: + ^: (U`V`W) 3 p 4 q =: U (+ ^: V) W 3 q 4

+^:(U`V`W) 10 U +^:V W 10

 

14.3.5 Gerund as Argument to Amend

Recall the "Amend" adverb from Chapter 06 . The expression (new 
index } old) produces an amended version of old, having new as 
items at index. For example: 

      'o'  1 } 'baron'
boron

More generally, the "Amend" adverb can take an argument which 
is a gerund of three verbs, say U`V`W. The scheme is: 

         x (U`V`W) } y  means (x U y) (x V y) } (x 
W y)

That is, the new items, the index(es) and the "old" array are all to 
be computed from the given x and y. 

Here is an example (adapted from the Dictionary). Let us define a 
verb, R say, to amend a matrix by multiplying its i'th row by a 
constant k. The left argument of R is to be the list i k and the 
right argument is to be the original matrix. R is defined as the 
"Amend" adverb applied to a gerund of 3 verbs. 

   i =: {. @ [    NB. x i y  is  first of x
   k =: {: @ [    NB. x k y  is  last of x
   r =: i { ]     NB. x r y  is  (x i y)'th  row of y
   
   R =: ((k * r) ` i ` ]) }
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For example: 

   M =: 3 2 $ 2 3 4 5 6 7
   z =: 1 10      NB. row 1 times 10 

z M z i M z k M z r M z R M

1 10 2 3
4 5
6 7

1 10 4 5 2  3
40 50
6  7

 

14.4 Gerunds as Arguments to User-Defined Operators

Previous sections showed supplying gerunds to the built-in 
operators (adverbs or conjunctions). Now we look at defining our 
own operators taking gerunds as arguments. 

The main consideration with an operator is how to recover 
individual verbs from the gerund argument. Useful here is the 
agenda conjunction @. which we looked at above. Recall that it can 
select one or more verbs from a gerund. 

G G @. 0 G @. 0 2

+-+-+-+
|+|-|%|
+-+-+-+

+ + %

 

Now for the operator. Let us define an adverb A, say, to produce a 
fork-like verb, so that 
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  x (f `g ` h  A)  y   is to mean   (f x) g (h y)  

   A =: 1 : 0
f =. u @. 0
g =. u @. 1
h =. u @. 2
((f @ [) g (h @ ]))  f.
)
   

To demonstrate A, here is a verb to join the first item of x to the 
last of y. The first and last items are yielded by the built-in verbs 
{. (left-brace dot, called "Head") and {: (left-brace colon, called 
"Tail"). 

H =: {. ` , ` {: zip =: H A 'abc' zip 'xyz'

+--+-+--+
|{.|,|{:|
+--+-+--+

{.@[ , 
{:@]

az

 

14.4.1 The Abelson and Sussman Accumulator

Here is another example of a user-defined explicit operator with a 
gerund argument. Abelson and Sussman ("Structure and 
Interpretation of Computer Programs", MIT Press 1985) describe 
how a variety of computations all conform to the following general 
plan, called the "accumulator": 

Items from the argument (a list) are selected with a "filtering" 
function. For each selected item, a value is computed from it with 
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a "mapping" function. The results of the separate mappings are 
combined into the overall result with a "combining" function. This 
plan can readily be implemented in J as an adverb, ACC say, as 
follows. 

      ACC =: 1 : 0
com =. u @. 0
map =. u @. 1
fil =. u @. 2
((com /)  @:  map  @:  (#~ fil))  f.
)

ACC takes as argument a gerund of three verbs, in order, the 
combiner, the map and the filter. For an example, we compute the 
sum of the squares of the odd numbers in a given list. Here the 
filter, to test for an odd number, is (2&|) 

      (+ ` *: ` (2&|)) ACC 1 2 3 4   
10
   

This is the end of chapter 14. 
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Chapter 15: Tacit Operators

15.1 Introduction

J provides a number of built-in operators - adverbs and 
conjunctions. In Chapter 13 we looked at defining our own 
operators explicitly. In this chapter we look at defining adverbs 
tacitly. 

15.2 Adverbs from Conjunctions

Recall from Chapter 07 the Rank conjunction, ("). For example, 
the verb (< " 0) applies Box (<) to each rank-0 (scalar) item of 
the argument. 

   < " 0  'abc'
+-+-+-+
|a|b|c|
+-+-+-+

A conjunction takes two arguments. If we supply only one, the 
result is an adverb. For example, an adverb to apply a given verb 
to each scalar can be written as (" 0) 
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each =: " 0 < each z =: < each 'abc'

"0 <"0 +-+-+-+
|a|b|c|
+-+-+-+

 

The scheme is, that for a conjunction C and a noun N, the 
expression (C N) denotes an adverb such that: 

        x (C N)  means  x C N

The argument to be supplied to the conjunction can be a noun or a 
verb, and on the left or on the right. Altogether there are four 
similar schemes: 

        x (C N)  means  x C N

        x (C V)  means  x C V

        x (N C)  means  N C x

        x (V C)  means  V C x

The sequences CN CV NC and CV are called "bidents". They are a 
form of bonding whereby we take a two-argument function and fix 
the value of one of its arguments to get a one-argument function. 
However, there is a difference between bonding a dyadic verb (as 
in + & 2 for example) and bonding a conjunction. With the 
conjunction, there is no need for a bonding operator such as &. We 
just write (" 0) with no intervening operator. The reason is that in 
the case of + & 2, omitting the & would give + 2 which means: 
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apply the monadic case of + to 2, giving 2. However, conjunctions 
don't have monadic cases, so the bident (" 0) is recognised as a 
bonding. 

Recall the "Under" conjunction &. from Chapter 08 whereby f&.g 
is a verb which applies g to its argument, then f then the inverse 
of g. If we take f and g to be: 

   f =: 'f' & ,
   g =: >

then we see that f is applied inside each box: 

z (f &. g) z

+-+-+-+
|a|b|c|
+-+-+-+

+--+--+--+
|fa|fb|fc|
+--+--+--+

 

Now, using the form CV, we can define an adverb EACH to mean 
"inside each box": 

EACH =: &. > f EACH z f EACH z

&.> f&.> +-+-+-+
|a|b|c|
+-+-+-+

+--+--+--+
|fa|fb|fc|
+--+--+--+

 

15.3 Compositions of Adverbs

If A and B are adverbs, then the bident (A B) denotes an adverb 
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which applies A and then B. The scheme is: 

         x (A B)   means (x  A) B

15.3.1 Example: Cumulative Sums and Products

There is a built-in adverb \ (backslash, called Prefix). In the 
expression f \ y the verb f is applied to successively longer 
leading segments of y. For example: 

   < \ 'abc'
+-+--+---+
|a|ab|abc|
+-+--+---+

The expression +/ \ y produces cumulative sums of y: 

   +/ \ 1 2 3
1 3 6

An adverb to produce cumulative sums, products, and so on can 
be written as a bident of two adverbs: 

   cum =: / \   NB. adverb adverb
   

z =: 2 3 4 + cum z * cum z

2 3 4 2 5 9 2 6 24

 

15.3.2 Generating Trains

Now we look at defining adverbs to generate trains of verbs, that 
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is, hooks or forks. 

First recall from Chapter 14 the Tie conjunction (`), which makes 
gerunds, and the Evoke Gerund adverb (`: 6) which makes trains 
from gerunds. 

Now suppose that A and B are the adverbs: 

   A =: * `    NB. verb conjunction
   B =: `: 6   NB. conjunction noun
   

Then the compound adverb 

   H =: A B

is a hook-maker. Thus <: H generates the hook * <: , that is "x 
times x-1" 

<: A <: A B h =: <: H h 5

+-+--+
|*|<:|
+-+--+

* <: * <: 20

 

15.3.3 Rewriting

It is possible to rewrite the definition of a verb to an equivalent 
form, by rearranging its terms. Suppose we start with a definition 
of the factorial function f. Factorial 5 is 120. 
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   f =: (* ($: @: <:)) ` 1:  @. (= 0:)
   f 5
120

The idea now is to rewrite f to the form $: adverb, by a sequence 
of steps. Each step introduces a new adverb. The first new adverb 
is A1, which has the form conj verb. 

   A1 =: @. (= 0:)      
   g  =: (* ($: @: <:)) ` 1: A1
   g 5
120

Adverb A2 has the form conj verb 

   A2 =: ` 1:          
   h  =: (* ($: @: <:)) A2 A1
   h 5
120

Adverb A3 has the form adv adv 

   A3 =: (* `) (`: 6)   
   i  =: ($: @: <:) A3 A2 A1 
   i 5
120

Adverb A4 has the form conj verb 

   A4=: @: <:  
   j  =: $: A4 A3 A2 A1 
   j 5
120
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Combining A1 to A4: 

   A =: A4 A3 A2 A1 
   k =: $:  A
   k 5
120

Expanding A: 

   m =: $: (@: <:) (* `) (`: 6) (` 1:) (@. (= 0:))
   m 5
120

We see that m and f are the same verb: 

f m

(* $:@:<:)`1:@.(= 0:) (* $:@:<:)`1:@.(= 0:)

 

This is the end of Chapter 15. 
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Chapter 16: Rearrangements

This chapter covers rearranging the items of arrays: permuting, 
sorting, transposing, reversing, rotating and shifting. 

16.1 Permutations

A permutation of a vector is another vector which has all the items 
of the first but not necessarily in the same order. For example, z is 
a permutation of y where: 

y =: 'abcde' z =: 4 2 3 1 0 { y 

abcde ecdba

 

The index vector 4 2 3 1 0 is itself a permutation of the indices 0 
1 2 3 4, that is, i. 5, and hence is said to be a permutation 
vector of order 5. 

Notice the effect of this permutation: the first and last items are 
interchanged and the middle three rotate position amongst 
themselves. Hence this permutation can be described as a 
combination of cycling two items and cycling three items. After 6 
(= 2 * 3) applications of this permutation we return to the original 
vector. 

   p =: 4 2 3 1 0 & {



 237 Chapter 16: Rearrangements

y p y p p y p p p p p p y

abcde ecdb
a

adbce abcde

 

The permutation 4 2 3 1 0 can be represented as a cycle of 2 and 
a cycle of 3. The verb to compute this cyclic representation is 
monadic C. . 

   C. 4 2 3 1 0
+-----+---+
|3 1 2|4 0|
+-----+---+

Thus we have two representations of a permutation: (4 2 3 1 0) 
is called a direct representation and (3 1 2 ; 4 0) is called a 
cyclic representation. Monadic C. can accept either form and will 
produce the other form: 

C. 4 2 3 1 0 C. 3 1 2 ; 4 0

+-----+---+
|3 1 2|4 0|
+-----+---+

4 2 3 1 0

 

The dyadic verb C. can accept either form as its left argument, 
and permutes its right argument. 
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y 4 2 3 1 0 C. y (3 1 2 ; 4 0) C. y

abcde ecdba ecdba

 

16.1.1 Abbreviated Permutations

Dyadic C. can accept a left argument which is an abbreviation for 
a (direct) permutation vector. The effect is to move specified items 
to the tail, one at a time, in the order given. 

y 2 C. y 2 3 C. y

abcde abdec abecd

 

With the abbreviated form, successive items are taken from the 
original vector: notice how the following two examples give 
different results. 

y 2 3 C. y 3 C. (2 C. y)

abcde abecd abdce

 

If the left argument is boxed, then each box in turn is applied as a 
cycle: 

y (<3 1 2) C. y (3 1 2 ; 4 0) C. y

abcde acdbe ecdba
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If a is an abbreviated permutation vector (of order n) then the full-
length equivalent of a is given by (a U n) where U is the utility 
function: 

   U =: 4 : 0
z =: y | x
((i. y) -. z), z
)

For example, suppose the abbreviated permutation a is (1 3) then 
we see: 

y a =: 1 3 a C. y f =: a U (#y) f C. y

abcde 1 3 acebd 0 2 4 1 3 acebd

 

16.1.2 Inverse Permutation

If f is a full-length permutation vector, then the inverse 
permutation is given by (/: f). (We will look at the verb /: in the 
next section.) 

y f z =: f C. y /: f (/: f) C. z

abcde 0 2 4 1 3 acebd 0 3 1 4 2 abcde

 

16.1.3 Atomic Representations of Permutations

If y is a vector of length n, then there are altogether ! n different 
permutations of y. A table of all permutations of order n can be 
generated by the expression (tap n) where tap is a utility verb 
defined by: 
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   tap =: i. @ ! A. i.
   tap 3
0 1 2
0 2 1
1 0 2
1 2 0
2 0 1
2 1 0

It can be seen that these permutations are in a well-defined order, 
and so any permutation of order n can be identified simply by its 
index in the table (tap n). This index is called the atomic 
representation of the permutation. The monadic verb A. computes 
the atomic representation. For example, given an order-3 
permutation, e.g. 2 1 0, then A. 2 1 0 yields the index in the 
table (tap 3). 

A. 2 1 0 5 { tap 3

5 2 1 0

 

The dyadic verb A. applies an atomic representation of a 
permutation. 

2 1 0 { 'PQR' 5 A. 'PQR'

RQP RQP

 

Here is an example of the use of A.. The process of running 
through all the permutations of something (say to search for 
anagrams of a word) might take a very long time. Hence it might 
be desirable to run through them say 100 at a time. 
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Here is a verb which finds a limited number of permutations. The 
argument is a boxed list: a vector to be permuted, followed by a 
starting permutation-number (that is, atomic index) followed by a 
count of the permutions to be found. 

   LPerms =: 3 : 0
'arg start count' =. y
(start + i. count) A. " 0 1 arg
)
   

LPerms 'abcde'; 0; 4 LPerms 'abcde'; 4; 4

abcde
abced
abdce
abdec

abecd
abedc
acbde
acbed

 

16.2 Sorting

There is a built-in monad, /: (slash colon, called "Grade Up"). For 
a list L, the expression (/: L) gives a set of indices into L, and 
these indices are a permutation-vector. 

L =: 'barn' /: L

barn 1 0 3 2

 

These indices select the items of L in ascending order. That is, the 
expression ((/: L) { L) yields the items of L in order. 
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L /: L (/: L) { L

barn 1 0 3 2 abnr

 

For sorting into descending order, the monad \:(backslash colon, 
called "Grade Down") can be used. 

L (\: L) { L

barn rnba

 

Since L is a character list, its items are sorted into alphabetical 
order. Numeric lists or boxed lists are sorted appropriately. 

N =: 3 1 4 5 (/: N) { N

3 1 4 5 1 3 4 5

 

B =: 'pooh';'bah';10;5 (/: B) { B

+----+---+--+-+
|pooh|bah|10|5|
+----+---+--+-+

+-+--+---+----+
|5|10|bah|pooh|
+-+--+---+----+

 

Now consider sorting the rows of a table. Here is an example of a 
table with 3 rows: 
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   T =: (". ;. _2) 0 : 0
'WA' ;'Mozart';  1756
'JS' ;'Bach'  ;  1685
'CPE';'Bach'  ;  1714
)

Suppose we aim to sort the rows of the table into order of date-of-
birth shown in column 2 (the third column). We say that column 2 
contains the keys on which the table is to be sorted. 

We extract the keys with the verb 2&{"1, generate the 
permutation vector with /: applied to the keys, and then permute 
the table. 

T keys =: 2&{"1 T (/: keys) { T

+---+------+----+
|WA |Mozart|1756|
+---+------+----+
|JS |Bach  |1685|
+---+------+----+
|CPE|Bach  |1714|
+---+------+----+

+----+----+----+
|1756|1685|1714|
+----+----+----+

+---+------+----+
|JS |Bach  |1685|
+---+------+----+
|CPE|Bach  |1714|
+---+------+----+
|WA |Mozart|1756|
+---+------+----+

 

The expression (/: keys { T) can be abbreviated as (T /: 
keys), using the dyadic case of /:, (called "Sort") 
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(/: keys) { T T /: keys

+---+------+----+
|JS |Bach  |1685|
+---+------+----+
|CPE|Bach  |1714|
+---+------+----+
|WA |Mozart|1756|
+---+------+----+

+---+------+----+
|JS |Bach  |1685|
+---+------+----+
|CPE|Bach  |1714|
+---+------+----+
|WA |Mozart|1756|
+---+------+----+

 

The dyadic case of \: is similar: it is also called "Sort". 

Suppose now we need to sort on two columns, say by last name, 
and then by initials. The keys are column 1 then column 0. 

keys =: 1 0 & { " 1 T T /: keys

+------+---+
|Mozart|WA |
+------+---+
|Bach  |JS |
+------+---+
|Bach  |CPE|
+------+---+

+---+------+----+
|CPE|Bach  |1714|
+---+------+----+
|JS |Bach  |1685|
+---+------+----+
|WA |Mozart|1756|
+---+------+----+

 

These examples show that the keys can be a table, and the /: 
verb yields the permutation-vector which puts the rows of the 
table into order. In such a case, the first column of the table is the 
most significant, then the second column, and so on. 
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16.2.1 Predefined Collating Sequences

Characters are sorted into "alphabetical order", numbers into 
"numerical order" and boxes into a well-defined order. The order 
for sorting all possible keys of a given type is called a collating 
sequence (for keys of that type). We have three predefined 
collating sequences. The collating sequence for characters is the 
ASCII character set. The built-in J noun a. gives the value of all 
256 characters in "alphabetical" order. Note that upper-case letters 
come before lower-case letters. 

   65 66 67 97 98 99 { a.
ABCabc

With numerical arguments, complex numbers are ordered by the 
real part then the imaginary part. 

n=: 0 1 _1 2j1 1j2 1j1 n /: n

0 1 _1 2j1 1j2 1j1 _1 0 1 1j1 1j2 2j1

 

With boxed arrays, the ordering is by the contents of each box. 
The precedence is firstly by type, with numerical arrays preceding 
empty arrays preceding character arrays preceding boxed arrays: 

k=: (< 'abc') ; 'pqr' ; 4 ; '' ; 
3

k /: k

+-----+---+-++-+
|+---+|pqr|4||3|
||abc||   | || |
|+---+|   | || |
+-----+---+-++-+

+-+-++---+-----+
|3|4||pqr|+---+|
| | ||   ||abc||
| | ||   |+---+|
+-+-++---+-----+



Chapter 16: Rearrangements  246

 

Within arrays of the same type, low-rank precedes high-rank. 

m=: 2 4 ; 3 ; (1 1 $ 1) m /: m

+---+-+-+
|2 4|3|1|
+---+-+-+

+-+---+-+
|3|2 4|1|
+-+---+-+

 

Within arrays of the same type and rank, in effect the arrays are 
ravelled, and then compared element by element. In this case, 1 2 
takes precedence over 1 3 (because 2 < 3), and 3 3 takes 
precedence over 3 3 3 (because 3 3 is shorter than 3 3 3). If the 
two arrays are the same, then the earlier takes precedence (that 
is, their original order is not disturbed). 

   a =: 2 3 $ 1 2 3 4 5 6
   b =: 3 2 $ 1 2 5 6 3 4
   c =: 1 3 $ 1 2 3
   d =: 1 3 $ 1 1 3
   

u=:a;b;c u /: u

+-----+---+-----+
|1 2 3|1 2|1 2 3|
|4 5 6|5 6|     |
|     |3 4|     |
+-----+---+-----+

+---+-----+-----+
|1 2|1 2 3|1 2 3|
|5 6|     |4 5 6|
|3 4|     |     |
+---+-----+-----+

 



 247 Chapter 16: Rearrangements

w=:a;b;c;d w /: w

+-----+---+-----+-----+
|1 2 3|1 2|1 2 3|1 1 3|
|4 5 6|5 6|     |     |
|     |3 4|     |     |
+-----+---+-----+-----+

+-----+---+-----+-----+
|1 1 3|1 2|1 2 3|1 2 3|
|     |5 6|     |4 5 6|
|     |3 4|     |     |
+-----+---+-----+-----+

 

16.2.2 User-Defined Collating Sequences

The keys are computed from the data. By choosing how to 
compute the keys, we can choose a collating sequence. 

For example, suppose a list of numbers is to be sorted into 
ascending order of absolute value. A suitable key-computing 
function would then be the "Magnitude" function, |. 

x=: 2 1 _3 keys =: | x x /: keys

2 1 _3 2 1 3 1 2 _3

 

16.3 Transpositions

The monadic verb |: will transpose a matrix, that is, interchange 
the first and second axes. 
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M =: 2 3 $ 'abcdef' |: M

abc
def

ad
be
cf

 

More generally, |: will reverse the order of the axes of a n-
dimensional array. 

N =: 2 2 2 $ 'abcdefgh' |: N

ab
cd

ef
gh

ae
cg

bf
dh

 

Dyadic transpose will permute the axes according to the (full or 
abbreviated) permutation-vector given as left argument. For a 3-
dimensional array, there are 6 possible permutations, with the first 
being the identity-permutation 

N 0 1 2 |: N 0 2 1 |: N 1 0 2 |: N 

ab
cd

ef
gh

ab
cd

ef
gh

ac
bd

eg
fh

ab
ef

cd
gh
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1 2 0 |: N 2 0 1 |: N 2 1 0 |: N 

ae
bf

cg
dh

ac
eg

bd
fh

ae
cg

bf
dh

 

A boxed abbreviated argument can be given. Two or more boxed 
axis-numbers are run together to form a single axis. With two 
dimensions, this is equivalent to taking the diagonal. 

K =: i. 3 3 (< 0 1) |: K

0 1 2
3 4 5
6 7 8

0 4 8

 

16.4 Reversing, Rotating and Shifting

16.4.1 Reversing
Monadic |. will reverse the order of the items of its argument. 

y |. y M |. M

abcde edcb
a

ab
c
de
f

def
abc
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Notice that "reversing the items" means reversing along the first 
axis. Reversal along other axes can be achieved with the rank 
conjunction ("). 

N |. N |." 1 N |. " 2 N

ab
cd

ef
gh

ef
gh

ab
cd

ba
dc

fe
hg

cd
ab

gh
ef

 

16.4.2 Rotating

Dyadic |. rotates the items of y by an amount given by the 
argument x. A positive value for x rotates to the left. 

y 1 |. y _1 |. y

abcde bcdea eabcd

 

Successive numbers in x rotate y along successive axes: 
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M 1 2 |. M N 1 2 |. N 

abc
def

fde
cab

ab
cd

ef
gh

ef
gh

ab
cd

 

16.4.3 Shifting

The items which would be brought around by cyclic rotation can 
instead be replaced with a fill-item. A shifting verb is written 
(|. !. f) where f is the fill-item. 

   ash   =: |. !. '*'    NB. alphabetic shift
   nsh   =: |. !. 0      NB. numeric shift
             

y _2 ash y z =: 2 3 4 _1 nsh z

abcde **abc 2 3 4 0 2 3

 

This is the end of Chapter 16 
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Chapter 17: Patterns of Application

In this chapter we look at applying a function to an array in various 
patterns made up of selected elements of the array. 

17.1 Scanning

17.1.1 Prefix Scanning

In the expression (f \ y) the result is produced by applying verb 
f to successively longer leading sections ("prefixes") of y. 

Choosing f as the box verb (<) gives easily visible results. 

y =: 'abcde' < \ y

abcde +-+--+---+----+-----+
|a|ab|abc|abcd|abcde|
+-+--+---+----+-----+

 

Cumulative sums of a numeric vector can be produced: 

   +/ \ 0 1 2 3
0 1 3 6

Various effects can be produced by scanning bit-vectors. The 
following example shows "cumulative OR", which turns on all bits 
after the first 1-bit. 
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   +./\ 0 1 0 1 0
0 1 1 1 1

17.1.2 Infix Scanning

In the expression (x f \ y) the verb f is applied to successive 
sections ("infixes") of y, each of length x. 

z =: 1 4 9 16 2 < \ z

1 4 9 16 +---+---+----+
|1 4|4 9|9 16|
+---+---+----+

 

If x is negative, then the sections are non-overlapping, in which 
case the last section may not be full-length. For example: 

z _3 < \ z

1 4 9 16 +-----+--+
|1 4 9|16|
+-----+--+

 

We can compute the differences between succesive items, by 
choosing 2 for the section-length, and applying to each section a 
verb "second-minus-first", that is, ({: - {.) 

smf =: {: - {. smf 1 4

{: - {. 3

 



Chapter 17: Patterns of Application  254

   diff =: 2 & (smf\)

,. z ,. diff z ,. diff diff z

1
4
9
16

3
5
7

2
2

 

17.1.3 Suffix Scanning 

In the expression (f \. y ) the result is produced by applying f 
to successively shorter trailing sections ("suffixes") of y . 

y < \. y

abcde +-----+----+---+--+-+
|abcde|bcde|cde|de|e|
+-----+----+---+--+-+

 

17.1.4 Outfix

In the expression (x f \. y) the verb f is applied to the whole of 
y with successive sections removed, each removed section being of 
length x. If x is negative, then the removed sections are non-
overlapping, in which case the last removed section may not be 
full-length. 
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y 2 < \. y _2 < \. y 

abcde +---+---+---+---+
|cde|ade|abe|abc|
+---+---+---+---+

+---+---+----+
|cde|abe|abcd|
+---+---+----+

 

17.2 Cutting

The conjunction ;. (semicolon dot) is called "Cut". If u is a verb 
and n a small integer, then (u ;. n) is a verb which applies u in 
various patterns as specified by n. The possible values for n are _3 
_2 _1 0 1 2 3. We will look some but not all of these cases. 

17.2.1 Reversing

In the expression (u ;. 0 y), the verb u is applied to y reversed 
along all axes. In the following example, we choose u to be the 
identity-verb ([). 

M =: 3 3 $ 'abcdefghi' [ ;. 0 M

abc
def
ghi

ihg
fed
cba

 

17.2.2 Blocking

Given an array, we can pick out a smaller subarray inside it, and 
apply a verb to just the subarray. 
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The subarray is specified by a two-row table. In the first row is the 
index of the cell which will become the first of the subarray. In the 
second row is the shape of the subarray. 

For example, to specify a subarray starting at row 1 column 1 of 
the original array, and of shape 2 2, we write: 

   spec =: 1 1 ,: 2 2

Then we can apply, say, the identity-verb ([) to the specified 
subarray as follows: 

M spec spec [ ;. 0 M

abc
def
ghi

1 1
2 2

ef
hi

 

The general scheme is that for a verb u, the expression (x u ;. 0 
y) applies verb u to a subarray of y as specified by x. In the 
specifier x, a negative value in the shape (the second row) will 
cause reversal of the elements of M along the corresponding axis. 
For example: 

   spec =: 1 1 ,: _2 2

M spec spec [ ;. 0 M

abc
def
ghi

1 1
_2 2

hi
ef
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17.2.3 Fretting

Suppose that we are interested in dividing a line of text into 
separate words. Here is an example of a line of text: 

   y =: 'what can be said'

For the moment, suppose we regard a word as being terminated 
by a space. (There are other possibilities, which we will come to.) 
Immediately we see that in y above, the last word 'said' is not 
followed by a space, so the first thing to do is to add a space at 
the end: 

   y =: y , ' '

Now if u is a verb, and y ends with a space, the expression (u ;. 
_2 y) will apply verb u separately to each space-terminated word 
in y. For example we can identify the words in y by applying <, the 
box function: 

y < ;. _2 y

what can be said +----+---+--+----+
|what|can|be|said|
+----+---+--+----+

 

We can count the letters in each word by applying the # verb: 

y # ;. _2 y

what can be said 4 3 2 4
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The meaning of _2 for the right argument of ;. is that the words 
are to be terminated by occurrences of the last character in y (the 
space), and furthermore that the words do not include the spaces. 

More generally, we say that a list may be divided into "intervals" 
marked by the occurrence of "frets". The right argument (n) of ;. 
specifies how we choose to define intervals and frets as follows. 
There are four cases. 

n = 1 
Each interval begins with a fret. The first item of y is taken 
to be a fret, as are any other items of y equal to the first. 
Intervals include frets. 

n = _1 As for n = 1 except that intervals exclude frets. 

n = 2 
Each interval ends with a fret. The last item of y is taken to 
be a fret, as are any other items of y equal to the last. 
Intervals include frets. 

n = _2 As for n = 2 , except that intervals exclude frets. 

 

For example, the four cases are shown by: 

   z =: 'abdacd' 
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z < ;. 1 z < ;. _1 z < ;. 2 z < ;. _2 z

abdacd +---+---+
|abd|acd|
+---+---+

+--+--+
|bd|cd|
+--+--+

+---+---+
|abd|acd|
+---+---+

+--+--+
|ab|ac|
+--+--+

 

For another example, here is a way of entering tables of numbers. 
We enter a table row by row following 0 : 0 

      T =: 0 : 0
 1   2  3
 4   5  6
19  20 21
)
   

T is a character-string with 3 embedded line-feed characters, one 
at the end of each line: 

$ T +/ T = LF

30 3

 

The idea now is to cut T into lines. Each line is a character-string 
representing a J expression (for example the characters '1 2 3'). 
Such character-strings can be evaluated by applying the verb ". 
(double-quote dot, "Do" or "Execute"). The result is, for each line, 
a list of 3 numbers. 
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TABLE =: (". ;. _2) T $ TABLE

1  2  3
4  5  6
19 20 21

3 3

 

The verb (". ;. _2) was introduced as the utility-function 
ArrayMaker in Chapter 2. 

17.2.4 Punctuation

For processing text it would be useful to regard words as 
terminated by spaces or by various punctuation-marks. Suppose 
we choose our frets as any of four characters: 

   frets =: ' ?!.'

Given some text we can compute a bit-vector which is true at the 
location of a fret: 

t =: 'How are you?' b =: t e. frets

How are you? 0 0 0 1 0 0 0 1 0 0 0 1

 

Here we make use of the built-in verb e. ("Member"). The 
expression x e. y evaluates to true if x is a member of the list y. 

Now the bitvector b can be used to specify the frets for cutting text 
t into words: 
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t b b < ;. _2 t

How are you? 0 0 0 1 0 0 0 1 0 0 0 1 +---+---+---+
|How|are|you|
+---+---+---+

 

For another example, consider cutting a numeric vector into 
intervals such that each is in ascending sequence, that is, an item 
less than the previous must start a new interval. Suppose our data 
is: 

   data =: 3 1 4 1 5 9

Then a bitvector can be computed by scanning infixes of length 2, 
applying >/ to each pair of items. Where we get 1, the second item 
of the pair is the beginning of a new interval. We make sure the 
first item of all is 1. 

     bv =: 1 , 2 >/ \ data 

data data ,: bv bv < ;. 1 data

3 1 4 1 5 9 3 1 4 1 5 9
1 1 0 1 0 0

+-+---+-----+
|3|1 4|1 5 9|
+-+---+-----+

 

17.2.5 Word Formation

There is a built-in function ;: (semicolon colon, called "Word 
Formation"). It analyses a string as a J expression, according to 
the rules of the J language, to yield a boxed list of strings, the 
separate constituents of the J expression. 
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For example: 

y =: 'z =: (p+q) - 1' ;: y

z =: (p+q) - 1 +-+--+-+-+-+-+-+-+-+
|z|=:|(|p|+|q|)|-|1|
+-+--+-+-+-+-+-+-+-+

 

17.2.6 Lines in Files
Let us begin by creating a file, to serve in the examples which 
follow. (See Chapter 26 for details of file-handling functions). 

   text =: 0 : 0
What can be said
at all
can be said
clearly.
)
   
   text (1 !: 2) < 'foo.txt'
   

Now, if we are interested in cutting a file of text into lines, we can 
read the file into a string-variable and cut the string. On the 
assumption that each line ends with a line-terminating character, 
then the last character in the file will be our fret. Here is an 
example. 
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   string =: (1 !: 1) < 'foo.txt'  NB. read the file
   
   lines =: (< ;. _2) string          NB. cut into lines
   
   lines
+----------------+------+-----------+--------+
|What can be said|at all|can be said|clearly.|
+----------------+------+-----------+--------+
   

There are two things to be aware of when cutting files of text into 
lines. 

Firstly, in some systems lines in a file are terminated by a single 
line-feed character (LF). In other systems each line may be 
terminated by the pair of characters carriage-return (CR) followed 
by line-feed (LF). 

J follows the convention of the single LF regardless of the system 
on which J is running. However, we should be prepared for CR 
characters to be present in input data. To get rid of CR characters 
from string, we can reduce it with the bitvector (string 
notequal CR), where notequal is the built-in verb ~:, thus: 

   string =: (string ~: CR) # string
   

Secondly, depending on how the file of text was produced, we may 
not be able to guarantee that its last line is actually terminated. 
Thus we should be prepared to supply the fret character (LF) 
ourselves if necessary, by appending LF to the string. 

A small function to tidy up a string, by supplying a fret and 
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removing CR characters, can be written as: 

   tidy =: 3 : 0
y =. y , (LF ~: {: y) # LF   NB. supply LF
(y ~: CR) # y                 NB. remove CR
)
   
   (< ;. _2) tidy string 
+----------------+------+-----------+--------+
|What can be said|at all|can be said|clearly.|
+----------------+------+-----------+--------+
   

17.2.7 Tiling

In the expression (x u ;. 3 y) the verb u is applied separately to 
each of a collection of subarrays extracted from y. These subarrays 
may be called tiles. The size and arrangement of the tiles are 
defined by the value of x. Here is an example. Suppose that y is 

   y =: 4 4 $ 'abcdefghijklmnop'

and our tiles are to be of shape 2 2, each offset by 2 along each 
axis from its neighbour. That is, the offset is to be 2 2. We specify 
the tiling with a table: the first row is the offset, the second the 
shape' 

   spec =: > 2 2 ; 2 2  NB.  offset, shape

and so we see 
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y spec spec < ;. 3 y

abcd
efgh
ijkl
mnop

2 2
2 2

+--+--+
|ab|cd|
|ef|gh|
+--+--+
|ij|kl|
|mn|op|
+--+--+

 

The specified tiling may leave incomplete pieces ("shards") at the 
edges. Shards can be included or excluded by giving a right 
argument to "Cut" of 3 or _3 . 

   sp =: > 3 3 ; 3 3
   

y sp sp < ;. 3 y sp < ;. _3 y

abcd
efgh
ijkl
mnop

3 3
3 3

+---+-+
|abc|d|
|efg|h|
|ijk|l|
+---+-+
|mno|p|
+---+-+

+---+
|abc|
|efg|
|ijk|
+---+

 

This is the end of Chapter 17. 
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Chapter 18: Sets, Classes and 
Relations

In this chapter we look at more of the built-in functions of J. The 
connecting theme is, somewhat loosely, working with set, classes 
and relations. 

Suppose that, for some list, for the purpose at hand, the order of 
the items is irrelevant and the presence of duplicate items is 
irrelevant. Then we can regard the list as (representing) a finite 
set. In the abstract, the set 3 1 2 1 is considered to be the same 
set as 1 2 3. 

The word "class" we will use in the sense in which, for example, 
each integer in a list belongs either to the odd class or to the even 
class. 

By "relation" is meant a table of two or more columns, expressing 
a relationship between a value in one column and the 
corresponding value in another. A relation with two columns, for 
example, is a set of pairs. 

18.1 Sets

18.1.1 Membership
There is a built-in verb e. (lowercase e dot, called "Member"). The 
expresssion x e. y tests whether x matches any item of y, that is, 
whether x is a member of the list y. For example: 
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y=: 'abcde' 'a' e. y 'w' e. y 'ef' e. y

abcde 1 0 1 0

 

Evidently the order of items in y is irrelevant and so is the 
presence of duplicates in y. 

z=: 'edcbad' 'a' e. z 'w' e. z 'ef' e. z

edcbad 1 0 1 0

 

We can test whether a table contains a particular row: 

t =: 4 2 $ 'abcdef' 'cd' e. t

ab
cd
ef
ab

1

 

18.1.2 Less

There is a built-in verb -. (minus dot, called "Less"). The 
expression x -. y produces a list of the items of x except those 
which are members of y. 
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x =: 'consonant' y =: 'aeiou' x -. y

consonant aeiou cnsnnt

 

Evidently the order of items in y is irrelevant and so is the 
presence of duplicates in y. 

18.1.3 Nub

There is a built-in verb ~. (tilde dot, called "Nub"). The expression 
~. y produces a list of the items of y without duplicates. 

nub =: ~. y =: 'hook' nub y

~. hook hok

 

We can apply nub to the rows of a table: 

t nub t

ab
cd
ef
ab

ab
cd
ef

 

18.1.4 Nub Sieve

The verb "nub sieve" (~:) gives a boolean vector which is true 
only at the nub. 
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y b =: ~: y b # y nub y

hook 1 1 0 1 hok hok

 

18.1.5 Functions for Sets

The customary functions on sets, such as set-union, set-
intersection or set-equality, are easily defined using the built-in 
functions available. For example two sets are equal if all members 
of one are members of the other, and vice versa. 

   seteq =: *./ @: (e. , e.~)

1 2 3 seteq 3 1 2 1 1 2 3 seteq 1 2

1 0

 

18.2 The Table Adverb

Recall that the adverb / generates a verb; for example +/ is a verb 
which sums lists. More precisely, it is the monadic case of +/ which 
sums lists. The dyadic case of +/ generates a table: 

x =: 0 1 2 y =: 3 4 5 6 z =: x +/ y

0 1 2 3 4 5 6 3 4 5 6
4 5 6 7
5 6 7 8

 

The general scheme is that if we have 
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             z =:  x f/ y

then z is a table such that the value at row i column j is given by 
applying f dyadically to the pair of arguments i{x and j{y. That 
is, z contains all possible pairings of an item of x with an item of y. 
Here is another example: 

x =: 'abc' y =: 'face' x =/ y

abc face 0 1 0 0
0 0 0 0
0 0 1 0

 

The result shows, in the first row, the value of 'a' = 'face', in 
the second row the value of 'b' ='face' and so on. 

18.3 Classes

18.3.1 Self-Classify
Consider the problem of finding the counts of letters occurring in a 
string (the frequency-distribution of letters). Here is one approach. 

We form a table testing each letter for equality with the nub. 
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y =: 'hook' nub y (nub y) =/ y

hook hok 1 0 0 0
0 1 1 0
0 0 0 1

 

The expression ((nub y) = / y) can be abbreviated as (= y). 
The monadic case of the built-in verb = is called "Self-classify"). 

y nub y (nub y) =/ y = y

hook hok 1 0 0 0
0 1 1 0
0 0 0 1

1 0 0 0
0 1 1 0
0 0 0 1

 

If we sum each row of = y we obtain the counts, in the order of 
the letters in the nub. 

y = y +/ " 1 =y

hook 1 0 0 0
0 1 1 0
0 0 0 1

1 2 1

 

The counts can be paired with the letters of the nub: 
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y nub y (nub y) ;" 0 (+/ " 1 =y)

hook hok +-+-+
|h|1|
+-+-+
|o|2|
+-+-+
|k|1|
+-+-+

 

18.3.2 Classification Schemes

Gardeners classify soil-types as acid, neutral or alkaline, 
depending on the pH value. Suppose that a pH less than 6 is 
classed as acid, 6 to 7 is neutral, and more than 7 as alkaline. 
Here now is a verb to classify a pH value, returning A for acid, N for 
neutral and L for alkaline (or limy). 

   classify =: ({ & 'ANL')  @: ((>: & 6) + (> & 7))

classify 6 classify 4.8 5.1 6 7 7.1 8

N AANNLL

 

The classify function we can regard as defining a classification 
scheme. The letters ANL, which are in effect names of classes, are 
called the keys of the scheme. 

18.3.3 The Key Adverb
Given some data (a list, say), we can classify each item to produce 
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a list of corresponding keys. 

data =: 7 5 6 4 8 k =: classify data

7 5 6 4 8 NANAL

 

We can select and group together all the data in, say, class A (all 
the data with key A): 

data k k = 'A' (k = 'A') # data

7 5 6 4 8 NANAL 0 1 0 1 0 5 4

 

Now suppose we wish to count the items in each class. That is, we 
aim to apply the monadic verb # separately to each group of items 
all of the same key. To do this we can use the built-in adverb /. 
(slash dot, called "Key"). 

data k =: classify data k # /. data

7 5 6 4 8 NANAL 2 2 1

 

For another example, instead of counting the members we could 
exhibit the members, by applying the box verb <. 
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data k =: classify data k < /. data

7 5 6 4 8 NANAL +---+---+-+
|7 6|5 4|8|
+---+---+-+

 

The verb we apply can discover for itself the class of each separate 
argument, by classifying the first member: Here the verb u 
produces a boxed list: the key and count: 

   u =: (classify @: {.) ; #
   

data k =: classify data k u /. data

7 5 6 4 8 NANAL +-+-+
|N|2|
+-+-+
|A|2|
+-+-+
|L|1|
+-+-+

 

The general scheme for the "Key" adverb is as follows. In the 
expression x u /. y, we take y to be a list, and x is a list of keys 
of corresponding items of y according to some classification 
scheme, and u is the verb to be applied separately to each class. 
The scheme is: 

       x u /. y    means   (= x) (u @ #) y
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To illustrate: 

   y =: 4 5 6 7 8 
   x =: classify y
   u =: <

y x = x (= x) (u @ #) y x u /. y

4 5 6 7 8 AANNL 1 1 0 0 0
0 0 1 1 0
0 0 0 0 1

+---+---+-+
|4 5|6 7|8|
+---+---+-+

+---+---+-+
|4 5|6 7|8|
+---+---+-+

 

We see that each row of =x selects items from y, and u is applied 
to this selection. 

18.3.4 Letter-Counts Revisited
Recall the example of finding the counts of letters in a string. 

y =: 'LETTUCE' = y (nub y) ; " 0 +/ "1 (= y)

LETTUCE 1 0 0 0 0 0 0
0 1 0 0 0 0 1
0 0 1 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

+-+-+
|L|1|
+-+-+
|E|2|
+-+-+
|T|2|
+-+-+
|U|1|
+-+-+
|C|1|
+-+-+

 

Here is a variation. We note that we have in effect a classification 
scheme where we have as many different classes as different 
letters: each letter is (the key of) its own class. Thus we can write 
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an expression of the form y u /. y. 

The applied verb u will see, each time, a list of letters, all the 
same. It counts them, with #, and takes the first, with {., to be a 
label for the class. 

   u =: {. ; #

y = y y u /. y

LETTUCE 1 0 0 0 0 0 0
0 1 0 0 0 0 1
0 0 1 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

+-+-+
|L|1|
+-+-+
|E|2|
+-+-+
|T|2|
+-+-+
|U|1|
+-+-+
|C|1|
+-+-+

 

18.4 Relations

Suppose there are a number of publications, such as: 

• "Pigs" by Smith, on the subject of pigs 
• "Pets" by Brown, on cats and dogs 
• "Dogs" by Smith and James, on dogs 

and we aim to catalog such publications. A suitable data structure 
for such a catalog might be a table relating authors to titles and 



 277 Chapter 18: Sets, Classes and Relations

another table relating titles to subjects. For example: 

author title 

Smith "Pigs" 

Brown "Pets" 

Smith "Dogs" 

James "Dogs" 

 

title subject 

"Pigs" pigs 

"Pets" dogs 

"Pets" cats 

"Dogs" dogs 

 

 Such tables we may call "relations". The order of the rows is not 
significant. Here,for the sake of simplicity, we will stick to relations 
with two columns. 

Now we choose a representation for our relations. For a first 
approach, we choose tables of boxed strings. The authors-titles 
relation is: 

   ]  AT  =: (". ;. _2) 0 : 0
'Smith'  ; 'Pigs'
'Brown'  ; 'Pets'
'Smith'  ; 'Dogs'
'James'  ; 'Dogs'
)
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+-----+----+
|Smith|Pigs|
+-----+----+
|Brown|Pets|
+-----+----+
|Smith|Dogs|
+-----+----+
|James|Dogs|
+-----+----+

and the titles-subjects relation is: 

   ] TS =: (". ;. _2) 0 : 0
'Pigs' ; 'pigs'
'Pets' ; 'cats'
'Pets' ; 'dogs'
'Dogs' ; 'dogs'
)
+----+----+
|Pigs|pigs|
+----+----+
|Pets|cats|
+----+----+
|Pets|dogs|
+----+----+
|Dogs|dogs|
+----+----+
   

18.4.1 Join of Relations

From the authors-titles relation AT and the titles-subjects relation 
TS we can compute an authors-subjects relation showing which 
author has written a title on which subject. We say that AT and TS 
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are to be joined with respect to titles, and we would expect the 
join to look like this: 

+-----+----+
|Smith|pigs|
+-----+----+
|Brown|cats|
+-----+----+
|Brown|dogs|
+-----+----+
|Smith|dogs|
+-----+----+
|James|dogs|
+-----+----+
   

The plan for this section is to look at a function for computing 
joins, then at an improved version, and then at the advantage of 
representing relations as tables of symbols rather than boxed 
strings. Finally we look at some performance comparisons. 

A method is as follows. We consider all possible pairs consisting of 
a row at from table AT and a row ts from table TS. Each pair 
at,ts is of the form: 

          author; title; title; subject

If title matches title, that is, item 1 matches item 2, then we 
extract author and subject, that is, items 0 and 3. Verbs for testing 
and extracting from at,ts pairs can be written as: 

   test =: 1&{ =  2&{
   extr =: 0 3 & {

and these verbs can be plugged into a suitable conjunction to do 
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the pairing. In writing this conjunction, we aim to avoid requiring 
the whole set of possible pairs to be present at the same time, 
since this set may be large. We also aim to avoid any duplicates in 
the result. Here is a first attempt. 

   PAIR =: 2 : 0
:
z =.  0 0 $ ''
for_at. x do.
   for_ts.  y do.
     if. u at,ts do. z =. z, v at,ts  end.
   end.
end.
~. z
)

The join verb can now be written as: 

   join =: test PAIR extr

and we see: 
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AT TS AT join TS

+-----+----+
|Smith|Pigs|
+-----+----+
|Brown|Pets|
+-----+----+
|Smith|Dogs|
+-----+----+
|James|Dogs|
+-----+----+

+----+----+
|Pigs|pigs|
+----+----+
|Pets|cats|
+----+----+
|Pets|dogs|
+----+----+
|Dogs|dogs|
+----+----+

+-----+----+
|Smith|pigs|
+-----+----+
|Brown|cats|
+-----+----+
|Brown|dogs|
+-----+----+
|Smith|dogs|
+-----+----+
|James|dogs|
+-----+----+

 

The join verb as defined above is slow, because the test and 
extr verbs are applied to a single x,y pair at a time - they are 
scalar computations. Performance will be better if we can give 
these verbs as much data as possible to work on at one time. (This 
is a universal rule in J). Vector or array arguments are better. Here 
is a revised vector-oriented version of PAIR and join, which still 
avoids building the entire set of pairs. 

   VPAIR =: 2 : 0
:
z =.  0 0 $ ''
for_at. x do.
      z =. z , |: v (#~"1  u) |: at , "1 y
end.
~. z
)
   
   vjoin  =: test VPAIR extr 
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giving the same result as before: 

AT join TS AT vjoin TS

+-----+----+
|Smith|pigs|
+-----+----+
|Brown|cats|
+-----+----+
|Brown|dogs|
+-----+----+
|Smith|dogs|
+-----+----+
|James|dogs|
+-----+----+

+-----+----+
|Smith|pigs|
+-----+----+
|Brown|cats|
+-----+----+
|Brown|dogs|
+-----+----+
|Smith|dogs|
+-----+----+
|James|dogs|
+-----+----+

 

Representing relations as tables of boxed strings, as above, is less 
than efficient. For a repeated value, the entire string is repeated. 
Values are compared by comparing entire strings. 

Now we look at another possibility. Rather than boxed strings, a 
relation can be represented by a table of symbols. 

18.4.2 What are Symbols?

Symbols are for efficient computation with string data. Symbols 
are a distinct data-type, in the same way that characters, boxes 
and numbers are distinct data-types. A symbol is a scalar which 
identifies, or refers to, a string. 

A symbol can be created by applying the built-in verb s: 
(lowercase s colon) to a boxed string. 
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   a  =: s: <'hello'

Now the variable a has a value of type symbol. We inspect this 
value in the usual way: 

   a
`hello

and see that the value is displayed as the original string preceded 
by a left-quote. Even though a looks like a string when displayed, 
it is a scalar. 

a $ a # $ a

`hello  0

 

The original string is stored in a data-structure, maintained 
automatically by the J system, called the symbol-table. Strings are 
not duplicated within the symbol-table. Hence if another symbol b 
is created from the same string as a, then b is equal to a. 

a b =: s: <'hello' b = a

`hello `hello 1

 

Notice that the comparison is simple scalar equality, with no need 
to compare the original strings. 

Our relations above can be converted to arrays of symbols, and 
joined as before. 
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sAT =: s: AT sTS =: s: TS sAT vjoin sTS

`Smith `Pigs
`Brown `Pets
`Smith `Dogs
`James `Dogs

`Pigs `pigs
`Pets `cats
`Pets `dogs
`Dogs `dogs

`Smith `pigs
`Brown `cats
`Brown `dogs
`Smith `dogs
`James `dogs

 

Symbols are lexicographically ordered to reflect the ordering of the 
original strings. Hence tables of symbols can be sorted: 

sAT /:~ sAT

`Smith `Pigs
`Brown `Pets
`Smith `Dogs
`James `Dogs

`Brown `Pets
`James `Dogs
`Smith `Dogs
`Smith `Pigs

 

18.4.3 Measurements Compared

Here is a utility verb giving time in seconds to evaluate an 
expression, averaged over say 4 executions. 

   time =: (8j5 & ":) @: (4 & (6!:2))

The examples of relations above are too small for meaningful 
performance measurements, so we make larger relations by 
replicating each say 100 times. 

   AT  =: 100 $ AT
   TS  =: 100 $ TS
   sAT =: 100 $ sAT
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   sTS =: 100 $ sTS

There are 4 cases to compare: 

   t1 =: time 'AT  join  TS'   NB. scalar method, boxed strings
   t2 =: time 'sAT join  sTS'  NB. scalar method, symbols
   t3 =: time 'AT  vjoin TS'   NB. vector method, boxed strings
   t4 =: time 'sAT vjoin sTS'  NB. vector method, symbols

and we see: 

   3 3 $ ' '; 'strings'; 'symbols';'scalar';t1;t2; 'vector';t3;t4
+------+--------+--------+
|      |strings |symbols |
+------+--------+--------+
|scalar| 1.78752| 0.04552|
+------+--------+--------+
|vector| 0.02507| 0.00199|
+------+--------+--------+

In Chapter 31 we will return to the topic of performance in 
computing join of relations. 

18.4.4 Saving and Restoring the Symbol Table
Suppose that data is an array of symbols. 

   ] data =: s: 2 2 $ 'hello'; 
'blah';'blah';'goodbye'
`hello `blah   
`blah  `goodbye

For a symbol in data its original string ('hello' for example) is 
stored only in the symbol table, not in data itself. The original 
string is needed to display the value of the symbol. 
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Suppose that we write data to a file, aiming to read it back in a 
new session. At the beginning of a new session, the symbol table 
is empty. Thus we must save the symbol table from the earlier 
session, and reinstate it at the beginning of the new session. 

First, here are two utility functions to save a value to a file and 
retrieve it. (See Chapter 27 and Chapter 28 for more about data in 
files.) 

   save =: 4 : '(3!:1 x ) 1!:2 < y '
   retr =: 3 : '3!:2 (1!:1 < y )'

Save the data to a file named, say, data.xyz 

   data save 'data.xyz'

The symbol table is not itself a variable, but the expression 0 s: 
10 gives a value for it. We save this value to a file named, say, 
symtab.xyz 

   (0 s: 10) save 'symtab.xyz'

Start a new J session. The symbol table is initially empty, so begin 
by reinstating it from the file saved in the earlier session: 

   10 s: (retr 'symtab.xyz')
1
   

Now, with the correct symbol table in place, we can retrieve the 
array of symbols data from its file: 

   DATA =: retr 'data.xyz'
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and we see that the symbols are correctly interpreted: 

   DATA
`hello `blah   
`blah  `goodbye

This is the end of Chapter 18 
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Chapter 19: Numbers

The topics covered in this chapter are: 

• The different kinds of numbers available in J 
• Special numbers (infinities and indeterminates) 
• Notations for writing numbers 
• How numbers are displayed and formatted 
• Number bases 
• Random numbers 

19.1 Numbers of Six Different Kinds

J supports computation with numbers of these kinds: 

• booleans (or truth-values) 
• integers 
• real (or floating-point) numbers 
• complex numbers 
• extended integers (that is, arbitrarily large integers exactly 

represented) 
• rationals (that is, pairs of extended integers) 

Each kind of number has its own internal representation in 
memory. For example, an array containing only the truth-values 0 
and 1 is stored in a compact internal form, called "boolean", rather 
than in the floating-point form. Similarly an array containing only 
(relatively small) whole numbers is stored in a compact form called 
"integer". 
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The choice of appropriate representation is managed entirely 
automatically by the J system, and is not normally something the 
programmer must be aware of. However, there is a means of 
testing the representation of a number. Here is a utility function for 
the purpose. 

   types =: 'bool';'int';'float';'complex';'ext int';'rational'
   
   type  =: > @: ({ & types) @: (1 4 8 16 64 128 & i.) @: (3 !: 0)
   

type 0=0 type 37 type 2.5 type 12345678901

bool int float float

 

19.1.1 Booleans
There are built-in functions for logical computation with boolean 
values. Giving conventional names to these functions: 

   and    =: *.
   or     =: +.
   not    =: -.
   notand =: *: 
   notor  =: +:

we can show their truth-tables: 

   p =: 4 1 $ 0 0 1 1
   q =: 4 1 $ 0 1 0 1
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p q p and q p or q not p p notand q

0
0
1
1

0
1
0
1

0
0
0
1

0
1
1
1

1
1
0
0

1
1
1
0

 

Further logical functions can be defined in the usual way. For 
example, logical implication, with the scheme 

         p implies q    means   not (p and not q)

is defined by not composed with the hook and not 

   implies =: not @ (and not)
   

p q p implies q

0
0
1
1

0
1
0
1

1
1
0
1

 

Notice that in the truth-table above the rows are given in an order 
such that p,q = successively 00 01 10 11 in binary or 0 1 2 3. Call 
this the standard order. 

With the rows of a truth-table in standard order, the result-column 
can be read as a 4-bit number, 1 1 0 1 in this example. This 
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means that there are altogether only 16 possible logical functions 
of two arguments, and that any of them can be specified by giving 
its 4-bit result. 

There is a built-in adverb b. (lowercase b dot, called "Boolean"), 
which can take an integer in the range 0-15, expressing a 4-bit 
result, and produces the corresponding logical function. 

For example, we saw above that for logical implication its 4-bit 
specification is 1 1 0 1 or 13, giving us another way to define 
implication as 13 b. We see: 

p q p implies q p (13 b.) q

0
0
1
1

0
1
0
1

1
1
0
1

1
1
0
1

 

We regard the booleans as numbers because they can be 
interpreted as having arithmetic values. To illustrate, implication 
has the same truth-table as less-than-or-equal: 

p implies q p <: q

1
1
0
1

1
1
0
1

 

For another example of booleans as numbers, the sum of the 
positive numbers in a list is shown by: 
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z =: 3 _1 4 b =: z > 0 b * z +/ b * z

3 _1 4 1 0 1 3 0 4 7

 

19.1.2 Integers
On a 32-bit machine integers range between _2147483648 and 
2147483647. 

The result of arithmetic with integers is converted to floating-point 
if larger than the maximum integer. 

maxint=:2147483647 type maxint z =: 1+maxint type z

2147483647 int 2.14748e9 float

 

19.1.3 Bitwise Logical Functions on Integers

J provides all the expected functions on integers, so not much 
need be said here. However, this might be a good place to mention 
that bitwise logical functions on integers are available through the 
built-in adverb b. we met above. To begin, here is a utility function 
to show the last 8 bits of an integer. 

   bits =: ('... ' & ,) @: ({&'01')@:((8#2) & #:) 
   

bits 0 bits 1 bits 5

... 00000000 ... 00000001 ... 00000101
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Recall that logical function k is given by k b. where k is in the 
range 0-15. The function (k+16) b. is logically the same, but 
applies, not to booleans, but to integers bitwise, that is, on 
machine words. 

For example (1 b.) is logical-and on booleans, while (17 b.) is 
logical-and on integers. 

   BLAND =: 17 b.    NB. bit-wise logical and

bits 45 bits 7 bits 45 BLAND 7

... 00101101 ... 00000111 ... 00000101

 

The verb (32 b.) rotates the bits of y leftward by x places, or 
rightward for negative x. Similarly (33 b.) shifts and (34 b.) 
performs a "signed shift" that is, propagating the sign bit on a 
rightward move. For example: 

   ] a =: 1
1
   
   ] b =: _1 (32 b.) a   NB. rotating rightwards 
_2147483648
   
   ] c =: _1 (34 b.) b   NB. shifting right, 
propagating sign-bit
_1073741824
   
   ] d =: 2  (34 b.) c   NB. shifting left, 
removing sign-bits
0
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For one more example, recall the Collatz function from Chapter 10 
: halve if even, otherwise triple and add one. Here is a bitwise 
version. 

   odd    =: (17 b.) & 1
   halve  =: _1 & (33 b.)      NB. OK for an even number !
   triple =: + (1 & (33 b.))
   
   collatz =:   halve ` (1 + triple) @. odd
   
   collatz ^: (i. 10) 5
5 16 8 4 2 1 4 2 1 4

19.1.4 Floating-Point Numbers

A floating-point number is a number represented in the computer 
in such a way that: (1) there may be a a fractional part as well as 
a whole-number part. (2) a fixed amount of computer storage is 
occupied by the number, whatever the value of the number. and 
therefore (3) the precision with which the number is represented is 
limited to at most about 17 significant decimal digits (on a PC). 

Examples of floating-point numbers are 0.25 2.5 12345678901 

We will use the term "real" more or less interchangeably with 
"floating-point". 

19.1.5 Scientific Notation

What is sometimes called "scientific notation" is a convenient way 
of writing very large or very small numbers. For example, 1500000 
may be written as 1.5e6, meaning 1.5 * 10^6. The general 
scheme is that a number written in the form XeY, where Y is a 
(positive or negative) integer means (X * 10^Y). 
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3e2 1.5e6 1.5e_4

300 150000
0

0.00015

 

Note that in 3e2 the letter e is not any kind of function; it is part of 
the notation for writing numbers, just as a decimal point is part of 
the notation. 

We say that the string of characters 3 followed by e followed by 2 
is a numeral which denotes the number 300. The string of 
characters 3 followed by 0 followed by 0 is another numeral 
denoting the same number. Different forms of numerals provide 
convenient ways to express different numbers. A number 
expressed by a numeral is also called a "constant" (as opposed to 
a variable.) 

We will come back to the topic of numerals: now we return to the 
topic of different kinds of numbers. 

19.1.6 Comparison of Floating-Point Numbers

Two numbers are regarded as equal if their difference is relatively 
small. For example, we see that a and b have a non-zero 
difference, but even so the expression a = b produces "true". 

a =: 1.001 b =: a - 2^_45 a - b a = b

1.001 1.001 2.84217e_14 1

 

If we say that the "relative difference" of two numbers is the 
magnitude of the difference divided by the larger of the 
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magnitudes: 

   RD =: (| @: -) % (>. &: |)

then for a=b to be true, the relative difference (a RD b) must not 
exceed a small value called the "comparison tolerance" which is by 
default 2^_44 

a RD b 2^_44 a = b

2.83933e_14 5.68434e_14 1

 

Thus to compare two numbers we need to compare relative 
difference with tolerance. The latter comparison is itself strict, that 
is, does not involve any tolerance. 

Zero is not tolerantly equal to any non-zero number, no matter 
how small, because the relative difference must be 1, and thus 
greater than tolerance. 

tiny =: 1e_300 tiny = 0 tiny RD 0

1e_300 0 1

 

However, 1+tiny is tolerantly equal to 1. 

tiny tiny = 0 1 = tiny + 1

1e_300 0 1

 

The value of the comparison tolerance currently in effect is given 
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by the built-in verb 9!:18 applied to a null argument. It is 
currently 2^_44. 

9!:18 '' 2^_44

5.68434e_14 5.68434e_14

 

Applying the built-in verb 9!:19 to an argument y sets the 
tolerance to y subsequently. The following example shows that 
when the tolerance is 2^_44, then a = b but when the tolerance is 
set to zero it is no longer the case that a = b. 

(9!:19) 2^_44 a = b (9!:19) 0 a = b

 1  0

 

The tolerance queried by 9!:18 and set by 9!:19 is a global 
parameter, influencing the outcome of computations with =. A verb 
to apply a specified tolerance t, regardless of the global 
parameter, can be written as = !. t. For example, strict (zero-
tolerance) equality can be defined by: 

   streq =: = !.  0

Resetting the global tolerance to the default value, we see: 

(9!:19) 2^_44 a - b a = b a streq b

 2.84217e_14 1 0
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Comparison with = is tolerant, and so are comparisons with <, <:, 
>, >:, ~: and -:. For example, the difference a-b is positive but 
too small to make it true that a>b 

a - b a > b

2.84217e_14 0

 

Permissible tolerances range between 0 and 2^_35. That is, an 
attempt to set the tolerance larger than 2^_35 is an error: 

(9!:19) 2^_35 (9!:19) 2^_34

 error

 

The effect of disallowing large tolerances is that no two different 
integers compare equal when converted to floating-point. 

19.1.7 Complex Numbers

The square root of -1 is the imaginary number conventionally 
called "i". A complex number which is conventionally written as, for 
example, 3+i4 is in J written as 3j4. 

In J an imaginary number is represented as a complex number 
with real part zero. Thus "i", the square root of -1, can be written 
0j1. 

i =: %: _1 i * i 0j1 * 0j1

0j1 _1 _1
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A complex number can be built from two separate real numbers by 
arithmetic in the ordinary way, or more conveniently with the built-
in function j. (lowercase j dot, called "Complex"). 

3 + (%: _1) * 4 3 j. 4

3j4 3j4

 

Some more examples of arithmetic with complex numbers: 

2j3 * 5j7 10j21 % 5j7 2j3 % 2

_11j29 2.66216j0.47297
3

1j1.5

 

A complex number such as 3j4 is a single number, a scalar. To 
extract its real part and imaginary part separately we can use the 
built-in verb +.(plus dot, called "Real/Imaginary"). To extract 
separately the magnitude and angle (in radians) we can use the 
built-in verb *. (asterisk dot, called "Length/Angle"). 

+. 3j4 *. 3j4

3 4 5 0.927295

 

Given a magnitude and angle, we can build a complex number by 
taking sine and cosine, or more conveniently with the built-in 
function r. (lowercase r dot, called "Polar"). 

   sin =: 1 & o.
   cos =: 2 & o.
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   mag =: 5
   ang =: 0.92729522  NB. radians

mag * (cos ang) + 0j1 * sin ang mag r. ang

3j4 3j4

 

A complex constant with magnitude X and angle (in radians) Y can 
be written in the form XarY, meaning X r. Y. Similarly, if the 
angle is given in degrees, we can write XadY. 

5ar0.9272952 5ad53.1301

3j4 3j4

 

19.1.8 Extended Integers

A floating-point number, having a limited storage space in the 
computer's memory, can represent an integer exactly only up to 
about 17 digits. For exact computations with longer numbers, 
"extended integers" are available. An "extended integer" is a 
number which exactly represents an integer no matter how many 
digits are needed. An extended integer is written with the digits 
followed with the letter 'x'. Compare the following: 

a =: *: 10000000001 b =: *: 10000000001x

1e20 100000000020000000001

 

Here a is an approximation while b is an exact result. 
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type a type b

float ext int

 

We can see that adding 1 to a makes no difference, while adding 1 
to b does make a difference: 

(a + 1) - a (b + 1) - b

0 1

 

19.1.9 Rational Numbers

A "rational number" is a single number which represents exactly 
the ratio of two integers, for example, two-thirds is the ratio of 2 
to 3. Two-thirds can be written as a rational number with the 
notation 2r3. 

The point of rationals is that they are are exact representations 
using extended integers. Arithmetic with rationals gives exact 
results. 

2r3 + 1r7 2r3 * 4r7 2r3 % 5r7

17r21 8r21 14r15

 

Rationals can be constructed by dividing extended integers. 
Compare the following: 
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2 % 3 2x % 3x

0.666667 2r3

 

A rational can be constructed from a given floating-point number 
with the verb x: 

x: 0.3 x: 1 % 3

3r10 1r3

 

A rational number can be converted to a floating-point 
approximation with the inverse ofx: , that is, verb x: ^: _1 

float =: x: ^: _1 float 2r3

+--+--+--+
|x:|^:|_1|
+--+--+--+

0.666667

 

Given a rational number, its numerator and denominator can be 
recovered with the verb 2 & x:, which gives a list of length 2. 

nd =: 2 & x: nd 2r3

+-+-+--+
|2|&|x:|
+-+-+--+

2 3
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19.1.10 Type Conversion

We have numbers of six different types: boolean, integer, extended 
integer, rational, floating-point and complex. 

Arithmetic can be done with a mixture of types. For example an 
integer plus an extended gives an extended, and a rational times a 
float gives a float. 

1 + 10^19x 1r3 * 0.75

10000000000000000001 0.25

 

The general scheme is that the six types form a progression: from 
boolean to integer to extended to rational to floating-point to 
complex. We say that boolean is the simplest or "lowest" type and 
complex as the most general or "highest" type 

Where we have two numbers of different types, the one of lower 
type is converted to match the type of the higher. and the result is 
of the "higher". 

type 1r3 type 1%3 z =: 1r3, 1%3 type z

rational float 0.333333 0.333333 float

 

19.2 Special Numbers

19.2.1 "Infinity"

A floating-point number can (on a PC) be no larger than about 
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1e308, because of the way it is stored in the computer's memory. 
Any arithmetic which attempts to produce a larger result will in 
fact produce a special number called "infinity" and written _ 
(underscore). For example: 

1e308 * 0 1 2 1e40
0

1 % 0

0 1e308 _ _ _

 

There is also "negative infinity" written as __ (underscore 
underscore). Infinity is a floating-point number: 

   type _
float
   

19.2.2 "Indeterminate" Numbers

A floating-point number is a 64-bit value, but not all 64-bit values 
are valid as floating-point numbers. Any which is not valid is said 
to be "Not a Number", or a "NaN". Such a value might occur, for 
example, in data imported into a J program from an unreliable 
external source. 

When displaying the values of numbers, the J system reports any 
supposed floating-point number, which is in fact "Not a Number", 
as the symbol _. (underbar dot, called "Indeterminate"). 

Floating-point arithmetic on _. arguments cannot be relied upon 
to produce meaningful results. Thus _. is best regarded solely as a 
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mark of error. 

The sole reliable test for _. is the verb 128 !: 5 . In the following 
example note the difference between results of the unreliable test 
X = _. and the reliable test 128 !: 5 X . 

X =: 1.5 _. 2.5 X = _. 128!:5 X

1.5 _. 2.5 0 0 0 0 1 0

 

19.3 Number Bases

The number 5 is represented in binary as 1 0 1. There is a built- 
in function, monadic #: ( hash colon, called "Antibase Two" ) to 
compute the binary digits. Note that the result is a list. 

   #: 5
1 0 1

We say that the binary digits are the base-2 representation. More 
generally, a base-n representation can be produced. The left 
argument of dyadic #: (called "Antibase") specifies the both the 
base and the number of digits. To get four binary digits we can 
write: 

   2 2 2 2 #: 5
0 1 0 1

63 as two base-8 (octal) digits: 

   8 8 #: 63
7 7
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A mixed-base representation is possible. How many hours, 
minutes and seconds are there in 7265 seconds? 

   24 60 60 #: 7265
2 1 5

The inverse functions produce numbers from lists of digits in 
specified bases. Monadic #. is called "Base Two". Binary 1 0 1 is 5 

   #. 1 0 1
5

Dyadic #. is called "Base". Its left argument specifies a number-
base for the digits of the right argument. 

   2 #. 1 0 1
5

Equivalently: 

   2 2 2 #. 1 0 1
5
   

There must be a base specified on the left for each digit on the 
right, otherwise an error is signalled 

    2 2 #. 1 0 1
|length error
|   2 2    #.1 0 1
|[-531] c:\users\homer\13\js\19.ijs
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Again, mixed bases are possible: 2 hours 1 minute 5 seconds is 
7265 seconds 

   24 60 60  #. 2 1 5
7265
   

19.4 Notations for Numerals

We have seen above numerals formed with the letters e, r and j, 
for example: 1e3, 2r3, and 3j4. Here we look at more letters for 
forming numerals. 

A numeral written with letter p, of the form XpY means X * pi ^ 
Y where pi is the familiar value 3.14159265.... 

pi =: 1p1 twopi =: 2p1 2p_1

3.14159 6.28319 0.63662
 

Similarly, a numeral written with letter x, of the form XxY means X 
* e ^ Y where e is the familiar value 2.718281828.... 

e =: 1x1 2x_1 2 * e ^ _1

2.71828 0.735759 0.735759
 

These p and x forms of numeral provide a convenient way of 
writing constants accurately without writing out many digits. 
Finally, we can write numerals with a base other than 10. For 
example the binary or base-2 number with binary digits 101 has 
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the value 5 and can be written as 2b101. 

   2b101 
5

The general scheme is that NbDDD.DDD is a numeral in number-
base N with digits DDD.DDD . With bases larger than 10, we will 
need digits larger than 9, so we take letter 'a' as a digit with 
value 10, 'b' with value 11, and so on up to 'z' with value 35. 

For example, letter 'f' has digit-value 15, so in hexadecimal (base 
16) the numeral written 16bff has the value 255. The number-
base N is given in decimal. 

16bff (16 * 15) + 15

255 255

 

One more example. 10b0.9 is evidently a base-10 number 
meaning "nine-tenths" and so, in base 20, 20b0.f means "fifteen 
twentieths" 

   10b0.9 20b0.f
0.9 0.75

19.4.1 Combining the Notations
The notation-letters e, r, j ar ad p x and b may be used in 
combination. For example we can write 1r2p1 to mean "pi over 
two". Here are some further examples of possible combinations. 

A numeral in the form XrY denotes the number X%Y. A numeral in 
the form XeYrZ denotes the number (XeY) % Z because e is 
considered before r. 
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1.2e2 (1.2e2) % 4 1.2e2r4

120 30 30

 

A numeral in the form XjY denotes the complex number (X j. Y) 
(that is, (X + (%: _1) * Y). A numeral in the form XrYjZ 
denotes the number (XrY) j. Z because r is considered before j 

3r4 (3r4) j. 5 3r4j5

3r4 0.75j5 0.75j5

 

A numeral in the form XpY denotes the number X*pi^Y. A numeral 
in the form XjYpZ denotes (XjY) *pi^Z because j is considered 
before p. 

3j4p5 (3j4) * pi ^ 5

918.059j1224.08 918.059j1224.08

 

A numeral in the form XbY denotes the number Y-in-base-X. A 
numeral in the form XpYbZ denotes the number Z-in-base-(XpY) 
because p is considered before b. 

(3*pi)+5 1p1b35

14.4248 14.4248
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19.5 How Numbers are Displayed

A number is displayed by J with, by default, up to 6 or 7 significant 
digits. This means that, commonly, small integers are shown 
exactly, while large numbers, or numbers with many significant 
digits, are shown approximately. 

10 ^ 3 2.7182818285 2.718281828 * 10 ^ 7

1000 2.71828 2.71828e7

 

The number of significant digits used for display is determined by a 
global variable called the "print-precision". If we define the two 
functions: 

   ppq =: 9 !: 10    NB. print-precision query
   pps =: 9 !: 11    NB. print-precision set

then the expression ppq '' gives the value of print-precision 
currently in effect, while pps n will set the print-precision to n. 

ppq '' e =: 2.718281828 pps 8 e

6 2.71828  2.7182818

 

19.5.1 The "Format" Verb

There is a built-in verb ": (doublequote colon, called "Format"). 
Monadic Format converts a number into a string representing the 
number with the print-precision currently in effect. In the following 
example, note that a is a scalar, while the formatted 
representation of a is a list of characters. 
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a =: 1 % 3 ": a $ ": a

0.33333333 0.33333333 10

 

The argument can be a list of numbers and the result is a single 
string. 

b =: 1 % 3 4 ": b $ b $ ": b

0.33333333 0.25 0.33333333 
0.25

2 15

 

Dyadic Format allows more control over the representation. The 
left argument is complex: a value of say, 8j4 will format the 
numbers in a width of 8 characters and with 4 decimal places. 

c =: % 1 + i. 2 2 w =: 8j4 ": c $ w

         1  0.5
0.33333333 0.25

  1.0000  0.5000
  0.3333  0.2500

2 16

 

If the width is specified as zero (as in say 0j3) then sufficient 
width is allowed. If the number of decimal places is negative (as in 
10j_3) then numbers are shown in "scientific notation" 

c 0j3 ": c 10j_3 ": c

         1  0.5
0.33333333 0.25

1.000 0.500
0.333 0.250

1.000e0   5.000e_1
3.333e_1  2.500e_1
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Note that monadic format shows a complex number in the usual 
way, but dyadic format shows only the real part of a complex 
number. 

z =: 3.14j2.72 ": z 6j2 ": z

3.14j2.72 3.14j2.72   3.14

 

More formatting options are provided by the built-in verbs 8!:n. 
Here is a small example to show a few of the many options 
described in the J dictionary. 

Suppose our table of numbers to be formatted is N 

    ] N =: 3 2 $  3.8  _2000 0  123.45 _3.14 15000
  3.8  _2000
    0 123.45
_3.14  15000

We can format each column of N separately. Suppose numbers in 
the first column are to be presented as blank when zero, 6 
characters wide with 0 decimal places. We write a "formatting 
phrase" like this 

   fp1 =: 'b6.0'

Here the 'b' means blank when zero. 

Suppose for the second column we require a comma between each 
3 digits. We require negative numbers to be shown with a following 
"CR" and therefore non-negative numbers should be followed by 
two blank characters, so that decimal points line up vertically. We 
require a 12-character width with 2 decimal places. 
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A suitable formatting phrase is like this: 

   fp2 =: 'cn{CR}q{  }12.2'

Here the 'c' means commas, n{CR} means CR after a negative 
number and q{ } means 2 spaces after a non-negative. 

Applying the formatting verb 8!:2 we see 

N (fp1;fp2) (8!:2) N

  3.8  _2000
    0 123.45
_3.14  15000

     4  2,000.00CR
          123.45
    -3 15,000.00

 

The formatted result is a character table of dimensions 3 by 18, 
because N has 3 rows, and we specified widths of 6 and 12 for first 
and second columns. 

   $ (fp1;fp2) (8!:2) N
3 18
   
  

19.6 Random Numbers

19.6.1 Roll

There are built-in functions for generating random numbers. 
Monadic ? is called "Roll", because ? n gives the result of rolling a 
die with n faces marked 0 to n-1. 
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   ? 6
4

That is, ? n is selected from the items of i. n randomly with equal 
probability. 

A list of random numbers is generated by repeating the n-value. 
For example, four rolls of a six-sided die is given by 

   ? 6 6 6 6
3 4 5 2

or more conveniently by: 

   ? 4 $ 6
2 3 5 3

19.6.2 Uniform Distribution

With an argument of zero, monadic ? generates random reals 
uniformly distributed, greater than 0 and less than 1. 

   ? 0 0 0 0
0.14112615 0.083891464 0.41388488 0.055053198
   

19.6.3 Other Distributions

The built-in verb ? generates equiprobable numbers. Various other 
distributions are provided by the J Application Library stats/distribs 
Addon 
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19.6.4 Deal

Dyadic ? is called "Deal". x ? y is a list of x integers randomly 
chosen from i. y without replacement, that is, the x integers are 
all different. 

Suppose that cards in a deck are numbered 0 to 51, then 13 ? 52 
will deal a single hand of 13 randomly selected cards, all different. 

   13 ? 52
44 2 36 30 0 6 43 26 28 1 34 48 41

A shuffle of the whole deck is given by 52 ? 52. To shuffle and 
then deal four hands: 

   4 13 $ 52 ? 52
15 18  3  8 11 25 27 51 20 31 50 48 35
45 39 21 29 10 33 32 41 36  0 34 16 22
19 14 37  2 24 42  6  7 30 46 47 28 26
38 23 40 13  4  9  5 12 49  1 44 43 17
   

This brings us to the end of Chapter 19. 
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Chapter 20: Scalar Numerical 
Functions

In this chapter we look at built-in scalar functions for computing 
numbers from numbers. This chapter is a straight catalog of 
functions, with links to the sections as follows: 

Ceiling Conjugate cos cos  -1   cosh cosh  -1     

Decrement divide Double Exponential Factorial Floor 

GCD Halve Increment LCM Logarithm 
Log, 
Natural 

Magnitude Minus multiply Negate OutOf PiTimes 

Plus power Pythagorean Reciprocal Residue Root 

Signum sin sin  -1   sinh sinh  -1   Square 

SquareRoot tan tan  -1   tanh tanh  -1       

 

20.1 Plus and Conjugate

Dyadic + is arithmetic addition. 
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2 + 2 1.5 + 0.25 3j4 + 5j4 2r3 + 1r6

4 1.75 8j8 5r6

 

Monadic + is "Conjugate". For a real number y, the conjugate is y. 
For a complex number xjy (that is, x + 0jy), the conjugate is x - 
0jy. 

+ 2 + 3j4

2 3j_4

 

20.2 Minus and Negate

Dyadic - is arithmetic subtraction. 

2 - 2 1.5 - 0.25 3 - 0j4 2r3 - 1r6

0 1.25 3j_4 1r2

 

Monadic - is "Negate". 

- 2 - 3j4

_2 _3j_4
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20.3 Increment and Decrement

Monadic >: is called "Increment". It adds 1 to its argument. 

>: 2 >: 2.5 >: 2r3 >: 2j3

3 3.5 5r3 3j3

 

Monadic <: is called "Decrement". It subtracts 1 from its 
argument. 

<: 3 <: 2.5 <: 2r3 <: 2j3

2 1.5 _1r3 1j3

 

20.4 Times and Signum

Dyadic * is multiplication. 

2 * 3 1.5 * 0.25 3j1 * 2j2 2r3 * 7r11

6 0.375 4j8 14r33

 

Monadic * is called "Signum". For a real number y, the value of (* 
y) is _1 or 0 or 1 as y is negative, zero or positive. 
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* _2 * 0 * 2

_1 0 1

 

More generally, y may be real or complex, and the signum is 
equivalent to y % | y. Hence the signum of a complex number 
has magnitude 1 and the same angle as the argument. 

y =: 3j4 | y y % | y * y | * y

3j4 5 0.6j0.8 0.6j0.8 1

 

20.5 Division and Reciprocal

Dyadic % is division. 

2 % 3 1.4 % 0.25 3j4 % 2j1 12x % 5x

0.666667 5.6 2j1 12r5

 

1 % 0 is "infinity" but 0 % 0 is 0 

1 % 0 0 % 0

_ 0
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Monadic % is the "reciprocal" function. 

% 2 % 0j1

0.5 0j_1

 

20.6 Double and Halve

Monadic +: is the "double" verb. 

+: 2.5 +: 3j4 +: 3x

5 6j8 6

 

Monadic -: is the "halve" verb: 

-: 6 -: 6.5 -: 3j4 -: 3x

3 3.25 1.5j2 3r2

 

20.7 Floor and Ceiling 

Monadic <. (left-angle-bracket dot) is called "Floor". For real y the 
floor of y is y rounded downwards to an integer, that is, the largest 
integer not exceeding y. 
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<. 2 <. 3.2 <. _3.2 <. 4r3

2 3 _4 1

 

For complex y, the floor lies within a unit circle center y, that is, 
the magnitude of (y - <. y) is less than 1. 

y =: 3.4j3.4 z =: <. y y - z | y-z

3.4j3.4 3j3 0.4j0.4 0.565685

 

This condition (magnitude less than 1) means that the floor of say 
3.8j3.8 is not 3j3 but 4j3 because 3j3 does not satisfy the 
condition. 

y =: 3.8j3.8 z =: <. y | y-z | y - 3j3

3.8j3.8 4j3 0.824621 1.13137

 

Monadic >. is called "Ceiling". For real y the ceiling of y is y 
rounded upwards to an integer, that is, the smallest integer 
greater than or equal to y. For example: 

>. 3.0 >. 3.1 >. _2.5

3 4 _2

 

Ceiling applies to complex y 



Chapter 20: Scalar Numerical Functions  322

>. 3.4j3.4 >. 3.8j3.8

3j4 4j4
 

20.8 Power and Exponential

Dyadic ^ is the "power" verb: (x^y) is x raised-to-the-power y 

10 ^ 2 10 ^ _2 100 ^ 1%2

100 0.01 10

 

Monadic ^ is exponentiation (or antilogarithm): ^y means (e^y) 
where e is Euler's constant, 2.71828... 

^ 1 ^ 1.5 ^ 3r2 ^ 0j1

2.71828 4.48169 4.48169 0.540302j0.841471

 

Euler's equation, supposedly engraved on his tombstone is:
 e i π +1 = 0 

   (^ 0j1p1) + 1
0j1.22465e_16

The example of ^ 3r2 above shows that rationals are in the 
domain of ^ , but the result is real, not rational. A rational 
argument is in effect first converted to real. 
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20.9 Square

Monadic *: is "Square". 

*: 4 *: 2j1

16 3j4

 

20.10 Square Root

Monadic %: is "Square Root". 

%: 9 %: 3j4 2j1 * 2j1

3 2j1 3j4

 

20.11 Root

If x is integral, then x %: y is the "x'th root" of y: 

3 %: 8 _3 %: 8

2 0.5

 

More generally, (x %: y) is an abbreviation for (y ^ % x) 
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x =: 3 3.1 x %: 8 8 ^ % x

3 3.1 2 1.95578 2 1.95578

 

20.12 Logarithm and Natural Logarithm

Dyadic ^. is the base-x logarithm function, that is, (x ^. y) is the 
logarithm of y to base x : 

10 ^. 1000 2 ^. 8 10 ^. 2j3 10 ^. 2r3

3 3 0.556972j0.426822 _0.176091

 

Monadic ^. is the "natural logarithm" function. 

e =: ^ 1 ^. e ^. 2j3 ^. 2r3

2.71828 1 1.28247j0.982794 _0.405465

 

The example of ^. 2r3 above shows that rationals are in the 
domain of ^. but the result is real, not rational. A rational 
argument is in effect first converted to real. 

20.13 Factorial and OutOf

The factorial function is monadic !. 
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! 0 1 2 3 4 ! 5x 6x 7x 8x

1 1 2 6 24 120 720 5040 40320

 

The number of combinations of x objects selected out of y objects 
is given by the expression x ! y 

1 ! 4 2 ! 4 3 ! 4

4 6 4

 

20.14 Magnitude and Residue

Monadic | is called "Magnitude". For a real number y the 
magnitude of y is the absolute value: 

| 2 | _2

2 2

 

More generally, y may be real or complex, and the magnitude is 
equivalent to (%: y * + y). 

y =: 3j4 y * + y %: y * + y | y

3j4 25 5 5

 

The dyadic verb | is called "Residue". the remainder when y is 
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divided by x is given by (x | y). 

10 | 12 3 | _2 _1 0 1 2 3 4 5 1.5 | 3.7

2 1 2 0 1 2 0 1 2 0.7

 

If x | y is zero, then x is a divisor of y: 

4 | 12 12 % 4

0 3

 

The "Residue" function applies to complex numbers: 

a =: 1j2 b=: 2j3 a | b a | (a*b) (b-1j1) % a

1j2 2j3 0j_1 0 1

 

20.15 GCD and LCM

The greatest common divisor (GCD) of x and y is given by (x +. 
y). Reals and rationals are in the domain of +.. 

6 +. 15 _6 +. _15 2.5 +. 3.5 6r7 +. 15r7

3 3 0.5 3r7

 

Complex numbers are also in the domain of +.. 
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a=: 1j2 b=:2j3 c=:3j5 (a*b) +. (b*c)

1j2 2j3 3j5 2j3

 

The Least Common Multiple of x and y is given by (x *. y). 

(2 * 3) *. (3 * 5) 2*3*5

30 30

 

20.16 Pi Times

There is a built-in verb o. (lower-case o dot). Monadic o. is called 
"Pi Times"; it multiplies its argument by 3.14159... 

o. 1 o. 2 o. 1r6 o. 2j3

3.14159 6.28319 0.523599 6.28319j9.42478

 

The example of o. 1r6 above shows that rationals are in the 
domain of sin but the result is real, not rational. A rational 
argument is in effect first converted to real. 

A result with arbitrary precision can be be produced by giving an 
argument of an extended integer to the verb <. @ o. for which 
there is special code in the J interpreter 

http://www.jsoftware.com/help/dictionary/special.htm
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   ] z =: (<. & o.) 10^40x
31415926535897932384626433832795028841971
   datatype z
extended
   
   

20.17 Trigonometric and Other Functions

If y is an angle in radians, then the sine of y is given by the 
expression 1 o. y. The sine of (π over 6) is 0.5 

y =: o. 1r6 1 o. y

0.523599 0.5

 

The general scheme for dyadic o. is that (k o. y) means: apply 
to y a function selected by k. Here y is an angle in radians. 

Giving conventional names to the available functions, we have: 

   sin   =:  1 & o.  NB.  sine
   cos   =:  2 & o.  NB.  cosine 
   tan   =:  3 & o.  NB.  tangent
   
   sinh  =:  5 & o.  NB.  hyperbolic sine 
   cosh  =:  6 & o.  NB.  hyperbolic cosine  
   tanh  =:  7 & o.  NB.  hyperbolic tangent 
   
   asin  =: _1 & o.  NB.  inverse sine 
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   acos  =: _2 & o.  NB.  inverse cosine 
   atan  =: _3 & o.  NB.  inverse tangent 
   
   asinh =: _5 & o.  NB.  inverse hyperbolic sine
   acosh =: _6 & o.  NB.  inverse hyperbolic cosine 
   atanh =: _7 & o.  NB.  inverse hyperb.  tangent
   
   

y sin y asin sin y sin 1r4

0.523599 0.5 0.523599 0.247404

 

The example of sin 1r4 above shows that rationals are in the 
domain of sin but the result is real, not rational. A rational 
argument is in effect first converted to real. 

20.18 Pythagorean Functions

There are also the "pythagorean"functions: 

          0 o. y  means   %:   1 - y^2

          4 o. y  means   %:   1 + y^2

          8 o. y  means   %: - 1 + y^2

         _4 o. y  means   %:  _1 + y^2

         _8 o. y  means - %: - 1 + y^2 
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y =: 0.6 0 o. y %: 1 - y^2

0.6 0.8 0.8

 

and a further group of functions on complex numbers: 

    9 o. xjy   means  x                (real part)

   10 o. xjy   means  %: (x^2) + (y^2) (magnitude) 

   11 o. xjy   means  y                (imag part)

   12 o. xjy   means  atan (y % x)     (angle)

9 o. 3j4 10 o. 3j4 11 o. 3j4 12 o. 3j4

3 5 4 0.927295

 

and finally 

   _9 o. xjy   means xjy                 (identity)

  _10 o. xjy   means x j -y             (conjugate)

  _11 o. xjy   means 0j1 * xjy           (j. xjy)

  _12 o. a     means (cos a)+(j. sin a)  (inverse 
                                             angle)

For example: 
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a =: 12 o. 3j4 _12 o. a

0.927295 0.6j0.8

 

This is the end of chapter 20 
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Chapter 21: Factors and Polynomials

In this chapter we look at the built-in functions: 

• monadic q: which computes the prime factors of a number 
• dyadic q: which represents a number as powers of primes 
• monadic p: which generates prime numbers 
• dyadic p. which evaluates polynomials 
• monadic p. which finds roots of polynomials 

21.1 Primes and Factors

The built-in function monadic q: computes the prime factors of a 
given number. 

q: 6 q: 8 q: 17 * 31 q: 1 + 2^30

2 3 2 2 2 17 31 5 5 13 41 61 1321

 

The number 0 is not in the domain of q: The number 1 is in the 
domain of q:, but is regarded as having no factors, that is, its list 
of factors is empty. 

q: 0 q: 1 # q: 1

error  0

 



 333 Chapter 21: Factors and Polynomials

For a large number (greater than about 2^53), its value should be 
specified as an extended integer to ensure all its significant digits 
are supplied to q: .. 

   q: 1 + 2 ^ 53x
3 107 28059810762433
   

A prime number is the one and only member of its list of factors. 
Hence a test for primality can readily be written as the hook: 
member-of-its-factors 

pr =: e. q: pr 8 pr 17 pr 1

e. q: 0 1 0

 

Any positive integer can be written as the product of powers of 
successive primes. Some of the powers will be zero. For example 
we have: 

     9  =  (2^0) * (3^2) * (5^0)  * (7^0) 
1

The list of powers, here 0 2 0 0 ... can be generated with dyadic 
q:. The left argument x specifies how many powers we choose to 
generate. 

4 q: 9 3 q: 9 2 q: 9 1 q: 9 6 q: 9

0 2 0 0 0 2 0 0 2 0 0 2 0 0 0 0

 

Giving a left argument of "infinity" (_) means that the number of 
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powers generated is just enough, in which case the last will be 
non-zero. 

_ q: 9 _ q: 17 * 31

0 2 0 0 0 0 0 0 1 0 0 0 1

 

There is a built-in function, monadic p: (lowercase p colon) which 
generates prime numbers. For example (p: 17) is the 18th prime. 

p: 0 1 2 3 4 5 6 p: 17

2 3 5 7 11 13 17 61

 

On my computer the largest prime which can be so generated is 
between p: 2^26 and p: 2^27. 

p: 2^26 p: 2^27 p: 2^27x 

1339484207 error error

 

21.2 Polynomials

21.2.1 Coefficients
If x is a variable, then an expression in conventional notation such 
as 

a + bx + cx2 + dx3 + ...
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is said to be a polynomial in x. If we write C for the list of 
coefficients a,b,c,d ..., for example, 

   C =: _1 0 1

and assign a value to x, for example, 

   x=:2

then the polynomial expression can be written in J in the form +/ 
C * x ^ i. # C 

C #C i.#C x x^i.#C C*x^i.#C +/C*x^i.# C

_1 0 1 3 0 1 2 2 1 2 4 _1 0 4 3

 

The dyadic verb p. allows us to abbreviate this expression to C p. 
x, 

+/C*x^i.# C C p. x

3 3

 

The scheme is that, for a list of coefficients C: 

           C p. x   means   +/ C * x ^ i. # C

A polynomial function is conveniently written in the form C&p.
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p =: _1 0 1 & p. p x

_1 0 1&p. 3

 

This form has a number of advantages: compact to write, efficient 
to evaluate and (as we will see) easy to differentiate. 

21.2.2 Roots
Given a list of coefficients C, we can compute the roots of the 
polynomial function C&p. by applying monadic p. to C. 

C p =: C & p. Z =: p. C

_1 0 1 _1 0 1&p. +-+----+
|1|1 _1|
+-+----+

 

We see that the result Z is a boxed structure, of the form M;R, that 
is, multiplier M followed by list-of-roots R. We expect to see that p 
applied to each root in R gives zero. 

'M R' =: Z R p R

+-+----+
|1|1 _1|
+-+----+

1 _1 0 0

 

The significance of the multiplier M is as follows. If we write 
r,s,t... for the list of roots R, 
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   'r s' =: R

then M is such that the polynomial C p. x can be written 
equivalently as 

   M * (x-r)*(x-s)
3

or more compactly as 

   M * */x-R
3

We saw that monadic p., given coefficients C computes multiplier-
and-roots M;R. Furthermore, given M;R then monadic p. computes 
coefficients C 

C MR =: p. C p. MR

_1 0 1 +-+----+
|1|1 _1|
+-+----+

_1 0 1

 

21.2.3 Multiplier and Roots
We saw above that the left argument of p. can be a list of 
coefficents, with the scheme 

          C p. x   is   +/ C * x ^ i. # C

The left argument of p. can also be of the form multiplier;list-
of-roots. In this way we can generate a polynomial function with 
specified roots. Suppose the roots are to be 2 3 
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p =: (1; 2 3) & p. p 2 3

(1;2 3)&p. 0 0
 

The scheme is that 

          (M;R) p. x   means   M * */ x - R 

When M;R is p. C then we expect (M;R) p. x to be the same as C 
p. x 

C MR=: p.C MR p. x C p. x

_1 0 1 +-+----+
|1|1 _1|
+-+----+

3 3

 

21.2.4 Multinomials

Where there are many zero coefficients in a polynomial, it may be 
more convenient to write functions in the "multinomial" form, that 
is, omitting terms with zero coefficents and instead specifying a list 
of coefficient-exponent pairs. Here is an example. With the 
polynomial _1 0 1 & p., the nonzero coefficents are the first and 
third, _1 1, and the corresponding exponents are 0 2. We form 
the pairs thus: 

coeffs =: _1 1 exps=: 0 2 pairs =: coeffs ,. exps

_1 1 0 2 _1 0
1 2
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Now the pairs can be supplied as boxed left argument to p. We 
expect the results to be the same as for the original polynomial. 

x pairs (< pairs) p. x _1 0 1 p. x

2 _1 0
1 2

3 3

 

With the multinomial form, exponents are not limited to non-
negative integers. For example, with exponents and coefficients 
given by: 

   E =: 0.5 _1 2j3
   C =: 1 1 1
   

then the multinomial form of the function is: 

   f =: (< C,.E) & p.

and for comparison, an equivalent function: 

   g =: 3 : '+/ C * y ^ E'

We see 

x=: 2 f x g x

2 _0.0337641j3.4936
2

_0.0337641j3.49362

 

This is the end of Chapter 21. 
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Chapter 22: Vectors and Matrices

In this chapter we look at built-in functions which support 
computation with vectors and matrices. 

22.1 The Dot Product Conjunction

Recall the composition of verbs, from Chapter 08. A sum-of-
products verb can be composed from sum and product with the @: 
conjunction. 

P =: 2 3 4 Q =: 1 0 2 P * Q +/ P * Q P (+/ @: *) Q

2 3 4 1 0 2 2 0 8 10 10

 

There is a conjunction . (dot, called "Dot Product"). It can be used 
instead of @: to compute the sum-of-products of two lists. 

P Q P (+/ @: *) Q P (+/ . *) Q

2 3 4 1 0 2 10 10

 

Evidently, the . conjunction is a form of composition, a variation of 
@: or @. We will see below that it is more convenient for working 
with vectors and matrices. 
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22.2 Scalar Product of Vectors

Recall that P is a list of 3 numbers. If we interpret these numbers 
as coordinates of a point in 3-dimensional space, then P can be 
regarded as defining a vector, a line-segment with length and 
direction, from the origin at 0 0 0 to the point P. We can refer to 
the vector P. 

With P and Q interpreted as vectors, then the expression P (+/ . 
*) Q gives what is called the "scalar product" of P and Q. Other 
names for the same thing are "dot product", or "inner product", or 
"matrix product", depending on context. In this chapter let us stick 
to the neutral term "dot product", for which we define a function 
dot: 

dot =: +/ . * P Q P dot Q

+/ .* 2 3 4 1 0 2 10

 

A textbook definition of scalar product of vectors P and Q may 
appear in the form: 

   (magnitude P) * (magnitude Q) * (cos alpha)

where the magnitude (or length) of a vector is the square root of 
sum of squares of components, and alpha is the smallest non-
negative angle between P and Q. To show the equivalence of this 
form with P dot Q, we can define utility-verbs ma for magnitude-
of-a-vector and ca for cos-of-angle-between-vectors. 

 ma  =: %: @: (+/ @: *:)
 ca  =: 4 : '(-/ *: b,(ma x-y),c) % (2*(b=.ma x)*(c=.ma y))'
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We expect the magnitude of vector 3 4 to be 5, and expect the 
angle between P and itself to be zero, and thus cosine to be 1. 

ma 3 4 P ca P

5 1

 

then we see that the dot verb is equivalent to the textbook form 
above 

P Q P dot Q (ma P)*(ma Q)*(P ca Q)

2 3 4 1 0 2 10 10

 

22.3 Matrix Product

The verb we called dot is "matrix product" for vectors and 
matrices. 

M =: 3 4 ,: 2 3 V =: 3 5 V dot M M dot V M dot M

3 4
2 3

3 5 19 27 29 21 17 24
12 17

 

To compute Z =: A dot B the last dimension of A must equal the 
first dimension of B. 

   A =: 2 5 $ 1
   B =: 5 4 $ 2
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$ A $ B Z =: A dot B $ Z

2 5 5 4 10 10 10 10
10 10 10 10

2 4

 

The example shows that the last-and-first dimensions disappear 
from the result. If these two dimensions are not equal then an 
error is signalled. 

$ B $ A B dot A

5 4 2 5 error

 

22.4 Generalizations

22.4.1 Various Verbs

The "Dot Product" conjunction forms the dot-product verb with (+/ 
. *). Other verbs can be formed on the pattern (u . v). 

For example, consider a relationship between people: person i is a 
child of person j, represented by a square boolean matrix true at 
row i column j. Using verbs +. (logical-or) and *. (logical-and), we 
can compute a grandchild relationship with the verb (+./ . *.). 

   g   =: +. / . *.

Taking the "child" relationship to be the matrix C: 

   C =: 4 4 $ 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0
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Then the grandchild relationship is, so to speak, the child 
relationship squared. 

C G =: C g C

0 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 

We can see from C that person 3 is a child of person 1, and person 
1 is a child of person 0. Hence, as we see in G person 3 is a 
grandchild of person 0. 

22.4.2 Symbolic Arithmetic

By 'symbolic arithmetic' is meant, for example, symbolically adding 
the strings 'a' and 'b' to get the string 'a+b'. Here is a small 
collection of utility functions to do some limited symbolic 
arithmetic on (boxed) strings. 

   pa     =: ('('&,) @: (,&')')   
   cp     =: [ ` pa @. (+./ @: ('+-*' & e.))
   symbol =: (1 : (':';'< (cp > x), u, (cp > y)'))(" 0 0)
   
   splus  =: '+' symbol 
   sminus =: '-' symbol 
   sprod  =: '*' symbol 
   
   a =: <'a'
   b =: <'b'
   c =: <'c'
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a b c a splus b a sprod b splus c

+-+
|a|
+-+

+-+
|b|
+-+

+-+
|c|
+-+

+---+
|a+b|
+---+

+-------+
|a*(b+c)|
+-------+

 

As a variant of the symbolic product, we could elide the 
multiplication symbol to give an effect more like conventional 
notation: 

   sprodc =: '' symbol 

a sprod b a sprodc b

+---+
|a*b|
+---+

+--+
|ab|
+--+

 

As arguments to the "Dot Product" conjunction we could supply 
verbs to perform symbolic arithmetic. For the dot verb, which we 
recall is (+/ . *), a symbolic version is: 

   sdot =: splus / . sprodc

To illustrate: 

   S =: 3 2 $ < "0 'abcdef'
   T =: 2 3 $ < "0 'pqrstu'
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S T S sdot T

+-+-+
|a|b|
+-+-+
|c|d|
+-+-+
|e|f|
+-+-+

+-+-+-+
|p|q|r|
+-+-+-+
|s|t|u|
+-+-+-+

+-----+-----+-----+
|ap+bs|aq+bt|ar+bu|
+-----+-----+-----+
|cp+ds|cq+dt|cr+du|
+-----+-----+-----+
|ep+fs|eq+ft|er+fu|
+-----+-----+-----+

 

22.4.3 Matrix Product in More than 2 Dimensions

An example in 3 dimensions will be sufficiently general. 
Symbolically: 

   A =: 1 2 3 $ <"0 'abcdef'
   B =: 3 2 2 $ <"0 'mnopqrstuvwx'
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A B Z =: A sdot B

+-+-+-+
|a|b|c|
+-+-+-+
|d|e|f|
+-+-+-+

+-+-+
|m|n|
+-+-+
|o|p|
+-+-+

+-+-+
|q|r|
+-+-+
|s|t|
+-+-+

+-+-+
|u|v|
+-+-+
|w|x|
+-+-+

+----------+----------+
|am+(bq+cu)|an+(br+cv)|
+----------+----------+
|ao+(bs+cw)|ap+(bt+cx)|
+----------+----------+

+----------+----------+
|dm+(eq+fu)|dn+(er+fv)|
+----------+----------+
|do+(es+fw)|dp+(et+fx)|
+----------+----------+

 

The last dimension of A must equal the first dimension of B. The 
shape of the result Z is the leading dimensions of A followed by the 
trailing dimensions of B. 

$A $B $Z

1 2 3 3 2 2 1 2 2 2

 

The last-and-first dimension of A and B have disappeared, because 
each dimensionless scalar in Z combines a "row" of A with a 
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"column" of B. We see in the result Z that each row of A is 
combined separately with the whole of B. 

22.4.4 Dot Compared With @:

Recall from Chapter 07 that a dyadic verb v has a left and right 
rank. Here are some utility functions to extract the ranks from a 
given verb. 

   RANKS   =: 1 : 'u b. 0'
   LRANK   =: 1 : '1 { (u RANKS)'   NB. left rank only

* RANKS * LRANK

0 0 0 0

 

The general scheme defining dyadic verbs of the form (u . v) is: 

  u . v   means  u @ (v " (1+L, _))   where L = (v LRANK)

or equivalently, 

              u . v   means (u @: v) " (1+L, _)

        and hence

             +/.*   means (+/ @: *)" 1 _

and so we see the difference between . and @:. For simple vector 
arguments they are the same, in which case the dimensions of the 
arguments must be the same, but this is not the condition we 
require for matrix multiplication in general, where (in the example 
above) each row of A is combined with the whole of B. 



 349 Chapter 22: Vectors and Matrices

22.5 Determinant

The monadic verb (- / . *) computes the determinant of a 
matrix. 

   det =: - / . *

M det M (3*3)-(2*4)

3 4
2 3

1 1

 

Symbolically: 

   sdet =: sminus / . sprodc

S sdet S

+-+-+
|a|b|
+-+-+
|c|d|
+-+-+
|e|f|
+-+-+

+----------------------------+
|(a(d-f))-((c(b-f))-(e(b-d)))|
+----------------------------+

 

22.5.1 Singular Matrices

A matrix is said to be singular if the rows (or columns) are not 
linearly independent, that is, if one row (or column) can be 
obtained from another by multiplying by a constant. A singular 
matrix has a zero determinant. 
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In the following example A is a (symbolic) singular matrix, with m 
the constant multiplier. 

A =: 2 2 $ 'a';'b';'ma';'mb' sdet A

+--+--+
|a |b |
+--+--+
|ma|mb|
+--+--+

+-------+
|amb-mab|
+-------+

 

We see that the resulting term (amb-mab) must be zero for all a, b 
and m. 

22.6 Matrix Divide

22.6.1 Simultaneous Equations

The built-in verb %. (percent dot) is called "Matrix Divide". It can 
be used to find solutions to systems of simultaneous linear 
equations. For example, consider the equations written 
conventionally as: 

              3x + 4y = 11

              2x + 3y =  8

Rewriting as a matrix equation, we have, informally, 

              M dot U = R

where M is the matrix of coefficients U is the vector of unknowns 
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x,y and R is the vector of right-hand-side values: 

M =: 3 4 ,: 2 3 R =: 11 8

3 4
2 3

11 8

 

The vector of unknowns U (that is, x,y) can be found by dividing R 
by matrix M. 

M R U =: R %. M M dot U

3 4
2 3

11 8 1 2 11 8

 

We see that M dot U equals R, that is, U solves the equations. 

22.6.2 Complex, Rational and Vector Variables

The equations to be solved may be in complex variables. For 
example: 

M R =: 15j22 11j16 U =: R %. M M dot U

3 4
2 3

15j22 11j16 1j2 3j4 15j22 11j16

 

or in rationals. In this case both M and R must be rationals to give 
a rational result. 

   M =: 2 2 $ 3x 4x 2x 3x
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   R =: 15r22 11r16

M R U =: R %. M M dot U

3 4
2 3

15r22 11r16 _31r44 123r176 15r22 11r16

 

In the previous examples the unknowns in U were scalars. Now 
suppose the unknowns are vectors and our equations for solving 
are: 

              3x + 4y = 15 22

              2x + 3y = 11 16

so we write: 

   M =: 2 2 $ 3 4 2 3
   R =: 2 2 $ 15 22 11 16

M R U =: R %. M M dot U

3 4
2 3

15 22
11 16

1 2
3 4

15 22
11 16

 

The unknowns x and y are the rows of U, that is, vectors. 

22.6.3 Curve Fitting

Suppose we aim to plot the best straight line fitting a set of data 
points. If the data points are x,y pairs given as: 
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   x =: 10 20 30
   y =: 31 49 70

we aim to find a and b for the equation: 

                  y = a + bx 

The 3 data points give us 3 equations in the 2 unknowns a and b. 
Conventionally: 

         1 . a  +  10 . b  =   31

         1 . a  +  20 . b  =   49

         1 . a  +  30 . b  =   70

so we take the matrix of coefficients M to be 

   M =: 3 2 $ 1 10  1 20  1 30

and divide y by matrix M to get the vector of unknowns U, (that is, 
a,b) 

M y U =: y %. M M dot U

1 10
1 20
1 30

31 49 70 11 1.95 30.5 50 69.5

 

Here we have more equations than unknowns, (more rows than 
columns in M) and so the solutions U are the best fit to all the 
equations together. We see that M dot U is close to, but not 
exactly equal to, y. 
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"Best fit" means that the sum of the squares of the errors is 
minimized, where the errors are given by y - M dot U. If the sum 
of squares is minimized, then we expect that by perturbing U 
slightly, the sum of squares is increased. 

+/ *: y - M dot U +/ *: y - M dot (U + 0.01)

1.5 1.6523

 

The method extends straightforwardly to fitting a polynomial to a 
set of data points. Suppose we aim to fit 

          y = a + bx + cx2

to the data points: 

   x =: 0   1  2  3 
   y =: 1   6 17 34.1

The four equations to be solved are: 

      1.a + bx0 + cx0
2 = y0

      1 a + bx1 + cx1
2 = y1

      1.a + bx2 + cx2
2 = y2

      1.a + bx3 + cx3
2 = y3

and so the columns of matrix M are 1, x, x^2, conveniently given 
by: x ^/ 0 1 2 

   M =: x ^/ 0 1 2
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and the unknowns a, b, c are given by vector U as follows: 

M y U =: y %. M M dot U

1 0 0
1 1 1
1 2 4
1 3 9

1 6 17 34.1 1.005 1.955 3.025 1.005 5.985 17.02 34.09

 

There may be more equations than unknowns, as this example 
shows, but evidently there cannot be fewer. That is, in R %. M 
matrix M must have no more columns than rows. 

22.6.4 Dividing by Higher-Rank Arrays

Here is an example of U =: R %. M, in which the divisor M is of 
rank 3. 

   M =: 3 2 2 $ 3 4 2 3 0 3 1 2 3 1 2 3
   R =: 21 42

M R U =: R %. M M dot U M dot"2 1 U

3 4
2 3

0 3
1 2

3 1
2 3

21 42 _105 84
  28  7
   3 12

error 21 42
21 42
21 42

 

The dyadic rank of %. is _ 2, 



Chapter 22: Vectors and Matrices  356

   %. b. 0
2 _ 2

and so in this example the whole of R is combined separately with 
each of the 3 matrices in M. That is, we have 3 separate sets of 
equations, each with the same right-hand-side R Thus we have 3 
separate solutions (the rows of U). 

The condition R=M dot U evidently does not hold (because the last 
dimension of M is not equal to the first of U), but it does hold 
separately for each matrix in M with corresponding row of U. 

22.7 Identity Matrix

A (non-singular) square matrix M divided by itself yields an 
"identity matrix", I say, such that (M dot I) = M. 

   M =: 3 3 $ 3 4 7 0 0 4 6 0 3

M I =: M %. M M dot I

3 4 7
0 0 4
6 0 3

1 0 0
0 1 0
0 0 1

3 4 7
0 0 4
6 0 3

 

22.8 Matrix Inverse

The monadic verb %. computes the inverse of a matrix That is, %. 
M is equivalent to I %. M for a suitable identity matrix I: 
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M I =: M %. M I %. M %. M

3 4 7
0 0 4
6 0 3

1 0 0
0 1 0
0 0 1

   0  _0.125 0.1667
0.25 _0.3438 _0.125
   0    0.25      0

   0  _0.125 0.1667
0.25 _0.3438 _0.125
   0    0.25      0

 

For a vector V, the inverse W has the reciprocal magnitude and the 
same direction. Thus the product of the magnitudes is 1 and the 
cosine of the angle between is 1. 

V W =: %. V (ma V) * (ma W) V ca W

3 5 0.08824 0.1471 1 1

 

This is the end of Chapter 22. 
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Chapter 23: Calculus

This chapter covers J operators for differentiation and integration. 
It covers 

• The conjunction d. which differentiates and integrates 
analytically, that is, it transforms expressions denoting 
functions into expressions denoting functions. 

• The conjunction D. which differentiates numerically, and 
thus broadens the range of functions which can be 
differentiated. It also covers partial derivatives. 

• A library script with functions for numerical integration. 

23.1 Differentiation

There is a built-in conjunction d.(lowercase d dot). Its left 
argument is a function to be differentiated. Its right argument is 1 
if the first derivative is required, or 2 for the second derivative, 
and so on. The first derivative of the "cube" function ^&3 is "3 
times the square". 

   ^&3  d. 1
3&*@(^&2)

The general scheme is that if e is (an expression denoting) a 
function, then e d. n is (an expression denoting) the n'th 
derivative of e. Here is another example, expressing the cube 
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function as the polynomial 0 0 0 1 & p. 

   0 0 0 1 &p. d. 1
0 0 3&p.
   

Suppose we define a verb cube: 

cube =: 0 0 0 1 & p. cube 2

0 0 0 1&p. 8

 

Differentiating with d., we see that the derivative is, as expected, 
3-times-the-square, but the expression for the derivative is not 
very informative. 

(cube d. 1) 2 cube d. 1

12 cube d.1

 

The reason is that cube is a name denoting a verb, and such 
names are in general not evaluated until the verb is applied. (See 
Appendix 1 .) If we want to inspect the derivative of cube, we can 
force evaluation of the name cube by applying the f. adverb. 

cube d. 1 (cube f.) d. 1

cube d.1 0 0 3&p.

 

Alternatively, we could force evaluation of the expression for the 
derivative, again by applying f. 



 361 Chapter 23: Calculus

cube d. 1 (cube d. 1) f.

cube d.1 0 0 3&p.

 

23.2 Integration

With a right argument of _1, the conjunction d. integrates the left 
argument. The integral of "3 times the square" is "cube". 

   0 0 3 & p. d. _1
0 0 0 1&p.

23.3 The Domain of d.

Functions which are differentiable or integrable with d. must firstly 
be scalar. That is, they must take scalar arguments and deliver 
scalar results, and all intermediate quantities must be scalars. 
Here is an example. The function "(x-1)*(x-2)" can be written in 
several different ways. Here are two: 

f =: -&1 * -&2 g =: (*/) @: (- & 1 2) f 3 g 3

-&1 * -&2 */@:(-&1 2) 2 2

 

f is scalar, and in the domain of d. However, g is not scalar, 
because it forms the intermediate quantity x - 1 2 which is a 
vector. Thus g is not in the domain of d.. To demonstrate this, we 
force evaluation of the derivatives. 
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(f d. 1) f. (g d. 1) f.

_3 2x&p. error

 

Secondly, d. can differentiate constant functions, polynomials, 
exponentials ^x and integral powers x^n. 

3: d. 1 0 2 &p. d. 1 ^ d. 1 ^&4 d. 1

0"0 2"0 ^ 4&*@(^&3)

 

If f and g are differentiable with d., then so are the forks (f+g), 
(f-g), (f*g) and f%g. 

f =: ^&3 g =: 0 2 & p. ((f + g) d. 1) f.

^&3 0 2&p. 2 0 3x&p.
 

Trigonometric functions are differentiable with d. The derivative of 
the fork (sin + cos) is (cos - sin). 

sin =: 1&o. cos =: 2&o. (sin + cos) f. d. 1

1&o. 2&o. 2&o. + -@(1&o.)
 

If f and g are differentiable with d., then so are the compositions 
f@g and f@:g 
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f g (f @ g d. 1) f.

^&3 0 2&p. 0 0 24x&p.

 

23.4 The Conjunction D.

The conjunction D. (uppercase D dot) computes derivatives. It 
differs from d. in two ways. 

• By using numerical methods it can differentiate arbitrary 
functions, that is, it is not limited to the domain of d. 

• It is not limited to scalar functions: it can differentiate 
functions with vector arguments to produce partial 
derivatives. 

23.4.1 The Domain of D.

Since D. can use numerical methods, its arguments can be 
arbitrary functions. For example, recall the function g above, to 
compute "(x-1)*(x-2)",which was demonstrated above to be 
outside the domain of d. . However it is within the domain of D.. 
Its derivative is "2x-3" 

g =: (*/) @: (- & 1 2) (g d. 1) 3 (g D. 1) 3

*/@:(-&1 2) error 3

 

23.4.2 Partial Derivatives with D.
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Next we look at functions which compute a scalar from a vector 
argument. For example consider a surface where the height at a 
point (x,y) is given by 

                 (sin x) * (cos y)

The height-function, with the vector argument (x,y) might be 
written: 

   h =: (sin @ {.) * (cos @ {:)

The expression (h D.1)(x,y) computes the numerical values of 
the two slopes, in the x-direction and the y-direction, of the 
function h at the point (x,y). 

x=: 0.4 y =: 0.5 p =: h D. 1 x,y

0.4 0.5 0.8083071 _0.1866971

 

The result p gives the values of the partial derivatives with respect 
to x and with respect to y. 

We can check this result. Suppose we define a function q say, for 
the height along the line y=0.5. We want q(x) to be h(x,0.5) and 
thus 

   q =: h @: (, & 0.5)

The idea now is that the derivative of q applied to argument x 
should be the same as the first partial derivative of h at x,0.5. 
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h D.1 x,y q D. 1 x

0.8083071 _0.1866971 0.8083071

 

Now we look at partial derivatives of functions which compute 
vectors from vectors. Here is an example, a function which takes 
the point (x,y,z) in 3-space to the point (2x,3y) in 2-space. 

foo =: (2 3 & *) @: (1 1 0 & #) foo 1 1 1

2 3&*@:(1 1 0&#) 2 3

 

In general such a function will take an argument-vector of length m 
and produce a result-vector of length n. Hence there will be m*n 
partial derivatives, one for each element of the result with respect 
to each element of the argument. The six partial derivatives of foo 
at the point xyz = 1 1 1 are shown by: 

pd =: foo D. 1 pd 1 1 1

foo D.1 2 0
0 3
0 0

 

Consider now a function such as cube which produces scalars from 
scalars. Given a vector argument, it will produce a vector result of 
the same length, where an element of the result depends only on 
the corresponding element of the argument. 
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cube cube a =: 1 2 3

0 0 0 1&p. 1 8 27

 

Therefore, for a scalar function, all partial derivatives are zero 
except those for elements of the result with respect to the 
corresponding elements of the argument. 

pd =: cube D. 1 pd 2 3 4

cube D.1 12  0  0
0 27  0
0  0 48

 

If a scalar function is given in fully-evaluated form, and is in the 
domain of d., the D. conjunction will produce an analytic 
expression for the partial derivatives function: 

PD =: (0 0 0 1 & p.) D.1 PD 2 3 4

(* =/~@(i.@$))@:(0 0 3&p.) 12  0  0
0 27  0
0  0 48

 

23.5 Numerical Integration

There is a library script-file called integrat.ijs . It contains 
several different operators for integration. Documentation is given 
in the script file. 
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It can be be downloaded from the JSoftware website: here is a link 
to integrat.ijs 

Assuming that we have downloaded into a directory, say C:\temp 
for example, then we load it into the J session with: 

      load 'c:\temp\integrat.ijs'

One of the integration operators provided is the conjunction adapt 
("numeric integration by adaptive quadrature"). The expression f 
adapt (L,U) computes the numeric value of the definite integral 
of f between limits L and U. For example, we expect the integral of 
3&* between 0 and 1 to be 1.5 

f =: 3&* f adapt 0 1

3&* 1.5

 

This is the end of Chapter 23. 

http://www.jsoftware.com/svn/addons/trunk/math/misc/integrat.ijs
http://www.jsoftware.com/svn/addons/trunk/math/misc/integrat.ijs
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Chapter 24: Names and Locales

In this chapter we look at locales. The interest of locales is 
twofold: as a way of organizing large programs, and (as we will 
come to in the next chapter) as the basis of object-oriented 
programming in J. 

24.1 Background

It is generally agreed that a large program is best developed in 
several parts which are, as much as possible, independent of each 
other. For example, an independent part of a larger program might 
be a collection of statistical functions, with its own script-file. 

For the things defined in an independent script, we expect to 
choose names for those things more or less freely, without regard 
for what names may be defined in other scripts. Clearly there may 
be a problem in combining independent scripts: what if the same 
name accidentally receives different definitions in different scripts? 
The J facility of the "locale" gives a way to deal with this problem. 

24.2 What are Locales?

After entering an assignment of the form (name =: something) 
we say we have a definition of name. Every definition is stored in 
some region of the memory of the J system called a "locale". 
Roughly speaking, locales are to definitions as directories are to 
files. The important features of locales are: 
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• There can be several different locales existing at the same 
time. 

• Each locale stores a collection of definitions. 
• The same name can occur at the same time in different 

locales with different definitions. 

Hence a name of the form "name N as defined in locale L" is 
uniquely defined, without conflict. Such a name can be written as 
N_L_ (N underbar L underbar) and is called a "locative name". 
Finally 

• At any one time, only one locale is current. The current 
locale is the one whose definitions are available for 
immediate use. 

Hence a plain name N commonly means "N as defined in the 
current locale". 

Locales are neither nouns, verbs, adverbs nor conjunctions: that 
is, locales are not values which can be assigned to variables or be 
passed as arguments to functions. They do have names, but 
whenever we need to refer to a locale by name we do so either 
with special syntactic forms, (locative names such as N_L_) or by 
quoting the name to form a string. 

24.3 Example

Suppose we are interested in the correlation between the price of 
whisky and the general level of employee salaries. Suppose also 
that we have available two scripts, of independent origin, one with 
economic data and the other with statistical functions. These 
script-files might have been created like this: 
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   (0 : 0) (1 !: 2) < 'economic.ijs'
y  =: 1932  1934  1957  1969  1972   NB. years
s  =: 1000  1000  3000  9000 11000   NB. salaries
p  =: 1.59  1.68  2.00  4.50  5.59   NB. prices
)
   
   (0 : 0) (1 !: 2) < 'statfns.ijs'  
m =: +/ % #        NB.  Mean          
n =: - m           NB.  Norm
v =: m @: *: @: n  NB.  Variance                    
s =: %: @: v       NB.  Standard Deviation
c =: m @: (*&n)    NB.  Covariance
r =: c % (*&s)     NB.  Correlation Coefficient  
)

We aim to load these two scripts, and then hope to compute the 
coefficient of correlation between prices p and salaries s as the 
value of the expression (p r s). 

Unfortunately we can see that the name s means different things 
in the different scripts. If we were to load both scripts into the 
same locale, one definition of s would overwrite the other. The 
remedy is to load the two scripts into different locales. 

There is always a locale named base, and by default this is usually 
current. We load economic.ijs into the current locale (base) with 
the built-in verb (0 !: 0). 

   (0 !: 0) < 'economic.ijs'

Next we load statfns.ijs into another locale which we choose to 
call, say, stat. To do this with the minimum of new apparatus we 
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can use the built-in verb (18 !: 4). 

   (18 !: 4) < 'stat'
   (0 !: 0)  < 'statfns.ijs'
   (18 !: 4) < 'base'

The first line creates the stat locale and makes it current. The 
second line loads statfns.ijs into the now-current locale stat. 
The third line makes the base locale current again, to restore the 
status quo. 

At this point our data variables s and p are available because they 
are in base which is current. The correlation-coefficient function r 
is not yet available, because it is in stat which is not current. The 
next step is to define the correlation-coefficient function to be r-
as-defined-in-locale- stat, using the locative form of name 
r_stat_ 

   corr =: r_stat_

corr is available because it has just been defined in base (because 
base is current). Everything we need is now available. We can 
compute the correlation between salaries and prices. 

s corr p p corr s p corr p

0.993816 0.993816 1

 

24.3.1 Review
What we have seen is the use of locative names to resolve name-
conflicts between independent scripts. What it took was a relatively 
small amount of ad-hoc further definition. 
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In this tiny example the conflict was easily identified and could be 
easily fixed by editing one of the scripts. However, the point is that 
we aim to avoid tampering with independent scripts to get them to 
work together. 

24.4 The Current Locale

Several locales may coexist, but at any one time only one is 
current. There is a built-in verb (18 !: 5) which tells us the name 
of the current locale. 

   (18 !: 5) ''  NB. show name of current locale
+----+
|base|
+----+

The significance of the current locale is that it is in the current 
locale that simple names are evaluated: 

   s
1000 1000 3000 9000 11000

Notice that we get the value of s as defined in script economic.ijs 
which we loaded into base, and not the value of s in statfns.ijs 
which was loaded into locale stat. 

It is the current locale in which new definitions are stored. To see what names 
are defined in the current locale we can use the built-in verb (4 !: 1) with 
an argument of 0 1 2 3. The resulting long list of names can be 
conveniently displayed with the library-verb list . 
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   list (4 !: 1) 0 1 2 3  NB. show all names in current locale

ASSERTING CH        IP        RUN       RUNR      TD        THIS      
and       cd        corr      dir       drop      e         first     
fst       hello     implies   indexfile indexing  is_bool   is_box    
is_char   is_cmplx  is_extint is_float  is_int    is_list   is_number 
is_rat    is_real   is_scalar is_string last      most      not       
p         print     pwd       rest      run       s         snd       
take      thd       y                                                 

We can define a new verb, and see its name appear in the list: 

   foo  =: +/
   list (4 !: 1) 0 1 2 3 

ASSERTING CH        IP        RUN       RUNR      TD        THIS      
and       cd        corr      dir       drop      e         first     
foo       fst       hello     implies   indexfile indexing  is_bool   
is_box    is_char   is_cmplx  is_extint is_float  is_int    is_list   
is_number is_rat    is_real   is_scalar is_string last      most      
not       p         para      print     pwd       rest      run       
s         snd       take      thd       y

As we saw above, we can change the current locale with the built-
in verb (18 !: 4). We can make the stat locale current with: 

   (18 !: 4) < 'stat'

and now we can see what names are defined in this locale with: 

   (4 !: 1) 0 1 2 3 
+-+-+-+-+-+-+
|c|m|n|r|s|v|
+-+-+-+-+-+-+

and return to base again 

   (18 !: 4) < 'base'
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24.5 The z Locale Is Special

The locale named z is special in the following sense. When a name 
is evaluated, and a definition for that name is not present in the 
current locale, then the z locale is automatically searched for that 
name. Here is an example. We put into localez a definition of a 
variable q, say. 

   (18 !: 4) < 'z'
   q =: 99
   (18 !: 4) < 'base'

Now we see that q is not present in the current locale (base) 

   (4 !: 1) 0 1 2 3 

   list (4 !: 1) 0 1 2 3 
ASSERTING CH        IP        RUN       RUNR      TD        THIS      
and       cd        corr      dir       drop      e         first     
foo       fst       hello     implies   indexfile indexing  is_bool   
is_box    is_char   is_cmplx  is_extint is_float  is_int    is_list   
is_number is_rat    is_real   is_scalar is_string last      most      
not       p         para      print     pwd       rest      run       
s         snd       take      thd       y                             

but nevertheless we can evaluate the simple name q to get its 
value as defined in locale z. 

   q
99

Since we can find in z things which are not in base, locale z is the 
natural home for functions of general utility. On starting a J 
session, locale z is automatically populated with a collection of 
useful predefined "library" functions. 
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The names of these functions in the z locale are all available for 
immediate use, and yet the names, of which there are more than 
100, do not clutter the base locale. We saw above the use of built-
in verbs such as (18 !: 4) and (4 !: 1). However the library 
verbs of locale z are often more convenient. Here is a small 
selection: 

coname '' show name of current locale 

conl 0 show names of all locales 

names '' show all names in current locale 

nl '' show all names in current locale (as a 
boxed list)

cocurrent 'foo' locale foo becomes current 

clear 'foo' remove all defns from locale foo

coerase 
'A';'B';'C' erase locales A B and C

 

We have seen that when a name is not found in the current locale, 
the search proceeds automatically to the z locale. In other words, 
there is what is called a "path" from every locale to the z locale. 
We will come back to the subject of paths below. 
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24.6 Locative Names and the Evaluation of Expressions

24.6.1 Assignments
An assignment of the form n_L_ =: something assigns the value 
of something to the name n in locale L. Locale L is created if it 
does not already exist. For example: 

   n_L_ =: 7

creates the name n in locale L with value 7. At this point it will be 
helpful to introduce a utility-function to view all the definitions in a 
locale. We put this view function into locale z : 

   VIEW_z_ =: 3 : '(> ,. ('' =: ''&,)@:(5!:5)"0) nl '''''
   view_z_ =: 3 : 'VIEW__lo '''' [ lo =. < y'

If we make a few more definitions: 

   k_L_ =: 0
   n_M_ =: 2

we can survey what we have in locales L and M: 

view 'L' view 'M'

k =: 0
n =: 7

n =: 2

 

Returning now to the theme of assignments, the scheme is: if the 
current locale is L, then (foo_M_ =: something) means: 

1. evaluate something in locale L to get value V say. 
2. cocurrent 'M' 
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3. foo =: V 
4. cocurrent 'L' 

For example: 

   cocurrent 'L'

view 'L' view 'M' k_M_ =: n-1 view 'M'

k =: 0
n =: 7

n =: 2 6 k =: 6
n =: 2

 

24.6.2 Evaluating Names

Now we look at locative names occurring in expressions. The 
scheme (call this scheme 2) is: if the current locale is L then 
(n_M_) means 

1. cocurrent 'M' 
2. evaluate the name n to get a value V 
3. cocurrent 'L' 
4. V 

For example: 

   cocurrent 'L'

view 'L' view 'M' n_M_

k =: 0
n =: 7

k =: 6
n =: 2

2
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24.6.3 Applying Verbs

Consider the expression (f_M_ n). This means: function f (as 
defined in locale M) applied to an argument n (as defined in the 
current locale) In this case, the application of f to n takes place in 
locale M. Here is an example: 

   u_M_ =: 3 : 'y+k'
   
   cocurrent 'L'
   

view 'L' view 'M' u_M_ n

k =: 0
n =: 7

k =: 6
n =: 2
u =: 3 : 'y+k'

13

 

We see that the argument n comes from the current locale L, but 
the constant k comes from the locale (M) from which we took verb 
u. The scheme (call it scheme 3) is: if the current locale is L , then 
(f_M_ something) means: 

1. evaluate something in L to get a value V say 
2. cocurrent 'M' 
3. in locale M, evaluate the expression f V to get a value R say 
4. cocurrent 'L' 
5. R 

Here is another example. The verb g is taken from the same locale 
in which f is found: 
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   g_L_ =: +&1
   g_M_ =: +&2
   f_M_ =: g
   
   cocurrent 'L'
   

view 'L' view 'M' f_M_ k

g =: +&1
k =: 0
n =: 7

f =: g
g =: +&2
k =: 6
n =: 2
u =: 3 : 'y+k'

2

 

24.6.4 Applying Adverbs
Suppose A_X_ is an adverb in locale X. The application of A_X_ to 
an argument takes place in locale X rather than in the current 
locale. 

To demonstrate this, we start by entering definitions in fresh 
locales X and Y. 

   A_X_ =: 1 : 'u & k'    NB. an adverb
   k_X_ =: 17
   k_Y_ =: 6

now make Y the current locale: 

   cocurrent 'Y'
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and apply adverb A_X_ to argument + . 

view 'X' view 'Y' + A_X_

A =: 1 : 'u & k'
k =: 17

k =: 6 +&17

 

Evidently the result is produced by taking k from locale X rather 
than from the current locale which is Y. 

The scheme is that if the current locale is Y, and A is an adverb, 
the expression f A_X_ means: 

1. evaluate f in locale Y to get a value F say. 
2. cocurrent X 
3. evaluate F A in locale X to get a result G say. 
4. cocurrent Y 
5. G 

24.7 Paths

Recall that the z locale contains useful "library" functions, and that 
we said there is a path from any locale to z. 

We can inspect the path from a locale with the library verb copath; 
we expect the path from locale base to be just z. 

   copath 'base'   NB. show path
+-+
|z|
+-+
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A path is represented as a (list of) boxed string(s). We can build 
our own structure of search-paths between locales. We will give 
base a path to stat and then to z, using dyadic copath. 

   ('stat';'z') copath 'base'

and check the result is as expected: 

   copath 'base'
+----+-+
|stat|z|
+----+-+

With this path in place, we can, while base is current, find names 
in base, stat and z. 

   cocurrent 'base'
   
   s     NB. in base
1000 1000 3000 9000 11000
   
   r     NB. in stat
c % *&s
   
   q     NB. in z
99

Suppose we set up a path from L to M. Notice that we want every 
path to terminate at locale z, (otherwise we may lose access to the 
useful stuff in z) so we make the path go from L to M to z. 

   ('M';'z') copath 'L'

If we access a name along a path, there is no change of current 
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locale. Compare the effects of referring to verb u via a locative 
name and searching for u along a path. 

   cocurrent 'L'

view 'L' view 'M' u_M_ 0 u 0

g =: +&1
k =: 0
n =: 7

f =: g
g =: +&2
k =: 6
n =: 2
u =: 3 : 'y+k'

6 0

 

We see that in evaluating (u_M_ 0) there is a change of locale to 
M, so that the variable k is picked up with its value in M of 6. In 
evaluating (u 0), where u is found along the path, the variable k 
is picked up from the current locale, with its value in L of 0. 

When a name is found along a path, it is as though the definition 
were temporarily copied into the current locale. Here is another 
example. 

view 'L' view 'M' f_M_ 0 f 0

g =: +&1
k =: 0
n =: 7

f =: g
g =: +&2
k =: 6
n =: 2
u =: 3 : 'y+k'

2 1
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24.8 Combining Locatives and Paths

We sometimes want to populate a locale with definitions from a 
script-file. We saw above one way to do this: in three steps: 

(1) use cocurrent (or 18 !: 4) to move to the specified locale. 

(2) execute the script-file with 0!:0 

(3) use cocurrent (or 18 !: 4) to return to the original locale. 

A neater way is as follows. We first define: 

   POP_z_ =: 0 !: 0

and then to populate locale Q say, from file economic.ijs, we can 
write: 

   POP_Q_ < 'economic.ijs'

which works like this: 

1. The POP verb is defined in locale z. 
2. Encountering POP_Q_ < ... the system makes locale Q 

temporarily current, creating Q if it does not already exist. 
3. The system looks for a definition of POP. It does not find it in 

Q , because POP is of course defined in locale z. 
4. The system then looks along the path from Q to z and finds 

POP. Note that the current locale is still (temporarily) Q. 
5. The POP verb is applied to its argument, in temporarily-

current locale Q. 
6. The current locale is automatically restored to whatever it 

was beforehand. 
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Back to base. (If we are nipping about between locales it is 
advisable to keep track of where we are.) 

   cocurrent <'base'

24.9 Indirect Locatives

A variable can hold the name of a locale as a boxed string. For 
example, given that M is a locale, 

   loc =: < 'M'

Then a locative name such as k_M_ can be written equivalently in 
the form k__loc (u underscore underscore loc) 

   k_M_
6
   
   k__loc
6

The point of this indirect form is that it makes it convenient to 
supply locale-names as arguments to functions. 

   NAMES =: 3 : 0
locname =. < y
names__locname ''
)
   
   NAMES 'L'
g k n 
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24.10 Erasing Names from Locales

Suppose we create a variable with the name var, say, 

   var =: 'hello'

and demonstrate that it exists, that is, that the name var is one of 
the names in the namelist of the base locale: 

   (<'var') e. nl_base_ ''
1
   

Now we can erase it with the erase library verb: 

   erase <'var'
1

and demonstrate that it no longer exists 

   (<'var') e. nl_base_ ''
0
   

Now suppose that we create a variable foo, say, in the base locale, 
and another, also called foo, in the z locale. Recall that there is 
always a path from base to z 

   foo    =: 'hello'
   foo_z_ =: 'goodbye'
   

we demonstrate they both exist: 
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   (<'foo') e. nl_base_ ''
1
   (<'foo') e. nl_z_ ''
1
   

erase foo from base, demonstrate that it has gone but that foo in 
z is still there: 

erase <'foo' (<'foo') e. nl_base_ '' (<'foo') e. nl_z_ ''

1 0 1

 

Now if we erase again, foo will be found along the path and erased 
from z. 

erase <'foo' (<'foo') e. nl_base_ '' (<'foo') e. nl_z_ ''

1 0 0

 

This is the end of Chapter 24 
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Chapter 25: Object-Oriented 
Programming

25.1 Background and Terminology

In this chapter "OOP" will stand for "object-oriented 
programming". Here is the barest thumbnail sketch of OOP. 

On occasion, a program needs to build, maintain and use a 
collection of related data, where it is natural to consider the 
collection to be, in some sense, a whole. For example, a "stack" is 
a sequence of data items, such that the most-recently added item 
is the first to be removed. If we intend to make much use of 
stacks, then it might be a worthwhile investment to write some 
functions dedicated to building and using stacks. 

The combination of some data and some dedicated functions is 
called an object. Every object belongs to some specific class of 
similar objects. We will say that a stack is an object of the Stack 
class. 

The dedicated functions for objects of a given class are called the 
"methods" of the class. For example, for objects of the Stack class 
we will need a method for adding a new item, and a method for 
retrieving the last-added item. 

An object needs one or more variables to represent its data. Such 
variables are called fields. Thus for a stack we may choose to have 
a single field, a list of items. 
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In summary, OOP consists of identifying a useful class of objects, 
and then defining the class by defining methods and fields, and 
then using the methods. 

By organizing a program into the definitions of different classes, 
OOP can be viewed as a way of managing complexity. The simple 
examples which follow are meant to illustrate the machinery of the 
OOP approach, but not to provide much by way of motivation for 
OOP. 

We will be using a number of library functions, mostly with names 
beginning "co", meaning "class and object". A brief summary of 
them is given at the end of this chapter. 

25.2 Defining a Class

25.2.1 Introducing the Class
For a simple example, we look at defining a class which we choose 
to call "Stack". A new class is introduced with the library function 
coclass. 

   coclass 'Stack'

coclass is used for its effect, not its result. The effect of coclass 
is to establish and make current a new locale called Stack. To 
verify this, we can inspect the name of the current locale: 

   coname ''
+-----+
|Stack|
+-----+

25.2.2 Defining the Methods
A new object comes into being in two steps. The first step uses 
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library verb conew to create a rudimentary object, devoid of fields, 
a mere placeholder. The second step gives a new object its 
structure and initial content by creating and assigning values to 
the field-variables. 

We will deal with the first step below. The second step we look at 
now. It is done by a method conventionally called create 
(meaning "create fields", not "create object"). This is the first of 
the methods we must define. 

For example, we decide that a Stack object is to have a single field 
called items, initially an empty list. 

   create =: 3 : 'items =: 0 $ 0'

The connection between this method and the Stack class is that 
create has just been defined in the current locale, which is Stack. 

This create method is a verb. In this example, it ignores its 
argument, and its result is of no interest: it is executed purely for 
its effect. Its effect will be that the (implicitly specified) object will 
be set up to have a single field called items as an empty list. 

Our second method is for pushing a new value on to the front of 
the items in a stack. 

   push =: 3 : '# items =: (< y) , items'

The push method is a verb. Its argument y is the new value to be 
pushed. We made a design-decision here that y is to be boxed and 
then pushed. The result is of no interest, but there must be some 
result, so we chose to return (# items) rather than just items. 

Next, a method for inspecting the "top" (most-recently added) 
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item on the stack. It returns that value of that item. The stack is 
unchanged. 

   top =: 3 : '> {. items'

Next a method to remove the top item of the stack. 

   pop =: 3 : '#  items =: }. items'

Finally, a method to "destroy" a Stack object, that is, eliminate it 
when we are finished with it. For this purpose there is a library 
function codestroy. 

   destroy =: codestroy

This completes the definition of the Stack class. Since we are still 
within the scope of the coclass 'Stack' statement above, the 
current locale is Stack. To use this class definition we return to our 
regular working environment, the base locale. 

   cocurrent 'base'

25.3 Making New Objects

Now we are in a position to create and use Stack objects. A new 
Stack is created in two steps. The first step uses the library verb 
conew. 

   S =: conew 'Stack'

The result of conew which we assigned to S is not the newly-
created object itself. Rather, the value of S is in effect a unique 
reference-number which identifies the newly-created Stack object. 
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For brevity we will say "Stack S" to mean the object referred to by 
S. 

Stack S now exists but its state is so far undefined. Therefore the 
second step in making the object is to use the create method to 
change the state of S to be an empty stack. Since create ignores 
its argument, we supply an argument of 0 

   create__S 0

Now we can push values onto the stack S and retrieve them in 
last-in-first-out order. In the following, the expression (push__S 
'hello' means: the method push with argument 'hello' applied 
to object S. 

   push__S 'hello'
1
   push__S 'how are you?'
2
   push__S 'goodbye'
3
   pop__S 0
2
   top__S 0
how are you?

25.3.1 Dyadic Conew
The two steps involved in creating a new object, conew followed by 
create, can be collapsed into one using dyadic conew. The scheme 
is that: 

                o =: conew 'Class'
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                create__o arg

can be abbreviated as: 

                o =: arg conew 'Class'  

That is, any left argument of conew is passed to create, which is 
automatically invoked. In this simple Stack class, create ignores 
its argument, but even so one step is neater than two. For 
example: 

   T =: 0 conew 'Stack'
   push__T 77
1
   push__T 88
2
   top__T 0
88
   

25.4 Listing the Classes and Objects

In this section we look at inspecting the population of objects and 
classes we have created. The expression (18!:1) 0 1 produces a 
list of all existing locales. 

   (18!:1) 0 1
+-+-+-----+----+----+-+-------+--------+------+-----+-+
|0|1|Stack|base|ctag|j|jadetag|jcompare|jregex|jtask|z|
+-+-+-----+----+----+-+-------+--------+------+-----+-+

We see here the names of locales of 3 different kinds. Firstly, there 
are ordinary locales such as base, and z, described in Chapter 24. 
These are created automatically by the J system. Depending on 
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the version of J you are using, you may see a list different from 
the one shown here. 

Secondly, there are locales such as Stack. The Stack locale 
defines the Stack class. If we view this locale (with the view utility 
function from Chapter 24) 

   view 'Stack'
IP      =: 1                             
create  =: 3 : 'items =: 0 $ 0'          
destroy =: codestroy                     
pop     =: 3 : '#  items =: }. items'    
push    =: 3 : '# items =: (< y) , items'
top     =: 3 : '> {. items'              

we see a variable IP (created automatically) and our methods 
which we defined for Stack. 

Thirdly, we have locales such as 0. Here the name is a string of 
numeric digits (that is, '0'). Such a locale is an object. The 
variable S has the value <'0', so that here object S is locale '0'. 

S view >S

+-+
|0|
+-+

COCREATOR =: <'base'
items     =: <;._1 '|how are you?|hello'

 

We see a variable COCREATOR, which identifies this locale as an 
object, and the field(s) of the object. 

The path from an object is given by the verb 18!:2 
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   18!:2 S
+-----+-+
|Stack|z|
+-----+-+

Since S is a Stack object, the first locale on its path is Stack. 
Recall from Chapter 24 that, since S = <'0' then the expression 
push__S 99 means: 

1. change the current locale to '0'. Now the fields of object S, 
(that is, the the items variable of locale '0') are available. 

2. apply the push verb to argument 99. Since push is not in 
locale '0', a search is made along the path from locale '0' 
which takes us to locale Stack whence push is retrieved 
before it is applied. 

3. Restore the current locale to the status quo. 

Here is a utility function to list all the existing objects and their 
classes. 

   obcl =: 3 : '(, ({. @: (18!:2)))"0  (18!:1) 1'

Currently we have variables S and T each referring to a Stack 
object. 

S T obcl '' 

+-+
|0|
+-+

+-+
|1|
+-+

+-+-----+
|0|Stack|
+-+-----+
|1|Stack|
+-+-----+
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(Again, depending on the version of J you are using, you may see 
further objects and classes automatically generated by the J 
system for its own use.) 

A Stack, S say, can be removed using the destroy method of the 
Stack class. 

   destroy__S  '' 
1
   

We see it has gone. 

   obcl ''
+-+-----+
|1|Stack|
+-+-----+

25.5 Inheritance

Here we look at how a new class can build on an existing class. 
The main idea is that, given some class, we can develop a new 
class as a specialized version of the old class. 

For example, suppose there is a class called Collection where the 
objects are collections of values. We could define a new class 
where, say, the objects are collections without duplicates, and this 
class could be called Set. Then a Set object is a special kind of a 
Collection object. 

In such a case we say that the Set class is a child of the parent 
class Collection. The child will inherit the methods of the parent, 
perhaps modifying some and perhaps adding new methods, to 
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realize the special properties of child objects. 

For a simple example we begin with a parent-class called 
Collection, 

   coclass 'Collection'
   create  =: 3 : 'items =: 0 $ 0'
   add     =: 3 : '# items =: (< y) , items'
   remove  =: 3 : '# items =: items -. < y'
   inspect =: 3 : 'items'
   destroy =: codestroy

Here the inspect method yields a boxed list of all the members of 
the collection. 

A quick demonstration: 

   cocurrent 'base'
   C1 =: 0 conew 'Collection'
   add__C1 'foo'
1
   add__C1 37
2
   remove__C1 'foo'
1
   inspect__C1 0
+--+
|37|
+--+

Now we define the Set class, specifying that Set is to be a child of 
Collection with the library verb coinsert. 

   coclass 'Set'
   coinsert 'Collection'
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To express the property that a Set has no duplicates, we need to 
modify only the add method. Here is something that will work: 

   add =: 3 : '# items =: ~. (< y) , items'

All the other methods needed for Set are already available, 
inherited from the parent class Collection. We have finished the 
definition of Set and are ready to use it. 

   cocurrent 'base'
   s1 =: 0 conew 'Set'  NB. make new Set object.
   add__s1 'a'
1
   add__s1 'b'
2
   add__s1 'a'
2
   remove__s1 'b'
1
   inspect__s1 0        NB. should have just one 
'a' 
+-+
|a|
+-+
   

25.5.1 A Matter of Principle

Recall the definition of the add method of class Set. 

   add_Set_
3 : '# items =: ~. (< y) , items'

It has an objectionable feature: in writing it we used our 



Chapter 25: Object-Oriented Programming  400

knowledge of the internals of a Collection object, namely that 
there is a field called items which is a boxed list. 

Now the methods of Collection are supposed to be adequate for 
all handling of Collection objects. As a matter of principle, if we 
stick to the methods and avoid rummaging around in the internals, 
we hope to shield ourselves, to some degree, from possible future 
changes to the internals of Collection. Such changes might be, 
for example, for improved performance. 

Let's try redefining add again, this time sticking to the methods of 
the parent as much as possible. We use our knowledge that the 
parent inspect method yields a boxed list of the membership. If 
the argument y is not among the membership, then we add it with 
the parent add method. 

   add_Set_ =: 3 : 0
if. (< y) e. inspect 0
do.  0
else. add_Collection_ f. y   NB. see below !
end.
)

Not so nice, but that's the price we pay for having principles. 
Trying it out on the set s1: 

   inspect__s1 0
+-+
|a|
+-+
   add__s1     'a'
0
   add__s1     'z'
2
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   inspect__s1 0
+-+-+
|z|a|
+-+-+

25.6 Using Inherited Methods

Let us review the definition of the add method of class Set. 

   add_Set_
3 : 0
if. (< y) e. inspect 0
do.  0
else. add_Collection_ f. y   NB. see below !
end.
)

There are some questions to be answered. 

25.6.1 First Question

How are methods inherited? In other words, why is the inspect 
method of the parent Collection class available as a Set method? 
In short, the method is found along the path, that is, 

• a Set object such as s1 is a locale. It contains the field-
variable(s) of the object. 

• when a method of a class is executed, the current locale is 
(temporarily) the locale of an object of that class. This 
follows from the way we invoke the method, with an 
expression of the form method__object argument. 

• the path from an object-locale goes to the class locale and 
thence to any parent locale(s). Hence the method is found 
along the path. 
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. We see that a Set object such as s1 has a path to Set and then 
to Collection. 

   copath > s1
+---+----------+-+
|Set|Collection|z|
+---+----------+-+
   

25.6.2 Second Question

In the definition of add_Set_ 

   add_Set_
3 : 0
if. (< y) e. inspect 0
do.  0
else. add_Collection_ f. y   NB. see below !
end.
)

Given that the parent method inspect is referred to as simply 
inspect, why is the parent method add referred to as 
add_Collection_? Because we are defining a method to be called 
add and inside it a reference to add would be a fatal circularity. 

25.6.3 Third Question

why is the parent add method specified as add_Collection_ f. ? 

Because add_Collection_ is a locative name, and evaluating 
expressions with locative names will involve a change of locale. 
Recall from Chapter 24 that add_Collection_ 0 would be 
evaluated in locale Collection, which would be incorrect: we need 
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to be in the object locale when applying the method. 

Since f. is built-in, by the time we have finished evaluating 
(add_Collection_ f.) we are back in the right locale with a fully-
evaluated value for the function which we can apply without 
change of locale. 

   add_Collection_ f.
3 : '# items =: (< y) , items'
   

25.7 Library Verbs

Here is a brief summary of selected library verbs. 

coclass 'foo' introduce new class foo

coinsert 'foo' this class to be a child of foo

conew 'foo' introduce a new object of class foo

conl 0 list locale names

conl 1 list ids of object locales

names_foo_ '' list the methods of class foo

copath <'foo' show path of class foo

coname '' show name of current locale
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This brings us to the end of Chapter 25 
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Chapter 26: Script Files

A file containing text in the form of lines of J is called a script-file, 
or just a script. By convention a script has a filename terminating 
with .ijs . The process of executing the lines of J in a script-file is 
called "loading" a script. 

We write our own scripts for our particular programming projects. 
In addition, the J system comes supplied with a library of 
predefined scripts of general utility. 

The plan for this chapter is to look at 

• built-in verbs for loading scripts 
• the load verb and its advantages, including convenient 

loading of library scripts 
• the "profile" script automatically loaded at the beginning of a 

J session 

26.1 Creating Scripts

It will be useful to identify a directory where we intend to store our 
own scripts. 

There is a directory j701-user convenient for the purpose. It is 
installed automatically as part of a J installation. Its full pathname 
is given by 

   jpath '~user'
c:/users/homer/j701-user
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A variable, scriptdir say, can hold the name of our chosen script 
directory together with a trailing '/' 

   ] scriptdir =: (jpath '~user') , '/' 
c:/users/homer/j701-user/
   

Scripts are usually created using a text editor, but we can use J to 
create small examples of scripts as we need them. Here is an 
example of creating a tiny script, with a filename of say 
example.ijs, using the built-in verb 1!:2 thus: 

   (0 : 0) (1!:2) < scriptdir,'example.ijs'
plus =: +
k    =: 2 plus 3
k plus 1   
)

26.2 Loading Scripts

There is a built-in verb 0!:1 to load a script. The argument is a 
filename as a boxed string. 

   0!:1 < scriptdir,'example.ijs'
   plus =: +
   k    =: 2 plus 3
   k plus 1   
6

We see on the screen a display of the lines of the script as they 
were executed, together with the result-values of any 
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computations. The definitions of plus and k are now available: 

plus k

+ 5

 

The verb 0!:1, as we saw, loads a script with a display. If there is 
an error in the script, 0!:1 will stop. We can choose whether or 
not to display, and whether to stop or to continue loading after an 
error. There are four similar verbs: 

0!:0 no display stopping on error 

0!:1 with display stopping on error 

0!:10 no display 
continuing on 
error

0!:11 with display 
continuing on 
error

 

For example: 

   0!:0 < scriptdir,'example.ijs'

We see nothing on the screen. The value computed in the script for 
k plus 1 is discarded. 
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26.3 The load Verb

There is a verb load which is predefined, that is, automatically 
available in the standard J setup. It can be used just like 0!:0 to 
load a script 

   load < scriptdir,'example.ijs'

The script is loaded without a display and stopping on error. There 
is a companion verb loadd which loads with a display, stopping on 
error. 

   loadd < scriptdir, 'example.ijs'
   plus =: +
   k    =: 2 plus 3
   k plus 1   
6

load and loadd have several advantages compared with 0!:n . 
The first of these is that the filename need not be boxed. 

   loadd scriptdir, 'example.ijs'
   plus =: +
   k    =: 2 plus 3
   k plus 1   
6
   

26.4 Local Definitions in Scripts

Now we look at the treatment of local variables in scripts. Here is 
an example of a script. 
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   (0 : 0) (1!:2) < scriptdir, 'ex1.ijs'
w   =: 1 + 1
foo =: + & w  
)

Suppose that variable w has the sole purpose of helping to define 
verb foo and otherwise w is of no interest. It would be better to 
make w a local variable. 

Firstly, we need to assign to w with =. in the same way that we 
assign to local variables in explicit functions. Our revised script 
becomes: 

   (0 : 0) (1!:2) < scriptdir, 'ex2.ijs'
w   =. 1 + 1
foo =: + & w  
)

Secondly, we need something for w to be local to, that is, an 
explicit function, because outside any explicit function (that is, "at 
the top level") =. is the same as =: All that would be needed is the 
merest wrapper of explicit definition around 0!:n, such as: 

   LL =: 3 : '0!:0 y'

If we now load our script 

   LL < scriptdir, 'ex2.ijs'

and then look at the results: 

foo w

+&2 error
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we see that foo is as expected, and, as intended, there is no value 
for w. Therefore w was local to the execution of the script, or 
strictly speaking, local to the execution of LL. 

An advantage of the load verb is that it provides the explicit 
function needed to make w local. 

   erase 'foo';'w'
1 1
   
   load scriptdir, 'ex2.ijs'

foo w

+&2 error

 

26.4.1 Local Verbs in Scripts

In the previous example, the local variable w was a noun. With a 
local verb, there is a further consideration. Here is an example of a 
script which tries to use a local verb (sum) to assist the definition 
of a global verb (mean). 

   (0 : 0) (1!:2) < scriptdir, 'ex3.ijs'
sum  =. +/
mean =: sum % # 
)
   
   load  < scriptdir, 'ex3.ijs'

We see that this will not work, because mean needs sum and sum, 
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being local, is no longer available. 

mean sum

sum % # error

 

The remedy is to "fix" the definition of mean, with the adverb f. 
(as we did in Chapter 12). Our revised script becomes 

   (0 : 0) (1!:2) < scriptdir, 'ex4.ijs'
sum =. +/
mean =: (sum % #)  f.
)

Now mean is independent of sum 

   load  < scriptdir, 'ex4.ijs'

mean sum

+/ % # error

 

26.5 Loading Into Locales

We looked at locales in Chapter 24. When we load a script with 
0!:n or load it is the current locale that becomes populated with 
definitions from the script. 

By default, the current locale is base. In general, we may wish to 
load a script into a specified locale, say locale one. 
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Here is one way: 

   load_one_  scriptdir, 'example.ijs'
   
   plus_one_
+

Another way is to let the script itself specify the locale. For 
example, 

   (0 : 0) (1!:2) < scriptdir, 'ex5.ijs'
18!:4 < 'two'
w   =. 1 + 1
foo =: + & w  
)

and then the script steers itself into locale two 

   load scriptdir, 'ex5.ijs'
   
   foo_two_
+&2

Here is a further advantage of load compared with 0!:n. Notice 
that the current locale is base. 

   18!:5 ''  NB. current locale before loading
+----+
|base|
+----+

If we now load ex5.ijs, the current locale is still base afterwards, 
regardless of the fact that the script visited locale two. 
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   load scriptdir,'ex5.ijs'
   18!:5 ''  NB. current locale after loading
+----+
|base|
+----+

However, loading the same script with 0!:n does NOT restore the 
previously current locale. 

   18!:5 '' NB. current locale before loading
+----+
|base|
+----+
   0!:0 < scriptdir,'ex5.ijs'
   18!:5 '' NB.  current locale after loading
+---+
|two|
+---+
   

so we conclude that self-steering scripts should be loaded with 
load and not with 0!:n. 

We return to base. 

   18 !: 4 < 'base'

26.6 Repeated Loading, and How to Avoid It

Another advantage of load is this. Suppose one script depends on 
(definitions in) a second script. If the first includes a line such as 
load 'second' then the second is automatically loaded when the 
first is loaded. 
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If we load the first script again (say, after correcting an error) then 
the second will be loaded again. This may be unnecessary or 
undesirable. The predefined verb require is like load but does not 
load a script if it is already loaded. 

Here is a demonstration. Suppose we have these two lines for the 
first script: 

   (0 : 0) (1!:2) < scriptdir,'first.ijs'
    require scriptdir, 'second.ijs'
    a =: a + 1
)

Here the variable a is a counter: every time first.ijs is loaded, a 
will be incremented. Similarly for a second script: 

   (0 : 0) (1!:2) < scriptdir, 'second.ijs'
    b  =: b + 1
)

We set the counters a and b to zero, load the first script and 
inspect the counters: 

(a =: 0),(b =: 0) load scriptdir, 'first.ijs' a,b

0 0  1 1

 

Evidently each script has executed once. If we now load the first 
again, we see that it has executed again, but the second has not: 

load scriptdir,'first.ijs' a,b

 2 1
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26.7 Load Status

The J system keeps track of ALL scripts loaded in the session, 
whether with load or with 0!:0. The built-in verb 4!:3 with a null 
argument gives a report as a boxed list of filenames. Here are the 
last few entries in this report for the current session. 

   ,. _4 {. 4!:3 ''
+-----------------------------------+
|c:\users\homer\j701-user\ex4.ijs   |
+-----------------------------------+
|c:\users\homer\j701-user\ex5.ijs   |
+-----------------------------------+
|c:\users\homer\j701-user\first.ijs |
+-----------------------------------+
|c:\users\homer\j701-user\second.ijs|
+-----------------------------------+
   
   

Recall that we defined plus in the script example.ijs which we 
loaded above. The built-in verb 4!:4 keeps track of which name 
was loaded from which script. The argument is a name (plus for 
example) and the result is an index into the list of scripts 
generated by 4!:3. We see that plus was indeed defined by 
loading the script example.ijs 

i =: 4!:4 < 'plus' i { 4!:3 '' 

14 +------------------------------------+
|c:\users\homer\j701-user\example.ijs|
+------------------------------------+
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26.8 Library Scripts

26.8.1 The Standard Library

The J system comes supplied with script files containing a useful 
collection of predefined functions. 

We can look at the list of scripts loaded automatically at the 
beginning of the session. For this we use the built-in verb 4!:3 to 
generate a boxed list of file-names. Here are the first 9 scripts: 

   ,. 9 {. 4 !: 3 ''
+---------------------------------------------+
|C:\users\homer\j701\bin\profile.ijs          |
+---------------------------------------------+
|C:\users\homer\j701\system\util\boot.ijs     |
+---------------------------------------------+
|C:\users\homer\j701\system\main\stdlib.ijs   |
+---------------------------------------------+
|C:\users\homer\j701\system\util\scripts.ijs  |
+---------------------------------------------+
|C:\users\homer\j701\system\main\regex.ijs    |
+---------------------------------------------+
|C:\users\homer\j701\system\main\task.ijs     |
+---------------------------------------------+
|C:\users\homer\j701\system\util\configure.ijs|
+---------------------------------------------+
|c:\users\homer\j701-user\config\recent.dat   |
+---------------------------------------------+
|c:\users\homer\j701\system\main\ctag.ijs     |
+---------------------------------------------+
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We see that among these is the script-file stdlib.ijs 

Functions defined in stdlib.ijs end up in the z locale where they 
are conveniently available to the programmer. There are more than 
300 things defined in the z locale: 

   # nl_z_ ''
369
   

For example, the file-handling utility functions documented in the J 
User Manual are found in the z locale with names beginning with 
the letter 'f'. 

   6 6 $ 'f' nl_z_ ''
+--------+----------+--------+-----------+---------+--------------+
|f2utf8  |fappend   |fappends|fapplylines|fboxname |fc            |
+--------+----------+--------+-----------+---------+--------------+
|fcompare|fcompares |fcopynew|fdir       |ferase   |fetch         |
+--------+----------+--------+-----------+---------+--------------+
|fexist  |fexists   |fgets   |fi         |flatten  |fliprgb       |
+--------+----------+--------+-----------+---------+--------------+
|fmakex  |foldpara  |foldtext|fpathcreate|fpathname|fputs         |
+--------+----------+--------+-----------+---------+--------------+
|fread   |freadblock|freadr  |freads     |frename  |freplace      |
+--------+----------+--------+-----------+---------+--------------+
|fsize   |fss       |fssrplc |fstamp     |fstring  |fstringreplace|
+--------+----------+--------+-----------+---------+--------------+
   

26.8.2 The J Application Library

There is an extensive collection of script-files forming the J 
Application Library (JAL). The JAL is documented here 

http://www.jsoftware.com/jwiki/JAL
http://www.jsoftware.com/user/contents.htm
http://www.jsoftware.com/user/contents.htm
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26.9 User-Defined Startup Script

Suppose we have a collection of our own definitions which we wish 
to be loaded automatically at the beginning of every J session. To 
achieve this we can put our definitions into a script-file which must 
be named startup.ijs. The full pathname for this file is given by 
the expression 

   jpath '~config/startup.ijs'  
c:/users/homer/j701-user/config/startup.ijs
   

Here is an example. We create the script-file with a few definitions. 
For this example we could define a few verbs useful for type-
checking. 

   (0 : 0)  (1 !: 2) < jpath '~config/startup.ijs'  
is_int    =: 4 = 3 !: 0
is_char   =: 2 = 3 !: 0
is_number =: 1 4 8 16 64 128  e.~  3!:0
is_scalar =: 0 = # @: $
is_list   =: 1 = # @: $
is_string =: is_char *. is_list
)

With this script-file in place, the next session should automatically 
load it. We verify this by looking at the list of scripts loaded at the 
beginning of the new session. 

   ,. 11 {. 4 !: 3 ''
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+---------------------------------------------+
|C:\users\homer\j701\bin\profile.ijs          |
+---------------------------------------------+
|C:\users\homer\j701\system\util\boot.ijs     |
+---------------------------------------------+
|C:\users\homer\j701\system\main\stdlib.ijs   |
+---------------------------------------------+
|C:\users\homer\j701\system\util\scripts.ijs  |
+---------------------------------------------+
|C:\users\homer\j701\system\main\regex.ijs    |
+---------------------------------------------+
|C:\users\homer\j701\system\main\task.ijs     |
+---------------------------------------------+
|C:\users\homer\j701\system\util\configure.ijs|
+---------------------------------------------+
|c:\users\homer\j701-user\config\recent.dat   |
+---------------------------------------------+
|c:\users\homer\j701\system\main\ctag.ijs     |
+---------------------------------------------+
|c:\users\homer\j701\system\util\jadetag.ijs  |
+---------------------------------------------+
|c:\users\homer\j701-user\config\startup.ijs  |
+---------------------------------------------+
   

We see that startup.ijs has been loaded and its definitions are 
available. 

   is_string 'hello'
1
   

This is the end of Chapter 26. 
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Chapter 27: Representations and 
Conversions

In this chapter we look at various transformations of functions and 
data. 

27.1 Classes and Types

If we are transforming things into other things, it is useful to begin 
with functions which tell us what sort of thing we are dealing with. 

27.1.1 Classes
Given an assignment, name =: something, then something is an 
expression denoting a noun or a verb or an adverb or a 
conjunction. That is, there are 4 classes to which something may 
belong. 

There is a built-in verb 4!:0 which here we can call class. 

   class =: 4!:0

We can discover the class of something by applying class to the 
argument <'name'. For example, 

n =: 6 class < 'n'

6 0
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The result of 0 for the class of n means that n is a noun. The cases 
are: 

          0  noun

          1  adverb

          2  conjunction

          3  verb

and two more cases: the string 'n' is not a valid name, or n is 
valid as a name but no value is assigned to n. 

         _2  invalid

         _1  unassigned

For example: 

C =: & class <'C' class <'yup' class <'1+2'

& 2 _1 _2

 

The argument of class identifies the object of interest by quoting 
its name to make a string, such as 'C'. 

Why is the argument not simply the object? Because, by the very 
purpose of the class function, the object may be a verb, noun, 
adverb or conjunction, and an adverb or conjunction cannot be 
supplied as argument to any other function. 

Why not? Suppose the object of interest is the conjunction C. No 
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matter how class is defined, whether verb or adverb, any 
expression of the form (class C) or (C class) is a bident or a 
syntax error. In no case is function class applied to argument C. 
Hence the need to identify C by quoting its name. 

27.1.2 Types
A noun may be an array of integers, or of floating-point numbers 
or of characters, and so on. The type of any array may be 
discovered by applying the built-in verb 3!:0 

   type =: 3!:0

For example 

type 0.1 type 'abc'

8 2

 

The result of 8 means floating-point and the result 2 means 
character. Possible cases for the result are (amongst others): 

       1  boolean
       2  character  (that is, 8-bit characters)
       4  integer
       8  floating point
      16  complex
      32  boxed
      64  extended integer
     128  rational
   65536  symbol
  131072  wide character (16-bit)
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27.2 Execute

There is a built-in verb ". (doublequote dot, called "Execute"). Its 
argument is a character-string representing a valid J expression, 
and the result is the value of that expression. 

   ". '1+2'
3

The string can represent an assignment, and the assignment is 
executed: 

". 'w =: 1 + 2' w

3 3

 

If the string represents a verb or adverb or conjunction, the result 
is null, because Execute is itself a verb and therefore its results 
must be nouns. However we can successfully Execute assignments 
to get functions. 

". '+' ". 'f =: +' f

  +

 

27.3 On-Screen Representations

When an expression is entered at the keyboard, a value is 
computed and displayed on-screen. Here we look at how values 
are represented in on-screen displays. For example, if we define a 
function foo: 
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   foo =: +/ % #

and then view the definition of foo: 

   foo
+-----+-+-+
|+-+-+|%|#|
||+|/|| | |
|+-+-+| | |
+-----+-+-+

we see on the screen some representation of foo. What we see 
depends on which of several options is currently in effect for 
representing functions on-screen. 

By default the current option is the "boxed representation", so we 
see above foo depicted graphically as a structure of boxes. Other 
options are available, described below. To select and make current 
an option for representing functions on-screen, enter one of the 
following expressions: 

            (9!:3) 2  NB. boxed (default)

            (9!:3) 5  NB. linear

            (9!:3) 6  NB. parenthesized

            (9!:3) 4  NB. tree

            (9!:3) 1  NB. atomic

The current option remains in effect until we choose a different 
option. 
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27.3.1 Linear Representation
If we choose the the linear representation, and look at foo again: 

   (9!:3) 5  NB. linear 

   foo
+/ % #

we see foo in a form in which it could be typed in at the keyboard, 
that is, as an expression. 

Notice that the linear form is equivalent to the original definition, 
but not necessarily textually identical: it tends to minimize 
parentheses. 

   bar =: (+/) % #
   
   bar
+/ % #

Functions, that is, verbs, adverbs and conjunctions, are shown in 
the current representation. By contrast, nouns are always shown in 
the boxed representation, regardless of the current option. Even 
though linear is current, we see: 

   noun =: 'abc';'pqr'
   
   noun
+---+---+
|abc|pqr|
+---+---+

27.3.2 Parenthesized
The parenthesized representation is like linear in showing a 
function as an expression. Unlike linear, the parenthesized form 
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helpfully adds parentheses to make the logical structure of the 
expression more evident. 

   (9!:3) 6  NB. parenthesized

   zot =: f @: g @: h
   
   zot
(f@:g)@:h

27.3.3 Tree Representation
Tree representation is another way of displaying structure 
graphically: 

   (9!:3) 4  NB. tree

   zot
              +- f
       +- @: -+- g
-- @: -+- h       
   

27.3.4 Atomic Representation
See below 

Before continuing, we return the current representation option to 
linear. 

   (9!:3) 5

27.4 Representation Functions

Regardless of the current option for showing representations on-
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screen, any desired representation may be generated as a noun by 
applying a suitable built-in verb. 

If y is a name with an assigned value, then a representation of y is 
a noun produced by applying one of the following verbs to the 
argument <'y' 

   br =:  5!:2    NB. boxed 
   lr =:  5!:5    NB. linear
   pr =:  5!:6    NB. parenthesized
   tr =:  5!:4    NB. tree
   ar =:  5!:1    NB. atomic

For example, the boxed and parenthesized forms of zot are shown 
by: 

br < 'zot' pr < 'zot'

+--------+--+-+
|+-+--+-+|@:|h|
||f|@:|g||  | |
|+-+--+-+|  | |
+--------+--+-+

(f@:g)@:h

 

We can get various representations of a noun, for example the 
boxed and the linear: 

br <'noun' lr <'noun'

+---+---+
|abc|pqr|
+---+---+

<;._1 ' abc pqr'
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Representations produced by 5!:n are themselves nouns. The 
linear form of verb foo is a character-string of length 6. 

foo s =: lr <'foo' $ s

+/ % # +/ % # 6

 

The 6 characters of s represent an expression denoting a verb. To 
capture the verb expressed by string s, we could prefix the string 
with characters to make an assignment, and Execute the 
assignment. 

s $ 
s

a =: 'f =: ' , s ". a f 1 2

+/ % # 6 f =: +/ % #  1.5

 

27.4.1 Atomic Representation

We saw in Chapter 10 and Chapter 14, that it is useful to be able 
to form sequences of functions. By this we mean, not trains of 
verbs, but gerunds. A gerund, regarded as a sequence of verbs, 
can for example be indexed to find a verb applicable in a particular 
case of the argument. 

To be indexable, a sequence must be an array, a noun. Thus we 
are interested in transforming a verb into a noun representing that 
verb, and vice versa. A gerund is a list of such nouns, containing 
atomic representations. The atomic representation is suitable for 
this purpose because it has an inverse. None of the other 
representation functions have true inverses. 
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The atomic representation of anything is a single box with inner 
structure. For an example, suppose that h is a verb defined as a 
hook. (A hook is about the simplest example of a verb with non-
trivial structure.) 

   h =: + %

compare the boxed and the atomic representations of h

br <'h' ar < 'h'

+-+-+
|+|%|
+-+-+

+---------+
|+-+-----+|
||2|+-+-+||
|| ||+|%|||
|| |+-+-+||
|+-+-----+|
+---------+

 

The inner structure is an encoding which allows the verb to be 
recovered from the noun efficiently without reparsing the original 
definition. It mirrors the internal form in which a definition is 
stored. It is NOT meant as yet another graphic display of structure. 

The encoding is described in the Dictionary. We will not go into 
much detail here. Very briefly, in this example we see that h is a 
hook (because 2 is an encoding of "hook") where the first verb is + 
and the second is %. 

The next example shows that we can generate atomic 
representations of a noun, a verb, an adverb or a conjunction. 

   N =: 6
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   V =: h
   A =: /
   C =: &

ar <'N' ar <'V' ar <'A' ar <'C'

+-----+
|+-+-+|
||0|6||
|+-+-+|
+-----+

+-+
|h|
+-+

+-+
|/|
+-+

+-+
|&|
+-+

 

27.4.2 Inverse of Atomic Representation
The inverse of representation is sometimes called "abstraction", (in 
the sense that for example a number is an abstract mathematical 
object represented by a numeral.) The inverse of atomic 
representation is 5!:0 which we can call ab. 

   ab =: 5!:0

ab is an adverb, because it must be able to generate any of noun, 
verb, adverb or conjunction. For example, we see that the 
abstraction of the atomic representation of h is equal to h 

h r =: ar < 'h' r ab

+ % +---------+
|+-+-----+|
||2|+-+-+||
|| ||+|%|||
|| |+-+-+||
|+-+-----+|
+---------+

+ %
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and similarly for an argument of any type. For example for noun N 
or conjunction C 

N rN=: ar <'N' rN 
ab

C (ar <'C') ab

6 +-----+
|+-+-+|
||0|6||
|+-+-+|
+-----+

6 & &

 

27.4.3 Execute Revisited
Here is another example of the use of atomic representations. 
Recall that Execute evaluates strings expressing nouns but not 
verbs. Since Execute is itself a verb it cannot deliver verbs as its 
result. 

". '1+2' ". '+'

3  
 

To evaluate strings expressing values of any class we can define an 
adverb eval say, which delivers its result by abstracting an atomic 
representation of it. 

   eval =: 1 : 0
". 'w =. ' , u
(ar < 'w') ab
) 
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'1+2' eval mean =: '+/ % #' eval mean 1 2

3 +/ % # 1.5

 

27.4.4 The Tie Conjunction Revisited
Recall from Chapter 14 that we form gerunds with the Tie 
conjunction `. Its arguments can be two verbs. 

   G =: (+ %) ` h  

Its result is a list of atomic representations. To demonstrate, we 
choose one, say the first in the list, and abstract the verb. 

G r =: 0 { G r ab

+---------+-+
|+-+-----+|h|
||2|+-+-+|| |
|| ||+|%||| |
|| |+-+-+|| |
|+-+-----+| |
+---------+-+

+---------+
|+-+-----+|
||2|+-+-+||
|| ||+|%|||
|| |+-+-+||
|+-+-----+|
+---------+

+ %

 

The example shows that Tie can take arguments of expressions 
denoting verbs. By contrast, the atomic representation function 
(ar or 5!:1) must take a boxed name to identify its argument. 

Here is a conjunction T which, like Tie, can take verbs (not names) 
as arguments and produces atomic representations. 
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   T =: 2 : '(ar <''u.'') , (ar <''v.'')'
   

(+ %) T h (+ %) ` h

+---------+-+
|+-+-----+|h|
||2|+-+-+|| |
|| ||+|%||| |
|| |+-+-+|| |
|+-+-----+| |
+---------+-+

+---------+-+
|+-+-----+|h|
||2|+-+-+|| |
|| ||+|%||| |
|| |+-+-+|| |
|+-+-----+| |
+---------+-+

 

27.5 Conversions for Binary Data

Binary data is, briefly, values represented compactly as character 
strings. Here we look at functions for converting between values in 
J arrays and binary data, with a view to handling files with binary 
data. Data files will be covered in Chapter 28 . 

In the following, a 32-bit PC is assumed, so it is assumed that a 
character occupies one byte and a floating point number occupies 
8. 

A J array, of floating-point numbers for example, is stored in the 
memory of the computer. Storage is required to hold information 
about the type, rank and shape of the array, together with storage 
for each number in the array. Each floating-point number in the 
array needs 8 bytes of storage. 

There are built-in functions to convert a floating-point number to a 
character-string of length 8, and vice versa. 
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   cf8 =:   2 & (3!:5)   NB. float to 8 chars
   c8f =:  _2 & (3!:5)   NB. 8 chars to float 

In the following example, we see that the number n is floating-
point, n is converted to give the string s which is of length 8, and s 
is converted back to give a floating-point number equal to n. 

n =: 0.1 $ s =: cf8 n c8f s

0.1 8 0.1

 

Characters in the result s are mostly non-printable. We can inspect 
the characters by locating them in the ASCII character-set: 

   a. i. s 
154 153 153 153 153 153 185 63

Now consider converting arrays of numbers. A list of numbers is 
converted to a single string, and vice versa:: 

a =: 0.1 0.1 $ s =: cf8 a c8f s

0.1 0.1 16 0.1 0.1

 

The monadic rank of cf8 is infinite: cf8 applies just once to its 
whole argument. 

   RANKS =: 1 : 'u b. 0'
   cf8 RANKS
_ _ _

but the argument must be a scalar or list, or else an error results. 
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b =: 2 2 $ a $ w =: cf8 b $ w =: cf8"1 b

0.1 0.1
0.1 0.1

error 2 16

 

A floating-point number is convertible to 8 characters. There is an 
option to convert a float to and from a shorter 4-character string, 
sacrificing precision for economy of storage. 

   cf4 =:  1 & (3!:5)   NB. float to 4 chars
   c4f =: _1 & (3!:5)   NB. 4 chars to float

As we might expect, converting a float to 4 characters and back 
again can introduce a small error. 

   p =: 3.14159265358979323
   

p $ z =: cf4 p q =: c4f z p - q

3.14159 4 3.14159 _8.74228e_8

 

A J integer needs 4 bytes of storage. There are functions to 
convert between J integers and 4-character strings. 

   ci4 =:  2 & (3!:4)  NB. integer to 4 char
   c4i =: _2 & (3!:4)  NB. 4 char  to integer
   

i =: 1 _100 $ s =: ci4 i c4i s

1 _100 8 1 _100
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We see that the length of s is 8 because s represents two integers. 

Suppose k is an integer and c is the conversion of k to 4 
characters. 

k =: 256+65 $ c =: ci4 k

321 4

 

Since characters in c are mostly non-printable, we inspect them by 
viewing their locations in the ASCII alphabet. We see that the 
characters are the base-256 digits in the value of k, stored in c in 
the order least-significant first (on a PC).. 

k a. i. c 256 256 256 256 #: k

321 65 1 0 0 0 0 1 65

 

Integers in the range _32768 to 32767 can be converted to 2-
character strings and vice versa. 

   ci2 =:  1 & (3!:4)  NB. integer to 2 char
   c2i =: _1 & (3!:4)  NB. 2 char  to int
   

i $ s =: ci2 i c2i s

1 _100 4 1 _100
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Integers in the range 0 to 65535 can be converted to 2-character 
strings and vice versa. Such strings are described as "16bit 
unsigned". 

   ui2 =: ci2         NB. integer to 2-char,  
unsigned  
   u2i =: 0 & (3!:4)  NB. 2 char  to integer, 
unsigned
   

m =: 65535 $ s =: ui2 m u2i s

65535 2 65535

 

27.6 Unicode

In this section we look at J support for Unicode. 

There are three kinds of character data in J. 

• Ordinary character data we have seen already as 8-bit ASCII 
• 16-bit characters, called "wide characters" for Unicode. 
• Sequences of 8-bit characters, which represent Unicode 

characters, for the purpose of writing Unicode in files. This 
representation is called the UTF-8 encoding. 

The following diagram shows the J functions available for 
converting character data from one kind to another. The functions 
are members of the u: family. 
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ASCII chars

wide chars

16-bit

UTF-8

8-bit

8-bit
integer

u:

 

We have seen that J supports character data. For example 

   C =: 'this is a string'

The built-in verb 3 !: 0 shows the type of a data value. 

   3!:0  C
2

The result of 2 indicates that the data type of C is 8-bit characters, 
called "char". 
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J also provides another data type with 16-bit characters, called 
"wchar" ("wide character"). The built-in function monadic u: 
converts char data to wchar. 

   ] W =: u: C
this is a string

wchar data is displayed as before, but its data-type is shown as 
131072 

   3!:0 W
131072

A 16-bit wchar character can be one of the many characters in the 
Unicode standard. The built-in function 4&u: produces a wchar 
character specified by the argument, which is an integer in the 
range 0-65536, called a Unicode "code point". 

A code point is often given as 4 hex digits. For example, the code 
point for the Greek letter alpha is hex 03b1 which we can write as 
16b03b1 

   ] alpha =: 4&u: 16b03b1
α

alpha is a wchar: 

   3!:0  alpha
131072

We can build a wchar string including alpha : 

] U= (u: 'the Greek letter alpha looks like this:  '),alpha
the Greek letter alpha looks like this:  α
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Suppose now that our wchar data U is to be exported, say by 
writing it to a data file . We will need to encode our 16-bit wchar 
data as a sequence of 8-bit bytes, according to some recognised 
standard encoding scheme. The UTF-8 standard is suitable. 

The built-in function 8&u: produces a character string which is a 
UTF-8 encoding of wchar data 

   ] Z =: 8&u: U
the Greek letter alpha looks like this:  α

We see that Z is of data type 2, (that is 8-bit char) and that the 
number of bytes in Z is one more than the number of characters in 
U, because alpha is encoded as two bytes. 

3!:0 Z # U # Z 

2 42 43

 

The inverse of 8&u: is the built-in function 7&u: which produces 
wchar characters from a UTF-8 string. 

   ] A =: 7&u: Z
the Greek letter alpha looks like this:  α

We can view the Unicode code-points of the letters in A. The built-
in function 3&u: produces code-point integers from wchar data. If 
we look at the last few characters of A, we see as we expect that 
the code-point integer of alpha is decimal 945, that is, hex 03b1. 

   ] L =:  _6 {. A      NB. last few of A
is:  α
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   3 & u: L
105 115 58 32 32 945
   

This is the end of Chapter 27 
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Chapter 28: Data Files

The subject of file-handling in general, and how data is organized 
in files, is a major topic in itself. In this chapter we will cover only 
a selection of the facilities available in J. 

J functions to read files produce results in the form of character-
strings, and similarly functions to write files take strings as 
arguments. Such a string can be the whole data content of a file 
when the available memory of the computer is sufficient. 

Our approach here will be to look first at some J functions for input 
and output of strings. Then we look at a few examples of dealing 
with strings as representing data in various formats. Finally we 
look at mapped files as an alternative to conventional file-handling. 

28.1 Reading and Writing Files

28.1.1 Built-in Verbs
In the following, a filename is a string which is valid as a filename 
for the operating-system of the computer where we are running J. 
For example: 

   F =: 'c:\temp\demofile.xyz'       NB. a filename

The built-in verb 1!:2 writes data to a file. The right argument is a 
boxed filename. The left argument is a character-string, the data 
to be written. The effect is that the file is created if it does not 
already exist, and the data becomes the whole content of the file. 
The result is null. 
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   'some data' 1!:2 < F    NB. write to file F

The built-in verb 1!:1 reads data from a file. The right argument is 
a boxed filename. The result is a character-string, the data read. 

   data =: 1!:1 < F     NB.  read from file F

data $ data

some data 9

 

28.1.2 Screen and Keyboard As Files
Screen and keyboard can be treated as files, to provide a simple 
facility for user-interaction with a running program. 

The expression x (1!:2) 2 writes the value of x to "file 2", that is, 
to the screen. A verb to display to the screen can be written as 

   display =: (1!:2) & 2

For example, here is a verb to display the stages in the 
computation of least-common-denominator by Euclid's algorithm. 

   E =: 4 : 0
display x , y
if. y = 0 do. x else. (x | y) E x end.
)
   
   12 E 15
12 15
3 12
0 3
3 0
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3

The value to be displayed by (1!:2) &2 is not limited to strings: in 
the example above a list of numbers was displayed. 

User-input can be requested from the keyboard by reading "file 1", 
that is, by evaluating (1!:1) 1. The result is a character-string 
containing the user's keystrokes. For example, a function for user-
interaction might be: 

   ui =: 3 : 0
display 'please type your name:' 
n  =.  (1!:1) 1
display 'thank you ', n
''
)

and then after executing 

         ui ''

a dialogue appears on the screen, like this: 

       please type your name:

       Waldo

       thank you Waldo

28.1.3 Library Verbs

There are a number of useful verbs for file-handling in the 
"standard library" (Chapter 26). Here is a brief summary of a 
selection: 
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s fwrite F write string s to file F

fread F read string from file F

s fappend F append string s to file F 

fread F;B,L read slice from file F, starting at B, length 
L

s fwrites F write text s to file F

freads F read text from file F

fexist F true if file F exists

ferase F delete file F

 

From now on we will use these library verbs for our file-handling. 

The library verb fwrite writes data to a file. The right argument is 
a filename. The left argument is a character-string, the data to be 
written. The effect is that the file is created if it does not already 
exist, and the data becomes the whole content of the file. 

   'some data' fwrite F    NB. file write
9

The result shows the number of characters written. A result of _1 
shows an error: either the left argument is not a string or the right 
argument is not valid as a filename, or the specified file exists but 
is read-only. 
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   (3;4) fwrite F
_1

The library verb fread reads data from file. The argument is a 
filename and the result is a character-string. 

z =: fread F $z

some data 9

 

A result of _1 shows an error: the specified file does not exist, or is 
locked. 

fread 'qwerty' fexist 'qwerty'

_1 0

 

28.2 Large Files

For large files, the memory of the computer may not be sufficient 
to allow the file to be treated as a single string. We look at this 
case very briefly. 

Write a file with some initial content: 

   'abcdefgh' fwrite F
8

We can append some data to the file with library verb fappend. 
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   'MORE' fappend F
4

To see the effect of fappend (just for this demonstration, but not 
of course for a large file) we can read the whole file again : 

   fread F
abcdefghMORE

We can read a selected slice of the file, say 8 bytes starting from 
byte 4. In this case we use fread with a right argument of the 
form filename;start,size. 

   start =: 4
   size  =: 8
   fread F ; start, size
efghMORE

28.3 Data Formats

We look now at a few examples of how data may be organized in a 
file, that is, represented by a string. Hence we look at converting 
between character strings, with various internal structures, and J 
variables. 

We take it that files are read and written for the purpose of 
exchanging data between programs. Two such programs we can 
call "writer" and "reader". Questions which arise include: 

1. Are writer and reader both to be J programs? If so, then 
there is a convenient J-only format, the "binary 
representation" covered below. If not, then we expect to 
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work from a programming-language-independent description 
of the data. 

2. Are writer and reader to run on computers with the same 
architecture? If not, then even in the J-to-J situation, some 
finesse may be needed. 

3. Is the data organized entirely as a repetition of some 
structure (for example, "fixed length records"). If so then we 
may usefully be able to treat it as one or more J arrays. If 
not, we may need some ad-hoc programming. 

28.3.1 The Binary Representation for J-0nly Files

Suppose we aim to handle certain files only in J programs, so that 
we are free to choose any file format convenient for the J 
programmer. The "binary representation" is particularly 
convenient. 

For any array A, 

   A =:  'Thurs'; 19 4 2001 

the binary representation of A is a character string. There are built-
in verbs to convert between arrays and binary representations of 
arrays. 

   arrbin  =: 3!:1   NB. array to binary rep.
   binarr  =: 3!:2   NB. binary rep. to array

If B is the binary representation of A, we see that B is a character 
string, with a certain length. 
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A $ B =: arrbin A

+-----+---------+
|Thurs|19 4 2001|
+-----+---------+

88

 

We can write B to a file, read it back, and do the inverse 
conversion to recover the value of A : 

B fwrite F $ Z =: fread F binarr Z

88 88 +-----+---------+
|Thurs|19 4 2001|
+-----+---------+

 

From J4.06 on, there are variations of the binary representation 
verbs above to allow for different machine architectures: see the 
Dictionary under 3!:1. 

28.3.2 Text Files
The expression a. (lower-case a dot) is a built-in noun, a 
character-string containing all 256 ASCII characters in sequence. 

65 66 67 { a. $ a.

ABC 256

 

In the ASCII character set, that is, in a., the character at position 
0 is the null, at position 10 is line-feed and at position 13 is 
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carriage return . In J, the names CR and LF are predefined in the 
standard profile to mean the carriage-return and linefeed 
characters. 

   a. i. CR,LF
13 10

We saw fread and fwrite used for reading and writing character 
files. Text files are a special kind of character file, in that lines are 
delimited by CR and/or LF characters. 

On some systems the convention is that lines of text are delimited 
by a single LF and on other systems a CR,LF pair is expected. 
Regardless of the system on which J is running, for J text 
variables, the convention is always followed of delimiting a line 
with single LF and no CR. 

Here is an example of a text variable. 

   t =: 0 : 0
There is physics
and there is 
stamp-collecting.
)

Evidently it is a string (that is, a 1-dimensional character list) with 
3 LF characters and no CR characters. 

$ t +/t=LF +/t=CR

49 3 0

 

If we aim to write this text variable t to a text file, we must 
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choose between the single-LF or CRLF conventions. There are two 
useful library verbs, fwrites and freads to deal with this 
situation. 

• Under Windows, x fwrites y writes text-variable x to file y, 
in the process converting each LF in x to a CRLF pair in y. 

• Under Linux, x fwrites y writes text-variable x to file y, 
with no conversion. 

• Under Windows or Linux z =: freads y reads file y, 
converting any CRLF pair in y to a single LF in text-variable 
z. 

For convenience in dealing with a text variable such as t, we can 
cut it into lines. A verb for this purpose is cut (described more 
fully in Chapter 17 ). 

   cut =: < ;. _2

cut produces a boxed list of lines, removing the LF at the end of 
each line. 

   lines =: cut t
   lines
+----------------+-------------+-----------------+
|There is physics|and there is |stamp-collecting.|
+----------------+-------------+-----------------+

The inverse of cut we can call uncut. It restores the LF at the end 
of each box and then razes to make a string. 

   uncut =: ; @: (,&LF &. >)
   uncut lines
There is physics
and there is 
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stamp-collecting.

28.3.3 Fixed Length Records with Binary Data
Suppose our data is in two J variables: a table cnames, of 
customer-names, and a list amts in customer order with for each 
customer an amount, a balance say. 

cnames =: 'Mr Rochester' ,: 'Jane' ,. amts =: _10000 3

Mr Rochester
Jane

_10000
     3

 

Now suppose the aim is to write this data to a file, formatted in 
16-byte records. Each record is to have two fields: customer-name 
in 12 bytes followed by amount in 4 bytes, as a signed integer. 
Here is a possible approach. 

The plan is to construct, from cnames and amts, an n-by-16 
character table, to be called records. For this example, n=2, and 
records will look like this: 

Mr Rochester####
Jane        ####
   

where #### represents the 4 characters of an integer in binary 
form. 

We build the records table by stitching together side by side an n-
by-12 table for the customer names field, and an n-by-4 table for 
the amounts field. 
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For the customer-names field we already have cnames which is 
suitable, since it is 12 bytes wide: 

   $ cnames
2 12

For the amounts field we convert amts to characters, using ci4 
from Chapter 27. The result is a single string, which is reshaped to 
be n-by-4. 

   ci4 =:  2 & (3!:4)  NB. integer to 4 char
   
   amtsfield =: ((# amts) , 4) $ ci4 amts

Now we build the n-by-16 records table by stitching together 
side-by-side the two "field" tables: 

   records =: cnames ,. amtsfield

To inspect records, here is a utility verb which shows a non-
printing character as # 

   inspect =: 3 : ('A=.a.{~32+i.96';'(A i.y) 
{ A,''#''')
   

inspect records $ records

Mr Rochester####
Jane        ####

2 16

 

The outgoing string to be written to the file is the ravel of the 
records. 
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   (, records) fwrite F
32

The inverse of the process is to recover J variables from the file. 
We read the file to get the incoming string. 

   instr =: fread F

Since the record-length is known to be 16, the number of records 
is 

   NR =: (# instr) % 16

Reshape the incoming string to get the records table. 

   inspect records =: (NR,16) $ instr
Mr Rochester####
Jane        ####

and extract the data. The customer-names are obtained directly, 
as columns 0-11 of records. 

   cnames =: (i.12) {"1 records

For the amounts, we extract columns 12-15, ravel into a single 
string and convert to integers with c4i. 

   c4i =: _2 & (3!:4)  NB. 4 char  to integer
   
   amts   =: c4i  , (12+i.4) {"1  records
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cnames ,. amts

Mr Rochester
Jane

_10000
     3

 

28.4 Mapped Files

A file is said to be mapped when the file is temporarily 
incorporated into the virtual-address-translation mechanism of an 
executing program. The data in a mapped file appears to the J 
programmer directly as the value of a J variable - an array. 
Changes to the value of the variable are changes to the data in the 
file. 

In such a case, we can say, for present purposes, that the file is 
mapped to the variable or, equivalently, that the variable is 
mapped to the file. 

Mapped files offer the following advantages: 

• Convenience. Data in a file is handled just like data in any J 
array. There is no reading or writing of the file. 

• Persistent variables. A variable mapped to a file lives in the 
file, and can persist from one J session to another. 

There are two cases. In the first case, any kind of existing file can 
be mapped to a variable. We take as given the structure of the 
data in the file, and then the J program must supply a description 
of the desired mapping. For example, a file with fixed-length 
records could be mapped to a character table. 
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In the second case, a file can be created in J in a special format 
(called "jmf") specifically for the purpose of mapping to a variable. 
In this case, the description is automatically derived from the 
variable and stored in the file along with the data. Thus a "jmf" file 
is self-describing. 

We look first at creating jmf files, and then at mapping given files.. 

28.4.1 Library Script for Mapped Files
There is a library script, jmf.ijs, for handling mapped files. For 
present purposes it is simplest to download it directly from the J 
Application Library. Here is a link to jmf.ijs . 

Assuming we have downloaded it into say, directory C:\temp for 
example, we can load it into our J session with: 

   load 'c:\temp\jmf.ijs'
   

The script will load itself into the locale jmf . 

28.4.2 jmf Files and Persistent Variables
Suppose we have constructed an array V with some valuable data, 
which from now on we aim to use and maintain over a number of J 
sessions. Perhaps V is valuable now, or perhaps it will become 
valuable over subsequent sessions as it is modified and added-to. 

Our valuable data V can be an array of numbers, of characters, or 
of boxes. For a simple example we start with V as a table of 
numbers. 

   ] V =:  2 2 $ 1 2 3 4
1 2
3 4

http://www.jsoftware.com/svn/addons/trunk/data/jmf/jmf.ijs
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We can make a persistent variable from V as follows. 

Step 1 is to estimate the size, in bytes, of a file required for the 
value of V. Since we expect that over time V may grow from its 
present size ultimately to, say, 64 KB, then our estimate S is 

   S =: 64000

If in doubt, allow plenty. The size must be given as a positive 
integer (not a float) and therefore less than 2147483648 (2Gb) on 
a 32-bit machine. 

Step 2 is to choose a file-name and, for convenience, define a 
variable F to hold the the file name as a string. For example: 

   F =: 'c:\temp\persis.jmf'

Step 3 is to create file F as a jmf file, large enough to hold S bytes 
of data. For this purpose the utility function createjmf is available 
(in locale jmf) so we can write: 

   createjmf_jmf_ F;S

(On your system, with a different version of J, you may see a 
response different from what is shown here.) 

At this point, file F exists. If we inspect it we see its actual size is a 
little larger than S, to accommodate a header record which makes 
the file self-describing. 

   fdir F
+----------+------------------+-----+---+------+
|persis.jmf|2012 12 16 8 37 22|64284|rw-|-----a|
+----------+------------------+-----+---+------+
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The content of file F is initially set by createjmf_jmf_ to represent 
a J value, in fact a zero-length list. The important point is that file 
F now contains a definite value. 

Step 4 is to map the content of file F to a new variable, for which 
we choose the name P. 

   map_jmf_ 'P'; F

This statement means, in effect: 

               P =:  value-currently-in-file-F

and we can verify that P is now an empty list: 

P $ P

 0
 

Notice particularly that the effect of mapping file F to variable P is 
to assign the value in F to P and not the other way around. Hence 
we avoided mapping file F directly onto our valuable array V 
because V would be overwritten by the preset initial value in F, and 
lost. 

Step 5 is to assign to P the desired value, that of V 

   P =: V

Variable P is now a persistent variable, since it is mapped to file F. 
We can amend P, for example by changing the value at row 0 
column 1 to 99. 
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P P =: 99 (<0 1) } P 

1 2
3 4

1 99
3  4

 

or by appending a new row: 

   ] P =: P ,  0 0
1 99
3  4
0  0

Step 6 is needed before we finish the current session. We unmap 
variable P, to ensure file F is closed. 

   unmap_jmf_ 'P'
0

The result of 0 indicates success. The variable P no longer exists: 

P $ P

error $ P
 

To demonstrate that the value of P persists in file F we repeat the 
mapping, processing and unmapping in this or another session. 
The name P we chose for our persistent variable is only for this 
session. In another session, the persistent variable in file F can be 
mapped to any name. 

This time we choose the name Q for the persistent variable. We 
map file F to Q: 
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   map_jmf_ 'Q' ; F
   
   Q
1 99
3  4
0  0

modify Q: 

   ] Q =: Q , 7 8 
1 99
3  4
0  0
7  8

and unmap Q to close file F. 

   unmap_jmf_ 'Q'
0
   

28.4.3 Mapped Files are of Fixed Size

Recall that we created file F large enough for S bytes of data. 

   S
64000
   fdir F
+----------+------------------+-----+---+------+
|persis.jmf|2012 12 16 8 37 22|64284|rw-|-----a|
+----------+------------------+-----+---+------+

The variable in file F is currently much smaller than this, and the 
unused trailing part of the file is filled with junk. However, if we 
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continue to modify Q by appending to it, we reach a limit, by filling 
the file, and encounter an error. To demonstrate, with a verb fill 
for the purpose: 

   fill =: 3 : 0
try.   while. 1 do. Q =: Q , 99 99 end.
catch. 'full'
end.
)
   
   map_jmf_ 'Q'; F 
   fill ''
full
   
   

The amount of data now in Q can be estimated as 4 bytes per 
integer (since Q is integer) multiplied by the number of integers, 
that is, altogether 4 * */$ Q. This result for the final size of Q 
accords with our original size estimate S. 

4 * */ $ Q S

64000 64000

 

   unmap_jmf_ 'Q'
0
   

28.4.4 Given Files

Now we look at mapping ordinary data files (that is, files other 
than the special jmf-format files we considered above). 
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The way the data is laid out in the file we take as given, and our 
task is specify how this layout is to be represented by the type, 
rank and shape of a J variable, that is, to specify a suitable 
mapping. 

For example, suppose we aim to read a given file G with its data 
laid out in fixed-length records, each record being 8 characters. 
Suppose file G was originally created by, say: 

        G =: 'c:\temp\data.xyz'

   'ABCD0001EFGH0002IJKL0003MNOP0004' fwrite G
32

The next step is to decide what kind of a variable will be suitable 
for mapping the data in file G. We decide on an n-by-8 character 
table. The number of rows, n, will be determined by the amount of 
data in the file, so we do not specify n in advance. 

It is convenient to start with a small example of an n-by-8 
character table, which we call a prototype. The choice of n is 
unimportant. 

   prototype =: 1 8 $ 'a'

Now the mapping can be defined by: 

   ] mapping =: ((3!:0) ; (}. @: $)) prototype
+-+-+
|2|8|
+-+-+

We see that mapping is a boxed list. The first item is the data-type. 
Here 2, meaning "character", is produced by 3!:0 prototype. The 
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second item is the trailing dimensions (that is, all but the first) of 
the prototype. Here 8 is all but the first of 1 8, produced by (}.@:
$) prototype. Thus mapping expresses or encodes "n-by-8 
characters". 

Now mapping is supplied as left argument to (dyadic) map_jmf_. 
We map file G onto a variable for which we choose the name W 
thus: 

   mapping map_jmf_ 'W'; G

We see that W is now a variable. Its value is the data in the file. 

W $ W

ABCD0001
EFGH0002
IJKL0003
MNOP0004

4 8

 

We can amend the data in the ususal way: 

   ] W =: 'IJKL9999' 2 } W
ABCD0001
EFGH0002
IJKL9999
MNOP0004

What we cannot do is add another row to the data, because all the 
space in file G is occupied by the data we already have. 
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W W =: W , 'WXYZ0000'

ABCD0001
EFGH0002
IJKL9999
MNOP0004

error

 

We close file G by unmapping variable W: 

   unmap_jmf_ 'W'
0

28.4.5 Mapped Variables Are Special
Mapping files to variables offers the programmer significant 
advantages in functionality and convenience. 

The price to be paid for these advantages is that there are some 
considerations applying to mapped variables which do not apply to 
ordinary variables. The programmer needs to be aware of, and to 
manage, these considerations. This is our topic in this section and 
the next. 

If A is an ordinary variable, not mapped, then in the assignment 
B=: A the value of A is in effect copied to B. A subsequent change 
to A does not affect the value of B. 

A =: 1 B =: A B A =: 2 B

1 1 1 2 1
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By contrast, consider a variable mapped to a file. If the file is very 
large, there may not be enough space for another copy of the 
value. Hence copying is to be avoided. 

Compare the previous example with the case when A is a mapped 
variable. 

   map_jmf_ 'A';F

A =: 1 B =: A B A =: 2 B

1 1 1 2 2

 

We see that B changes with changes to A. In effect B =: A means 
that B is another name for A, not a copy of the value of A. That is, 
both A and B refer to the same thing - the value in the file. 

Hence it is also the case that A changes with changes to B. 

A B =: 7 A

2 7 7

 

Consider now an explicit verb applied to a mapped variable. Here y 
becomes another name for the data in the file. Hence assignment 
to y (even a local assignment) may cause an unintended change 
the mapped variable in the file. For example 

   foo =: 3 : ' 3 * y =. y + 1'
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foo 2 A foo A A

9 7 24 8

 

28.4.6 Unmapping Revisited
The current status of mapped files and variables is maintained by 
the J system in a "mapping table". The mapping table can be 
displayed by entering the expression showmap_jmf_ '' but for 
present purposes here is a utility function to display only selected 
columns. 

   status =: 0 1 9 & {"1  @: showmap_jmf_
   status ''
+-------+------------------+----+
|name   |fn                |refs|
+-------+------------------+----+
|A_base_|c:\temp\persis.jmf|3   |
+-------+------------------+----+
   

We see that currently variable A in locale base is mapped to file F 
(persis.jmf). 

Under "refs", the value 3 means that the data in file F is the target 
of 3 references. One of these is variable A, a second is the variable 
B (which we know to be another name for A) and the third is for 
the system itself. 

Variables A and B are both in existence: 
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A B

8 8

 

For the sake of simplicity, a recommended procedure for closing 
the file is first to erase all variables such as B which are alternative 
names for the originally-mapped variable A 

   erase <'B' 
1

The status shows the number of references is reduced. 

   status ''
+-------+------------------+----+
|name   |fn                |refs|
+-------+------------------+----+
|A_base_|c:\temp\persis.jmf|2   |
+-------+------------------+----+

Now we can unmap A. 

   unmap_jmf_ 'A'
0

The result of 0 means the file is closed and A erased. The status 
table shows no entries, that is, that no files are mapped. 
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   status ''
+----+--+----+
|name|fn|refs|
+----+--+----+
   

Let us recreate the situation in which A is mapped to F and B is 
another name for A, so there are 3 references to (the data in) file 
F. 

   map_jmf_ 'A'; F
   B =: A
   status ''
+-------+------------------+----+
|name   |fn                |refs|
+-------+------------------+----+
|A_base_|c:\temp\persis.jmf|3   |
+-------+------------------+----+

What happens if we erase all the variables referring to F ? 

   erase 'A';'B'
1 1
   status ''
+-------+------------------+----+
|name   |fn                |refs|
+-------+------------------+----+
|A_base_|c:\temp\persis.jmf|1   |
+-------+------------------+----+

We see there is still a single reference, under the name A even 
though there is no variable A. This single reference reflects the fact 
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that file F is not yet unmapped. 

Thus when we said earlier that file F gets mapped to variable A, it 
would be more accurate to say that file F gets mapped to the 
name A, and a variable of that name is created. Even though the 
variable is subsequently erased, the name A still identifies the 
mapped file, and can be used as an argument to unmap. 

   unmap_jmf_ 'A'
0
   status ''
+----+--+----+
|name|fn|refs|
+----+--+----+

For more information, see the "Mapped Files" lab. 

This is the end of Chapter 28 
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Chapter 29: Error Handling

The plan for this chapter is to look at some of the J facilities for 
finding and dealing with programming errors. It is beyond the 
scope of this chapter to consider debugging strategies, but (in my 
view) the use of assertions is much to be recommended. We look 
at: 

• Assertions 
• Continuing after failure 
• Suspended execution 
• Programmed error-handling 

29.1 Assertions

A program can be made self-checking to some degree. Here is an 
example of a verb which computes the price of an area of carpet, 
given a list of three numbers: price per unit area, length and 
width. 

   carpet =: 3 : 0
*/ y
)
   
   carpet 2 3 4
24

Assume for the sake of example that the computation */y is large 
and problematic, and we want some assurance that the result is 
correct. We can at least check that the result is reasonable; we 
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expect the price of a carpet to lie between, say, $10 and $10,000. 

We can redefine carpet, asserting that the result p must be 
between 10 and 10000: 

   carpet =: 3 : 0
p =. */y
assert. p >: 10
assert. p <: 10000
p
)

If an assertion is evaluated as true (or "all true") there is no other 
effect, and the computation proceeds. 

   carpet 2 3 4
24

If an assertion is evaluated as false, the computation is terminated 
and an indication given: 

   carpet 0 3 4
|assertion failure: carpet
|   p>:10

Assertions can only be made inside explicit definitions, because 
assert. is a "control word", that is, an element of syntax, not a 
function. 

It always a matter for judgement as to where an assertion can 
usefully be placed, and what can usefully be asserted. Assertions 
are best kept as simple as possible, since it is highly undesirable to 
make an error in an assertion itself. 

It is often useful to make assertions which check the correctness of 
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arguments of functions. For example, we could assert that, for 
carpet the argument y must be a list of 3 strictly positive 
numbers. 

The order of assertions may be important. For example, we should 
check that we have numbers before checking the values of those 
numbers. The type of a noun is given by 3!:0; here we want 
integers (type=4) or reals (type=8). 

   carpet =: 3 : 0

assert. (3!:0 y) e. 4 8   NB. numeric 
assert. 1 = # $ y         NB. a list (rank = 1)
assert. 3 = # y           NB. of 3  items
assert. *. / y > 0        NB. all positive

p =. */y

assert. p >: 10
assert. p <: 10000

p
)
   
   carpet 2 3 4
24
   
   carpet 'hello'
|assertion failure: carpet
|   (3!:0 y)e.4 8
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29.1.1 Assertions and the Tacit Style

Assertions are good for correctness. The tacit style is good for 
crispness and clarity. 

The two are not readily combined, however. Evidently the natural 
place for an assertion is as a line in an explicit definition. By 
contrast, a tacit definition offers no place for an assertion. 

What would it take to add assertions to a set of purely tacit 
definitions? Just to be able to make assertions about the 
arguments of functions would be a lot better than nothing. Here is 
a possibility. 

Suppose we have an example of a purely tacit definition, 

   sq =: *:

and we wish to assert that any argument to sq must be a number, 
that is, it must satisfy the predicate: 

   is_number =: 4 8 16 128 e. ~ (3 !: 0)

Now our aim is to redefine sq, while making use of the previous 
definition of sq. Convenient for this purpose is a conjunction 
ASSERTING, which is defined below. 

We can write 

   sq =: sq ASSERTING is_number

and we see: 
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   sq
3 : 0
assert. (is_number) y
(*:) y
)
   sq 3
9
   sq 'abc'
|assertion failure: sq
|   (is_number)y

The definition of ASSERTING is: 

   ASSERTING
2 : 0
    U =. 5!:5  < 'u'
    if. (< U) e. nl 3 do. U =. 5!:5 < U end.
    V =. 5!:5  < 'v'
    z =: 'assert. (', V , ') y', LF
    z =. z , '(', U,  ') y'  
    3 : z
)

The ASSERTING conjunction is written in this string-building style 
so that its result can be easily inspected. We can see that the new 
sq combines the predicate is_number with the value (not the 
name!) of the old sq. Finally, note that ASSERTING as here defined 
is good only for monadic verbs. 

29.1.2 Enabling and Disabling Assertions

When we are confident of correctness, we can consider removing 
assertions from a program, particularly if performance is an issue. 
Another possibility is to leave the assertions in place, but to disable 
them. In this case, asserted expressions are not evaluated, and 
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assertions always succeed. There is a built-in function 9!:35 to 
enable or disable assertions. For example: 

   (9!:35) 0      NB. disable assertions
   carpet 0 3 4   NB. an error
0
   
   (9!:35) 1      NB. enable assertions
   carpet 0 3 4   NB. an error
|assertion failure: carpet
|   *./y>0
    

The built-in function 9!:34 tests whether assertions are enabled. 
Currently they are: 

   9!:34 ''   NB. check that assertions are enabled
1

29.2 Continuing after Failure

There are several ways to continue after a failure. 

29.2.1 Nonstop Script

In testing a program, it may be useful to write a script for a series 
of tests. Here is an example of a test-script. 

   (0 : 0) (1!:2) <'test.ijs'   NB. create test-
script

NB. test 1 
carpet 10  0 30       
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NB. test 2
carpet 10 20 30       
)

A test may give the wrong result, or it may fail altogether, that is, 
it may be terminated by the system. We can force the script to 
continue even though a test fails, by executing the script with the 
built-in verb 0!:10 or 0!:11 

   0!:11 <'test.ijs'            NB. execute test-
script 
   
   NB. test 1 
   carpet 10  0 30       
|assertion failure: carpet
|   *./y>0
   
   NB. test 2
   carpet 10 20 30       
6000
   

29.2.2 Try and Catch Control Structure

Here is an example of a verb which translates English words to 
French using word-lists. 

   English =: 'one'; 'two';  'three'
   French  =: 'un';  'deux'; 'trois'
   
   ef =:  3 : '> (English i. < y) { French'

A word not in the list will produce an error. 
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ef 'two' ef 'seven' 

deux error

 

This error can be handled with the try. catch. end. control 
structure. (Chapter 12 introduces control structures) 

   EF =: 3 : 'try. ef y catch. ''don''''t know'' 
end.'
   

EF 'two' EF 'seven' 

deux don't know

 

The scheme is that 

             try. B1 catch. B2 end.

means: execute block B1. If and only if B1 fails, execute block B2. 

29.2.3 Adverse Conjunction

A tacit version of the last example can be written with the 
"Adverse" conjunction :: (colon colon). 

   TEF =: ef :: ('don''t know' " _)
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TEF 'two' TEF 'seven' 

deux don't know

 

Notice that the left and right arguments of :: are both verbs. The 
scheme is: 

           (f :: g) y 

means: evaluate f y. If and only if f y fails, evaluate g y 

29.3 Suspended Execution

Suppose we have, as an example of program to be debugged, a 
verb main which uses a supporting verb plus 

   main  =: 3 : 0
k =. 'hello'
z =. y plus k 
'result is'; z
)
   
   plus =: +

Clearly there is an error in main: the string k is inconsistent with 
the numeric argument expected by plus. 

If we type, for example, main 1 at the keyboard, then when the 
error is detected the program terminates, an error-report is 
displayed and the user is prompted for input from the keyboard. 
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   main 1
|domain error: plus
|   z=.y     plus k

To gather more information about the cause of the error, we can 
arrange that the program can be suspended rather than 
terminated when control returns to the keyboard. To enable 
suspension we use the command (13!:0) 1 before running main 
again. 

   (13!:0) 1

Now when main is re-run, we see a slightly different error message 

   main 1
|domain error: plus
|plus[:0]

At this point execution is suspended. In the suspended state, 
expressions can be typed in and evaluated. Notice that the prompt 
is 6 spaces (rather than the usual 3) to identify the suspended 
state. 

      1+1
2

We can view the current state of the computation, by entering at 
the keyboard this expression, to show (selected columns of) what 
is called the "execution stack". 
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      0 2 6 7 8 { " 1 (13!:13 '')
+----+-+---------+----------+-+
|plus|0|+-+-----+|          |*|
|    | ||1|hello||          | |
|    | |+-+-----+|          | |
+----+-+---------+----------+-+
|main|1|+-+      |+--+-----+| |
|    | ||1|      ||k |hello|| |
|    | |+-+      |+--+-----+| |
|    | |         ||y |1    || |
|    | |         |+--+-----+| |
+----+-+---------+----------+-+

The stack is a table, with a row for each function currently 
executing. We see that plus is the function in which the error was 
detected, and plus is called from main. 

The stack has 9 columns, of which we selected only 5 for display 
(columns 0 2 6 7 8). The columns are: 
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0 
Name of suspended function. Only named functions appear on the 
stack. 

1 (not shown above) error-number or 0 if not in error 

2 Line-number. plus is suspended at line 0 and main is at line 1 

3
(not shown above) Name-class: 1 2 or 3 denoting adverb, conjunction 
or verb 

4 (not shown above) Linear representation of suspended function 

5 (not shown above) name of script from which definitions were loaded 

6
Values of arguments. plus was called with arguments 1 and 
'hello' 

7
Names and values of local variables. plus being a tacit verb has no 
local variables, while main has k and also y, since arguments of 
explicit functions are regarded as local variables. 

8
An asterisk, or a blank. plus is asterisked to show it is the function 
in which suspension was caused. Normally this the top function on 
the stack, (but not necessarily, as we will see below). 

 

While in the suspended state we can inspect any global variables, 
by entering the names in the usual way. In this simple example 
there are none. 
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Finally, we can terminate the suspended execution, and escape 
from the suspended state, by entering the expression: 

   (13!:0) 1

29.4 Programmed Error Handling

By default, when suspension is enabled, and an error is 
encountered, the program suspends and awaits input from the 
keyboard. 

We can arrange that instead of taking input from the keyboard, 
when an error is encountered, our own error-handling routine is 
automatically entered. 

Suppose we decide to handle errors by doing the following: 

• display the error message generated by the system 
• display (selected columns of) the stack 
• cut short the execution of the the suspended function, and 

cause it to return the value 'error' instead of whatever it 
was intended to return. 

• resume executing the program. (This may or may not result 
in a cascade of further errors.) 

Here is a verb to perform this sequence of actions: 
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   handler =: 3 : 0
(1!:2&2) 13!:12 ''             NB. display error message
(1!:2&2) 0 2 6 7 8 {" 1 (13!:13 '') NB. display stack 
13!:6 'error'                  NB. resume returning 'error'
)

The next step is to declare this verb as the error-handler. To do 
this we set an appropriate value for what is called the "latent 
expression". The latent expression is represented by a string 
which, if non-null, is executed automatically whenever the system 
is about to enter the suspended state. The latent expression can 
be queried and set with 13!:14 and 13!:15. What is the current 
value of the latent expression? 

   13!:14 ''

A null string. We set the latent expression to be a string, 
representing an expression meaning "execute the verb handler". 

   13!:15 'handler 0'

Now we make sure suspension is enabled: 

   (13!:0) 1 NB. enable suspension

and try a debugging run on main 
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   main 1 
|domain error: plus
|plus[:0]

+-------+-+---------+---------+-+
|handler|1|+-+      |+-+-+    | |
|       | ||0|      ||y|0|    | |
|       | |+-+      |+-+-+    | |
+-------+-+---------+---------+-+
|plus   |0|+-+-----+|         |*|
|       | ||1|hello||         | |
|       | |+-+-----+|         | |
+-------+-+---------+---------+-+
|main   |1|+-+      |+-+-----+| |
|       | ||1|      ||k|hello|| |
|       | |+-+      |+-+-----+| |
|       | |         ||y|1    || |
|       | |         |+-+-----+| |
+-------+-+---------+---------+-+
+---------+-----+
|result is|error|
+---------+-----+

We see that the topmost stack-frame is for handler, because we 
are in handler when the request to view the stack is issued. The 
suspended function is plus. 

The display result is error demonstrates that plus returned 
the value ('error') supplied by handler. 

This is the end of Chapter 29. 
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Chapter 30: Sparse Arrays

30.1 Introduction

The sparse array facility of J allows a large array to be stored in 
the computer in a moderate amount of memory if many of the 
array's elements are all the same. In this case a value which 
occurs many times need be stored only once. 

For an example, sparse representation might be considered for a 
connection matrix describing a network. In this chapter we will 
look at the J machinery for handling sparse arrays.

Suppose that D is a matrix with most of its elements the same: 
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   ] D =: 2 3 4 (2 2; 3 6; 4 4) } 16 16 $ 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
   

This array can be stored in a compact form, called a "sparse 
array", where only its non-zero elements occupy storage. An 
ordinary array which is not sparse may be called a "dense" array. 

There is a built-in function, $. (dollar dot) to compute a sparse 
array from a dense. 

   S =: $. D

For many purposes dense matrix D and sparse matrix S are 
equivalent: S matches D, and therefore it has the same 
dimensions, and gives the same result on indexing: 
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S -: D ($S) -: ($D) ((< 0 0){ S) -: (<0 0) { D

1 1 1

 

30.2 Sparse Array is Compact

Compared to matrix D, matrix S is economical in storage because 
the value which occurs many times in D is stored only once in S. 
This value is known as the "sparse element" of S, or the "zero" 
element of S. It happens to be 0 in the case of S, but need not be 
0 always. 

We can measure the size of the storage occupied by an array with 
the built-in 7!:5. We see that the size of S (which the sparse form 
of D) is smaller than the size D itself: 

7!:5 <'S' 7!:5 <'D' 

384 2048

 

30.3 Inspecting A Sparse Array

There is a useful function datatype in the standard library. It 
shows the type of its argument. 

datatype D datatype S

integer sparse integer
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Recall that the built verb 3!:0 also gives the type of its argument. 
For a sparse array, the possible types reported by 3!:0 are 

1024 sparse boolean 

2048 sparse character

4096 sparse integer

8192 sparse floating point

16384 sparse complex

32768 sparse boxed
 

If we display S in the usual way , we see, not the familiar 
representation of a matrix, but instead a list of index-value pairs, 
one pair for each (in this example) non-zero element. 

   S 
2 2 | 2
3 6 | 3
4 4 | 4
   

This display does not show that the sparse element of S is in fact 
integer zero. To show this, we can extract the sparse element with 
the verb 3 & $. . 

se =: 3 $. S datatype se

0 integer

 

If we now compute a new matrix from S 



 491 Chapter 30: Sparse Arrays

   T =: S + 5
   

we see that T is sparse, and the sparse element of T is not zero 
but 5 

T 3 $. T

2 2 | 7
3 6 | 8
4 4 | 9

5

 

Another way to view a sparse array is simply to convert it to dense 
with 0 & $. 

   view =: 0 & $.   
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T view T

2 2 | 7
3 6 | 8
4 4 | 9

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 8 5 5 5 5 5 5 5 5 5
5 5 5 5 9 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
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30.4 Computing with Sparse Arrays

Computations with sparse arrays are pretty much the same as with 
dense arrays, except that they tend to produce sparse arrays as 
results. We saw this with S+5 above. Here is another example. 
Summing over T produces a vector of column-sums which is 
sparse 

   ] V =: +/ T
2 | 82
4 | 84
6 | 83
   

but the "zero" element of V is the sum of a column of "zero" 
elements of T 

   3 $. V 
80
    

At the time of writing, there are still some limitations on what can 
be done with sparse arrays compared with dense arrays. See the 
Dictionary under $. for more information. 

30.5 Constructing A Sparse Array

At this point it will be helpful to define a few terms. First note that, 
according to context, the numerals 0 or 1 or 0.0 or 1.0 could be 
valid as boolean or integer or real. However in the absence of any 
context the J system takes them all to be in fact boolean. 



Chapter 30: Sparse Arrays  494

datatype 0 datatype 1 datatype 0.0 datatype 1.0

boolean boolean boolean boolean

 

It will be useful to define some values of unambiguous type. 

INTEGERZERO =: 3 - 3 datatype INTEGERZERO

0 integer

 

INTEGERONE =: 3 - 2 datatype INTEGERONE

1 integer

 

REALZERO =: 0.0*0.1 datatype REALZERO

0 floating

 

REALONE =: ^ 0 datatype REALONE

1 floating

 

Returning now to sparse arrays, the recommended method of 
constructing them is to begin by making an empty array of the 
required shape and type, but with no actual data. 

An empty array is built by evaluating the expression 

        1 $. shape;axes;zero
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where 

• shape specifies the dimensions 
• axes specifies which of those dimensions will be sparse, as a 

list of axis-numbers. For example, with 2 dimensions both 
sparse the list would be 0 1 

So far, in the examples of sparse arrays, all axes have been 
sparse but we will see below mixed sparse and dense axes. 

• zero specifies the value of the "zero" element, and hence 
the type of the array as a whole. An unambiguous value is 
evidently needed. 

If zero is omitted the default is REALZERO. If both axes and zero 
are omitted, the default is all axes sparse and REALZERO. 

So to build a 6 by 6 matrix, sparse in all dimensions (that is, on 
axis 0 and axis 1), of type integer with "zero" element of 0 we can 
write: 

   U =: 1 $. 6 6 ; 0 1; INTEGERZERO 

At this point, U is empty, that is, all "zero", so displays as nothing: 

   U

Populate it by inserting a few non-zero elements into it 

   U =: 4 5 6 7 ( 0 0 ; 1 1; 2 2; 3 3) } U
   

and check that U is what we expect by viewing it: 

   view U
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4 0 0 0 0 0
0 5 0 0 0 0
0 0 6 0 0 0
0 0 0 7 0 0
0 0 0 0 0 0
0 0 0 0 0 0
   

30.6 Sparse and Dense Axes

An array may be sparse on some axes and dense on others. In the 
following example W is sparse on its first axis and dense on its 
second, because its list of sparse axes is just 0 

   saw   =: ,0   NB. sparse axes for W
   
   W =: 1 $. 3 5; saw ; INTEGERZERO  
   
   W =: 4 5 6 (0 1; 0 2; 1 3) } W
   

It looks as expected: 

   view W
0 4 5 0 0
0 0 0 6 0
0 0 0 0 0
   

but we see that it is stored as two dense rows only: 

   W
0 | 0 4 5 0 0
1 | 0 0 0 6 0
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Compare with an array sparse on second axis axis only, because 
its list of sparse axes is 1 

   saz=: ,1   NB. sparse axes for Z
   Z =: 1 $. 3 5; saz; INTEGERZERO   
   Z =: 4 5 6 (0 1; 0 2; 1 3) } Z

Z looks just like W 

   view Z
0 4 5 0 0
0 0 0 6 0
0 0 0 0 0
   

but we see it is stored as three dense colums. 

   Z
1 | 4 0 0
2 | 5 0 0
3 | 0 6 0
   
   
   



Chapter 30: Sparse Arrays  498

30.7 Deconstructing a Sparse Array

As we noted above, if we display U itself, we see, not the familiar 
representation of a matrix, but instead a list of index-value pairs, 
one pair for each non-zero element. 

   U
0 0 | 4
1 1 | 5
2 2 | 6
3 3 | 7

We can extract the index from each pair to get what is called the 
index-matrix of U. This is an ordinary dense array 

   4 $. U
0 0
1 1
2 2
3 3

To extract the value from each pair 

    5 $. U
4 5 6 7

As we noted above, 0 & $. will produce a dense array from a 
sparse: 

   0 $. U
4 0 0 0 0 0
0 5 0 0 0 0
0 0 6 0 0 0
0 0 0 7 0 0
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0 0 0 0 0 0
0 0 0 0 0 0
   
   
   

30.8 Sparse Array From Relation

Next we look at representing data as a sparse array as an 
alternative to representing data as a relation (that is, a table). 

The point is that the sparse array may be more convenient than 
the relation for some computations with the data. Thus we are 
interested in converting between sparse arrays and relations. 

For example, suppose that a given relation R represents sales of 
various commodities in various cities 

   'Pa Qu Ro Sy' =: s: ' Paris Quebec Rome Sydney'
   'Ap Ba Ch Da' =: s: ' Apples Bananas Cherries 
Damsons'
   
   
   R =: (". ;. _2) 0 : 0
Ap ; Pa; 99
Ap ; Qu ; 50
Ba ; Qu ; 10
Ch ; Ro ; 19
Da ; Sy ; 110
Da ; Pa ; 88
)
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   R
+---------+-------+---+
|`Apples  |`Paris |99 |
+---------+-------+---+
|`Apples  |`Quebec|50 |
+---------+-------+---+
|`Bananas |`Quebec|10 |
+---------+-------+---+
|`Cherries|`Rome  |19 |
+---------+-------+---+
|`Damsons |`Sydney|110|
+---------+-------+---+
|`Damsons |`Paris |88 |
+---------+-------+---+

We can convert the relation R to a sparse array as follows. 

Firstly, we need to establish the domain -the set of all possible 
values - of the first column. It can be computed from R : 

   ] Fru =:  > ~. 0 { |: R
`Apples `Bananas `Cherries `Damsons

Similarly for the domain of the second column: 

   ] Cit =: > ~. 1 { |: R
`Paris `Quebec `Rome `Sydney

Now the first column converted to indices into its domain: 

   ] r =: Fru i. > 0 { |: R
0 0 1 2 3 3
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Similarly for the second column: 

   ] c =: Cit i. > 1 { |: R
0 1 1 2 3 0
   

and the values from the third 

   ] v =: > 2 { |: R 
99 50 10 19 110 88
   

Now we build an empty sparse array of dimensions #Fru by #Cit . 
By default the sparse axes will be 0 and 1 and the "zero" element 
will be REALZERO . The function 1&$. produces the empty array. 

   A =: (1 & $.) (#Fru) , (#Cit)

Insert the values by amending in the ordinary way: 

   A =: v (<"1 r,.c) } A
   

and check we have what we expect: 

   view A
99 50  0   0
 0 10  0   0
 0  0 19   0
88  0  0 110
   

To display A with labelling of rows and columns, the list of row-
labels is Fru computed above, and the list of column-labels is Cit : 
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   (a:, <"0 Cit), (<"0 Fru) ,. (<"0 view A)      
+---------+------+-------+-----+-------+
|         |`Paris|`Quebec|`Rome|`Sydney|
+---------+------+-------+-----+-------+
|`Apples  |99    |50     |0    |0      |
+---------+------+-------+-----+-------+
|`Bananas |0     |10     |0    |0      |
+---------+------+-------+-----+-------+
|`Cherries|0     |0      |19   |0      |
+---------+------+-------+-----+-------+
|`Damsons |88    |0      |0    |110    |
+---------+------+-------+-----+-------+
   

Now we have finished producing the sparse array from the original 
relation, so we can can compute with our data as an array. 

For example, total value of sales for each city is given by: 

   +/ A 
0 | 187
1 |  60
2 |  19
3 | 110
   

This is sparse, so taking the usual view : 

   view +/ A
187 60 19 110
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30.9 Relation from Sparse Array

To complete the circle, we look next at how to produce a relation 
from a sparse array, A for example. 

   A
0 0 |  99
0 1 |  50
1 1 |  10
2 2 |  19
3 0 |  88
3 3 | 110

The first step is to get the index-matrix for the non-zero elements. 

   ] INDS =: 4 $. A   
0 0
0 1
1 1
2 2
3 0
3 3

and next the values. 

   ] VALS =: 5 $. A  
99 50 10 19 88 110

The first column of the relation we produce by indexing the domain 
Fru which we computed above. The second column is produced 
similarly from Cit. 
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   ] c0 =: (0 { |: INDS) { Fru
`Apples `Apples `Bananas `Cherries `Damsons `Damsons
   ] c1 =: (1 { |: INDS) { Cit
`Paris `Quebec `Quebec `Rome `Paris `Sydney
   

So finally we see that the relation recovered from the sparse array 
is 

   (<"0 c0) ,. (<"0 c1) ,. (<"0 VALS)
+---------+-------+---+
|`Apples  |`Paris |99 |
+---------+-------+---+
|`Apples  |`Quebec|50 |
+---------+-------+---+
|`Bananas |`Quebec|10 |
+---------+-------+---+
|`Cherries|`Rome  |19 |
+---------+-------+---+
|`Damsons |`Paris |88 |
+---------+-------+---+
|`Damsons |`Sydney|110|
+---------+-------+---+

This is the end of Chapter 30.
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Chapter 31: Performance

This chapter is concerned with performance, that is, the time taken 
to perform a computation, and how to improve it. 

There is one golden rule for achieving good performance in a J 
program. The rule is to try to apply verbs to as much data as 
possible at any one time. In other words, try to give to a verb 
arguments which are not scalars but vectors or, in general, arrays, 
so as to take maximum advantage of the fact that the built-in 
functions can take array arguments. 

The rest of this chapter consists mostly of harping on this single 
point. 

31.1 Measuring the Time Taken

There is a built-in verb 6!:2 . It takes as argument an expression 
(as a string) and returns the time (in seconds) to execute the 
expression. For example, given : 

   mat =: ? 20 20 $ 100x  NB. a random matrix

The time in seconds to invert the matrix is given by: 

   6!:2 '%. mat'
1.92381

If we time the same expression again, we see: 
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   6!:2 '%. mat'
1.85601

Evidently there is some uncertainty in this measurement. 
Averaging over several measurements is offered by the dyadic 
case of 6!:2 . However, for present purposes we will use monadic 
6!:2 to give a rough and ready but adequate measurement. 

31.2 The Performance Monitor

As well as 6!:2, there is another useful instrument for measuring 
execution times, called the Performance Monitor. It shows how 
much time is spent in each line of, say, an explicit verb. 

Here is an example with a main program and an auxiliary function. 
We are not interested in what it does, only in how it spends its 
time doing it.. 

   main =: 3 : 0
    m =. ? 10 10 $ 100x   NB. random matrix
    u =. =/ ~ i. 10       NB. unit matrix
    t =. matinv m         NB. inverted 
    p =. m +/ . * t
    'OK'
)
    
   matinv =: 3 : 0
  assert. 2 = # $ y        NB. check y is square 
  assert. =/ $ y  
  %. y
)  

We start the monitor: 
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   load 'jpm'
   start_jpm_ ''
357142

and then enter the expression to be analyzed 

   main 0                    NB.  expression to be 
analyzed 
OK

To view the reports available: firstly , the main function: 

   showdetail_jpm_ 'main'     NB. display 
measurements
 Time (seconds)
+--------+--------+---+-----------------+
|all     |here    |rep|main             |
+--------+--------+---+-----------------+
|0.000007|0.000007|1  |monad            |
|0.000136|0.000136|1  |[0] m=.?10 10$100|
|0.000019|0.000019|1  |[1] u=.=/~i.10   |
|0.102103|0.000011|1  |[2] t=.matinv m  |
|0.124305|0.124305|1  |[3] p=.m+/ .*t   |
|0.000024|0.000024|1  |[4] 'OK'         |
|0.226594|0.124502|1  |total monad      |
+--------+--------+---+-----------------+
   

and we may wish to look at the auxiliary function: 
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   showdetail_jpm_ 'matinv'
 Time (seconds)
+--------+--------+---+-----------------+
|all     |here    |rep|matinv           |
+--------+--------+---+-----------------+
|0.000006|0.000006|1  |monad            |
|0.000008|0.000008|1  |[0] assert. 2=#$y|
|0.020002|0.020002|1  |[1] assert. =/$y |
|0.082076|0.082076|1  |[2] %.y          |
|0.102092|0.102092|1  |total monad      |
+--------+--------+---+-----------------+

Evidently, main spends most of its time executing lines 2 and 3 . 
Notice that the time under "all" of line 2 is near enough equal to 
the time for line 2 "here", (that is, in main ) plus the time for 
"total" of matinv 

31.3 The Golden Rule: Example 1

Here is an example of a function which is clearly intended to take a 
scalar argument. 

   collatz =: 3 : 'if. odd y do. 1 + 3 * y else. halve y end.'
       odd =: 2 & | 
       halve  =: -:

With a vector agument it gives the wrong results 

   collatz 2 3 4 5 6 7 8 9
1 1.5 2 2.5 3 3.5 4 4.5

So we need to specify the rank to force the argument to be scalar 
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   (collatz "0) 2 3 4 5 6 7 8 9
1 10 2 16 3 22 4 28

This is an opportunity for the Golden Rule, so here is a version 
designed for a vector argument: 

   veco =: 3 : '(c*1+3*y) + (halve y) * (1-c =. odd 
y)'

The results are the same: 

   data =: 1 + i. 10000
   
   (collatz"0 data) -: (veco data)
1
   

but the vector version is about a hundred times faster: 

   t1 =: 6!:2 e1 =: 'collatz"0 data '
   t2 =: 6!:2 e2 =: 'veco data '
   2 2 $ e1 ; t1; e2;t2
+---------------+-----------+
|collatz"0 data |0.0667271  |
+---------------+-----------+
|veco data      |0.000561943|
+---------------+-----------+
   

31.4 Golden Rule Example 2: Conway's "Life" 

J. H. Conway's celebrated "Game of Life" needs no introduction. 
There is a version in J at Rosetta Code, reproduced here: 



Chapter 31: Performance  510

   pad=: 0,0,~0,.0,.~]
   life=: (_3 _3 (+/ e. 3+0,4&{)@,;._3 ])@pad

To provide a starting pattern, here is a function rp which generates 
an r-pentomino in a y-by-y boolean matrix. 

   rp =: 3 : '4 4 |.  1 (0 1; 0 2; 1 0; 1 1; 2 1) } 
(y,y) $ 0'
   
   ] M =: rp 8
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
   
   life  M
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0

We notice that the life verb contains ;._3 - it computes the 
count of neighbours of each cell separately, by working on the 3-
by-3 neighbourhood of that cell. 

By contrast here is a version which computes all the neighbours-
counts at once, by shifting the whole plane to align each cell with 
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its neighbours. 

   sh   =: |. !. 0
   E    =: 0 _1 & sh
   W    =: 0 1  & sh
   N    =: 1    & sh
   S    =: _1   & sh
   NS   =: N + S
   EW   =: E + W
   NeCo =: NS + (+ NS) @: EW                NB. 
neighbour-count
   evol =: ((3 = ]) +. ([ *. 2 = ])) NeCo

The last line expresses the condition that (neighbour-count is 3) or 
("alive" and count is 2). The shifting method evol, and the Rosetta 
method life give the same result 

   (life M) -: (evol M)
1
   

However, the shifting method is faster: 

   G =: rp 200   NB. a 200-by-200 grid 
   
   t3 =: 6!:2 e3 =: 'r3 =: life ^: 100 G '  
                    NB. 100 iterations of Rosetta method

   t4 =: 6!:2 e4 =: 'r4 =: evol ^: 100 G' 
                          NB. and of shifting method  
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   2 2 $ e3;t3;e4;t4
+--------------------+---------+
|r3 =: life ^: 100 G |14.6997  |
+--------------------+---------+
|r4 =: evol ^: 100 G |0.0959352|
+--------------------+---------+
    

Checking for correctness again: 

   r3 -: r4  
1

31.5 Golden Rule Example 3: Join of Relations

31.5.1 Preliminaries

Recall from Chapter 18 the author-title and title-subject relations. 
We will need test-data in the form of these relations in various 
sizes. It is useful to define a verb to generate test-data from 
random integers. (Integers are adequate as substitutes for 
symbols for present purposes.) The argument y is the number of 
different titles required. 
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   maketestdata =: 3 : 0 
    T  =. i. y                               NB. titles domain
    A  =. i. <. 4 * y % 5                    NB. authors domain
    S  =. i. <. y % 2                        NB. subjects domain
    AT =. (? (#T) $ # A) ,. (? (#T) $ #T)    NB. AT relation
    TS =. (? (#T) $ # T) ,. (? (#T) $ #S)    NB. TS relation
    AT;TS
)
   
   
   'AT1 TS1' =: maketestdata 8        NB. small   test-data
   'AT2 TS2' =: maketestdata 1000     NB. medium
   'AT3 TS3' =: maketestdata 10000    NB. large

31.5.2 First Method

Recall also from Chapter 18 a verb for the join of relations, which 
we will take as a starting-point for further comparisons. We can 
call this the "first method". 

   VPAIR =: 2 : 0
    :
    z =.  0 0 $ ''
    for_at. x do. z=.z , |: v (#~"1  u) |: at , "1 y end.
    ~. z
)
   
   first  =: (1&{ =  2&{) VPAIR (0 3 & {) 
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AT1 TS1 AT1 first TS1

3 4
1 6
0 1
5 5
2 1
2 1
5 4
2 7

4 2
5 0
5 0
2 3
2 2
5 1
6 2
2 1

3 2
1 2
5 0
5 1
5 2

 

31.5.3 Second Method: Boolean Matrix
Here is another method. It computes a boolean matrix of equality 
on the titles. Row i column j is true where the title in i{AT equals 
the title in j{TS . The authors and titles are recovered by by 
converting the boolean matrix to sparse representation, then 
taking its index-matrix. 

   second =: 4 : 0
    'a t'  =. |: x
    'tt s' =. |:  y
    bm     =. t =/ tt        NB. boolean matrix of matches   
    sm     =. $. bm          NB. convert to sparse 
    im     =: 4 $. sm        NB. index-matrix
    'i j'  =. |: im             
    (i { a),. (j { s)
)

Now to check the second method for correctness, that is, giving the 
same results as the first. We don't care about ordering, and we 
don't care about repetitions, so let us say that two relations are 
the same iff their sorted nubs match. 
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   same =: 4 : '(~. x /: x) -: (~. y /: y)      '
   
   (AT2 second TS2)  same (AT2 first TS2)
1
   

Now for some times 

   t1 =: 6!:2 'AT2 first TS2'
   t2 =: 6!:2 'AT2 second AT2'
   t3 =: 6!:2 'AT3 first TS3'
   t4 =: 6!:2 'AT3 second TS3'
   
   3 3 $ ' '; (#AT2) ; (#AT3) ; 'first' ; t1; t3 ; 'second' ; t2; t4
+------+----------+--------+
|      |1000      |10000   |
+------+----------+--------+
|first |0.0707548 |5.9401  |
+------+----------+--------+
|second|0.00396342|0.397783|
+------+----------+--------+
   

We see that the advantage of the second method is reduced at the 
larger size, and we can guess this is because the time to compute 
the boolean matrix is quadratic in the size. We can use the 
performance monitor to see where the time goes. 

   require 'jpm'
   start_jpm_ ''
357142
   z =: AT3 second TS3
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   showdetail_jpm_ 'second'     NB. display 
measurements
 Time (seconds)
+--------+--------+---+----------------+
|all     |here    |rep|second          |
+--------+--------+---+----------------+
|0.000007|0.000007|1  |dyad            |
|0.000209|0.000209|1  |[0] 'a t'=.|:x  |
|0.000182|0.000182|1  |[1] 'tt s'=.|:y |
|0.242920|0.242920|1  |[2] bm=.t=/tt   |
|0.139628|0.139628|1  |[3] sm=.$.bm    |
|0.000013|0.000013|1  |[4] im=:4$.sm   |
|0.000194|0.000194|1  |[5] 'i j'=.|:im |
|0.008760|0.008760|1  |[6] (i{a),.(j{s)|
|0.391913|0.391913|1  |total dyad      |
+--------+--------+---+----------------+
   

Evidently much of the time went into computing the boolean 
matrix at line 2. Can we do better than this? 

31.5.4 Third method: boolean matrix with recursive 
splitting
Here is an attempt to avoid the quadratic time. If the argument is 
smaller than a certain size, we use the second method above 
(which is quadratic, but not so bad for smaller arguments). 

If the argument is larger than a certain size, we split it into two 
smaller parts, so that there are no titles shared between the two. 
Then the method is applied recursively to the parts. 

By experimenting, the "certain size" appears to be about 256 on 
my computer. 
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   third =: 4 : 0
    if. 0 = # x do. return.  0 2 $ 3 end.
    if. 0 = # y do. return.  0 2 $ 3 end.
    'a t'  =. |: x
    'tt s' =. |: y
    if. 256 > # x do.
        bm     =. t =/ tt       NB. boolean matrix of matches  
        sm     =. $. bm
        im     =. 4 $. sm       NB. index-matrix
        'i j'  =. |: im             
       (i { a),. (j { s)
    else.
        p  =:  <. -: (>./t) + (<./t)  NB. choose "pivot" title 
        pv =: t <: p
        x1 =. pv # x
        x2 =. (-. pv) # x
        assert. (#x1) < (#x)
        assert.  (#x2) < (#x)
        qv =. tt <: p
        y1 =. qv # y
        y2 =. (-. qv) # y
        assert. (#y1) < (#y)
        assert. (#y2) < (#y)
        (x1 third y1) , (x2 third y2)
    end.
)
                

Check correctness : 

   (AT2 third TS2) same (AT2 second TS2)
1
   

And timings. Experiment on my computer shows the second 
method will run out of space where the third method will succeed. 

   'AT4 TS4' =: maketestdata  30000
   'AT5 TS5' =: maketestdata 100000
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   t4a =: 6!:2 'AT4 second TS4'
   t5  =: 6!:2 'AT2 third TS2'
   t6  =: 6!:2 'AT3 third TS3'
   t7  =: 6!:2 'AT4 third TS4'
   t8  =: 6!:2 'AT5 third TS5'

   a =:  ' ';     (#AT2); (#AT3) ; (#AT4); (#AT5)
   b =:  'second'; t2;    t4;       t4a;  'limit error'
   c =:  'third' ; t5;    t6;       t7  ;  t8
   
   3 5 $a,b,c
+------+----------+---------+--------+-----------+
|      |1000      |10000    |30000   |100000     |
+------+----------+---------+--------+-----------+
|second|0.00396342|0.397783 |3.59719 |limit error|
+------+----------+---------+--------+-----------+
|third |0.00178682|0.0204814|0.064824|0.251812   |
+------+----------+---------+--------+-----------+
   

In conclusion, the third method is clearly superior but considerably 
more complex. 

31.6 Golden Rule Example 4: Mandelbrot Set

The Mandelbrot Set is a fractal image needing much computation 
to produce. In writing the following, I have found to be helpful 
both the Wikipedia article and the Rosetta Code treatment for the 
Mandelbrot Set in J: 

Computation of the image requires, for every pixel in the image, 
iteration of a single scalar function until a condition is satisfied. 
Different pixels will require different numbers of iterations. The 
final result is the array of counts of iterations for each pixel. Hence 

http://rosettacode.org/wiki/Mandelbrot_set#J
http://en.wikipedia.org/wiki/Mandelbrot_set
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it may appear that the Mandelbrot Set is an inescapably scalar 
computation. It is not, as the following is meant to show. The 
Golden Rule applies. 

31.6.1 Scalar Versions
The construction of an image begins with choosing a grid of points 
on the complex plane, one for each pixel in the image. Here is a 
verb for conveniently constructing the grid. 

   makegrid =: 3 : 0
    'LL UR delta' =. y
    'xmin ymin' =. +. LL
    'xmax ymax' =. +. UR
    xn =. <. (xmax-xmin) % delta
    yn =. <. (ymax-ymin) % delta
    (|.(ymin + delta * i. yn))  (j. ~/) (xmin + delta * i. xn)
)
   

The arguments are the complex numbers for lower-left and upper-
right corners of the image, and a value for the spacing of the 
points. To demonstrate with a tiny grid 

   makegrid _2j3 4j5 1.0
_2j4 _1j4 0j4 1j4 2j4 3j4
_2j3 _1j3 0j3 1j3 2j3 3j3
    

For an image, a list of arguments more suitable for present 
purposes is shown by : 

   GRID =:  makegrid _2.5j_1 1j1 0.005
   

The image is computed by applying a Mandelbrot function to each 
pixel in the grid. Here is a suitable Mandelbrot function. It follows 
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the design outlined in the Wikipedia article, 

   mfn1 =: 3 : 0  
    NB.        y is one pixel-position
    v =. 0j0
    n =. 0
    while. (2 > | v) *. (n < MAXITER) do.
        v  =. y + *: v
        n =. n+1
    end.
    n
)
   

We need to choose a value for MAXITER, the maximum number of 
iterations. The higher the maximum, the more complex the 
resulting image. For present purposes let us choose a maximum of 
64 iterations, which will give a recognisable image. 

   MAXITER =: 64   NB. maximum number of iterations
   
   image1 =: mfn1 " 0 GRID

The result image1 is a matrix of integers, which can be mapped to 
colors and then displayed on-screen with: 

   require '~addons/graphics/viewmat/viewmat.ijs'
   viewmat image1
0

to produce an image appear looking something like this: 
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The time to compute the image: 

   e1;t1 =: 6!:2 e1 =: 'image1 =: mfn1 " 0 GRID NB. Wikipedia scalar'

+--------------------------------------------+-------+
|image1 =: mfn1 " 0 GRID NB. Wikipedia scalar|41.4486|
+--------------------------------------------+-------+
   

The mfn1 function above was designed to show the algorithm for 
the scalar one-pixel-at-at-a-time method. Regarding its 
performance, here is some evidence that its performance is 
reasonable, that is, comparable to the published Rosetta Code 
version. 

The verb mfn2 is adapted from the verb mcf of the Rosetta Code 
treatment. It differs only by replacing a numerical constant by the 
parameter MAXITER. 

   mfn2 =: (<: 2:)@|@(] ((*:@] + [)^:((<: 2:)@|@])^: MAXITER ) 0:) 
   

We see that times for mfn1 and mfn2 are not very different: 
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   t2 =: 6!:2 e2 =: 'image2 =: mfn2 "0 GRID NB. Rosetta '
   2 2 $ e1; t1; e2; t2
+--------------------------------------------+-------+
|image1 =: mfn1 " 0 GRID NB. Wikipedia scalar|41.4486|
+--------------------------------------------+-------+
|image2 =: mfn2 "0 GRID NB. Rosetta          |35.3052|
+--------------------------------------------+-------+
   

and the image from the Rosetta code is recognisably similar to that 
from the Wikipedia design, 

   viewmat image2 
0
   

 

31.6.2 Planar Version
Now we look at a version which computes all pixels at once. Here 
is a first attempt. It is is a straightforward developement of mfn1 
but here all the computations for every pixel are allowed to run for 
the maximumum number of iterations. 
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   mfn3  =: 3 : 0           NB. y is entire grid
    N =. ($ y) $ 0
    v =. 0j0
    for_k. i. MAXITER-1 do.
        v =. y + *: v
        N =. N + (2 > | v) 
    end.
    1 + N
)
   
   
   

For small values of MAXITER, this is OK. A quick demonstration, 
firstly of correctness: it produces the same result as mfn1. 

   MAXITER =: 12
   
   (mfn1 " 0 GRID) -: (mfn3 " 2 GRID)
1
   

And it's faster: 
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   t1a =: 6!:2 e1a =: 'mfn1 " 0 GRID  NB. Wikip. with MAXITER=12' 
   t3a =: 6!:2 e3a =: 'mfn3 " 2 GRID  NB. Planar with MAXITER=12'

   2 2 $  e1a ; t1a; e3a; t3a
+-----------------------------------------+--------+
|mfn1 " 0 GRID  NB. Wikip. with MAXITER=12|15.2705 |
+-----------------------------------------+--------+
|mfn3 " 2 GRID  NB. Planar with MAXITER=12|0.676646|
+-----------------------------------------+--------+
   

Unfortunately there is a problem with any larger values of 
MAXITER. The repeated squaring of the complex numbers in v will 
ultimately produce, not infinity, but a "NaN Error", caused by 
subtracting infinities. Observe: 

   (*: ^: 10) 1j3  NB. this is OK
__j__
   
   (*: ^: 30) 1j3  NB. but this is not
|NaN error
|       (*:^:30)1j3
|[-587] c:\users\homer\13\js\31.ijs
    
   
   MAXITER =: 64
   

Here is an attempt to avoid the NaN errors. One cycle in every 10, 
those values in v which have "escaped", (that is, no longer 
contribute to the final result N) are reset to small values to prevent 
them increasing without limit. 
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   mfn4 =: 3 : 0
    N =. ($ y) $ 0
    v =. 0j0
    for_k.  i. MAXITER - 1  do.  
        if. 0 = 10 | k do. 
            e =. 2 < | v                     
            v =. (v * 1-e) + (1.5j1.5 * e )
        end.
    v =. y + *: v
    N =. N + 2 > | v
    end.
    N+1
)
   

In spite of the burden of resetting, the timing looks about 8 times 
faster than the scalar method: 

   t4 =: 6!:2 e4 =: 'image4 =: mfn4 " 2 GRID NB. Planar, resetting'

   2 2 $  e1; t1 ;  e4;t4
+---------------------------------------------+-------+
|image1 =: mfn1 " 0 GRID NB. Wikipedia scalar |41.4486|
+---------------------------------------------+-------+
|image4 =: mfn4 " 2 GRID NB. Planar, resetting|5.20131|
+---------------------------------------------+-------+
   

and we check the result is correct: 

   image4 -: image1
1
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Some further improvement is possible. The idea is to avoid 
computing the magnitudes of complex numbers because this 
involves computing square roots. Instead of requiring the 
magnitude to be less than 2, we will require the square of the 
magnitude to be less than 4. To do this complex numbers will be 
represented as a pair of reals. The resetting business is simplified. 

   mfn5 =: 3 : 0
    'r0 i0' =. ((2 0 1 & |:) @: +. ) y    NB. Real , imag planes of y
    assert. y -: r0 j. i0
    N =. 0
    a =. r0
    b =. i0
    for_i. i. MAXITER-1 do.
        p =. *: a
        q =. *: b
        r =. p+q                 NB. square of magnitudes
        N =. N + r < 4           
        b =. (i0 + +: a*b)   <. 100
        a =. (r0 + p - q)    <. 100      
    end.
    N+1
)

Timing is improved: 

   t5 =: 6!:2 e5 =: 'image5 =: mfn5 " 2 GRID NB. no square 
roots'       
   3 2 $  e1;t1; e4;t4; e5;t5
+---------------------------------------------+-------+
|image1 =: mfn1 " 0 GRID NB. Wikipedia scalar |41.4486|
+---------------------------------------------+-------+
|image4 =: mfn4 " 2 GRID NB. Planar, resetting|5.20131|
+---------------------------------------------+-------+
|image5 =: mfn5 " 2 GRID NB. no square roots  |3.18585|
+---------------------------------------------+-------+
   

and the result is correct 
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   image5 -: image1
1
       
   

31.7 The Special Code of Appendix B of the Dictionary

In Appendix B of the J Dictionary there are listed about 80 
different expressions which are given special treatment by the 
interpreter to improve performance. Many more expressions are 
listed in the Release Notes 

An example is +/ . Notice that the speedup only occurs when +/ 
itself (as opposed to something equivalent) is recognised. 

   data =: ? 1e6 $ 1e6  NB. a million random 
integers
   
   plus =: +
   
   
   t20 =: 6!:2 e20 =: 'plus / data'
   t21 =: 6!:2 e21 =: '+/ data'
   
   2 2 $ e20 ; t20; e21; t21
+-----------+----------+
|plus / data|0.424388  |
+-----------+----------+
|+/ data    |0.00184018|
+-----------+----------+
   

The special expressions can be unmasked with the f. adverb 
which translates all defined names into the built-in functions. 

http://www.jsoftware.com/help/release/contents.htm
http://www.jsoftware.com/help/dictionary/special.htm
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   foo =: plus /
   
   t22 =: 6!:2 e22 =: 'foo data'
   t23 =: 6!:2 e23 =: 'foo f. data' 
   
   2 2 $ e22 ; t22; e23; t23
+-----------+----------+
|foo data   |0.430226  |
+-----------+----------+
|foo f. data|0.00188495|
+-----------+----------+

The recommendation here is NOT that the programmer should look 
for opportunities to use these special cases. The recommendation 
is ONLY to allow the interpreter to find them, by giving, where 
appropriate, a final little polish to tacit definitions with f. . 

This brings us to the end of Chapter 31 
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Chapter 32: Trees

32.1 Introduction

Data structures consisting of boxes within boxes may be called 
trees. J provides several special functions in support of 
computations with trees. 

Here is an example of a tree: 

   ] T =:  'the cat' ; 'sat' ; < 'on' ; < ('the';'mat')
+-------+---+--------------+
|the cat|sat|+--+---------+|
|       |   ||on|+---+---+||
|       |   ||  ||the|mat|||
|       |   ||  |+---+---+||
|       |   |+--+---------+|
+-------+---+--------------+

Those boxes with no inner boxes will be called leaves. We see that 
T has 7 boxes of which 5 are leaves. 

32.2 Fetching 

Evidently, the content of any box can be fetched from tree T by a 
combination of indexing and unboxing. 
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   ] a =: > 2 { T
+--+---------+
|on|+---+---+|
|  ||the|mat||
|  |+---+---+|
+--+---------+
   
   ] b =: > 1 { a
+---+---+
|the|mat|
+---+---+
   
   ] c =: > 1 { b
mat

but there is a built-in verb, "Fetch" (dyadic {::) , for this purpose. 
Its left argument is a sequence of indexes (called a path): 

   (2;1;1) {:: T
mat

Further examples: 

   2 {:: T
+--+---------+
|on|+---+---+|
|  ||the|mat||
|  |+---+---+|
+--+---------+
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   (2 ;1) {:: T
+---+---+
|the|mat|
+---+---+
   

32.3 The Domain of Fetch

The right argument of {:: must be a vector, or higher rank, and 
not a scalar, or else an error results. (Recall that a single box is a 
scalar). 

0 {:: , <'hello' 0 {:: < 'hello' 

hello error

 

Let us say that a full-length path is a path which fetches the data 
content from a leaf. 

Along a full-length path, every index must select a scalar, a box, or 
else an error results. In other words, we must have a single path. 

T (2; 1 ; 0 1) {:: T

+-------+---+--------------+
|the cat|sat|+--+---------+|
|       |   ||on|+---+---+||
|       |   ||  ||the|mat|||
|       |   ||  |+---+---+||
|       |   |+--+---------+|
+-------+---+--------------+

error
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The data fetched from a leaf is the result of opening the last box 
selected along the path. This data can, as we saw above, be an 
array, a list say. 

   (2;1;1) {:: T
mat
   

If this data is an indexable array, then a further index can be 
appended to a full-length path, giving an over-length path, to fetch 
a further single scalar. The next example shows fetching 'm' from 
'mat'. 

   (2;1;1;0) {:: T
m
   
   

32.4 The "Map" Verb 

Monadic {:: is called "Map". It shows all the paths to the leaves. 

   {:: T
+---+---+-------------------------+
|+-+|+-+|+-----+-----------------+|
||0|||1|||+-+-+|+-------+-------+||
|+-+|+-+|||2|0|||+-+-+-+|+-+-+-+|||
|   |   ||+-+-+|||2|1|0|||2|1|1||||
|   |   ||     ||+-+-+-+|+-+-+-+|||
|   |   ||     |+-------+-------+||
|   |   |+-----+-----------------+|
+---+---+-------------------------+
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32.5 What is the Height of This Tree? 

The verb L. ("LevelOf") reports the length of the longest path in a 
tree, that is, the maximum length of a path to fetch the unboxed 
data-content of a leaf. In the book "A Programming Language" 
Kenneth Iverson uses the term "height" for the length of the 
longest path of a tree. 

The length of a path is the number of indexing-and-unboxing steps 
needed. It is evident that it takes at most 3 steps to fetch any 
data-content from T 

T L.T

+-------+---+--------------+
|the cat|sat|+--+---------+|
|       |   ||on|+---+---+||
|       |   ||  ||the|mat|||
|       |   ||  |+---+---+||
|       |   |+--+---------+|
+-------+---+--------------+

3

 

One step is needed to fetch the content of the leaf of a tree 
consisting only of a single leaf, for example ,<6 . The step is > @: 
(0&{) 
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A =: ,<6 L. A (> @: (0&{)) A 0 {:: A

+-+
|6|
+-+

1 6 6

 

and it evidently needs no steps to fetch the content of 'hello' 

L. 'hello' (0$0) {:: 'hello' 

0 hello

 

32.6 Levels and the L: Conjunction

A box with no inner box (a leaf) is said to be at level 0. 

Here is another tree: 

   ] D =: (<'one'; 'two'), (<  'three' ; 'four')
+---------+------------+
|+---+---+|+-----+----+|
||one|two|||three|four||
|+---+---+|+-----+----+|
+---------+------------+
   

We can apply a given function to the values inside the leaves, that 
is, at level 0, with the aid of the L: conjunction (called "Level At"). 
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Reversing the content of each level-0 node, that is, each leaf: 

   |. L: 0 D
+---------+------------+
|+---+---+|+-----+----+|
||eno|owt|||eerht|ruof||
|+---+---+|+-----+----+|
+---------+------------+

Reversing at level 1: 

   |. L: 1 D
+---------+------------+
|+---+---+|+----+-----+|
||two|one|||four|three||
|+---+---+|+----+-----+|
+---------+------------+

and at level 2: 

   |. L: 2 D
+------------+---------+
|+-----+----+|+---+---+|
||three|four|||one|two||
|+-----+----+|+---+---+|
+------------+---------+

We see that we can apply a function at each of the levels 0 1 2 . 
The level at which the function is applied can also be specified as a 
negative number: 
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   |. L: _2 D   
+---------+------------+
|+---+---+|+-----+----+|
||eno|owt|||eerht|ruof||
|+---+---+|+-----+----+|
+---------+------------+
   
   |. L: _1 D
+---------+------------+
|+---+---+|+----+-----+|
||two|one|||four|three||
|+---+---+|+----+-----+|
+---------+------------+

Levels for trees are analogous to ranks for arrays. L: is the 
analogue of the rank conjunction " . 

32.7 The Spread Conjunction

We saw above that the result of the L: conjunction has the same 
tree-structure as the argument. There is another conjunction, S: 
(called "Spread") which is like L: in applying a function at a level, 
but unlike L: in that the results are delivered, not as a tree but 
simply as a flat list. 

   D
+---------+------------+
|+---+---+|+-----+----+|
||one|two|||three|four||
|+---+---+|+-----+----+|
+---------+------------+



 537 Chapter 32: Trees

   
   |. S: 0 D
eno  
owt  
eerht
ruof 

The result above is a list (a "flat list") of 4 items, each item being a 
string. 

   |. S: 1 D
+----+-----+
|two |one  |
+----+-----+
|four|three|
+----+-----+

The result above is a list of 2 items, each item being a list of 2 
boxes. 

   |. S: 2 D
+------------+---------+
|+-----+----+|+---+---+|
||three|four|||one|two||
|+-----+----+|+---+---+|
+------------+---------+

The result above is a list of 2 items, each item being a box. 

32.8 Trees with Varying Path-lengths

In the example tree D above all the path-lengths to a leaf are the 
same length. However, in general path-lengths may vary. For the 
example tree T, 
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   T
+-------+---+--------------+
|the cat|sat|+--+---------+|
|       |   ||on|+---+---+||
|       |   ||  ||the|mat|||
|       |   ||  |+---+---+||
|       |   |+--+---------+|
+-------+---+--------------+

the paths are shown by {:: T and the lengths of the paths are 
given by 

   (# S: 1) {:: T 
1 1 2 3 3

Reversing the contents of the level-0 nodes gives no surprises: 

   |. L: 0 T
+-------+---+--------------+
|tac eht|tas|+--+---------+|
|       |   ||no|+---+---+||
|       |   ||  ||eht|tam|||
|       |   ||  |+---+---+||
|       |   |+--+---------+|
+-------+---+--------------+

but if we reverse contents of the level-1 nodes we see that some 
but not all of the level-0 leaves reappear at level 1. 
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   |. L: 1 T
+-------+---+--------------+
|tac eht|tas|+--+---------+|
|       |   ||no|+---+---+||
|       |   ||  ||mat|the|||
|       |   ||  |+---+---+||
|       |   |+--+---------+|
+-------+---+--------------+
   

The explanation is that at level 1 the given verb is applied to 

• those nodes strictly at level 1, that is, those for which 1=L. 
node AND 

• those nodes strictly at level 0 not already accounted for by 
being contained within a level 1 node. 

Similarly, if we reverse the contents of the level-2 nodes we see: 

   |. L: 2 T
+-------+---+--------------+
|tac eht|tas|+---------+--+|
|       |   ||+---+---+|on||
|       |   |||the|mat||  ||
|       |   ||+---+---+|  ||
|       |   |+---------+--+|
+-------+---+--------------+
   

In this example some of the results of reverse are strings, and 
some are lists of boxes. They are of different types. These results 
of different types cannot simply be assembled without more ado 
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into a flat list as would be attempted by S: 

Hence u S: 1 may fail unless the verb u itself provides uniform 
results at every node. Compare these two examples: 

|. S: 1 T (< @: |.) S: 1 T

error +-------+---+--+---------+
|tac eht|tas|no|+---+---+|
|       |   |  ||mat|the||
|       |   |  |+---+---+|
+-------+---+--+---------+

 

The Level conjunction L: walks the tree in the same way, that is, it 
hits the same nodes for reversing, 

   |. L: 0 T
+-------+---+--------------+
|tac eht|tas|+--+---------+|
|       |   ||no|+---+---+||
|       |   ||  ||eht|tam|||
|       |   ||  |+---+---+||
|       |   |+--+---------+|
+-------+---+--------------+

However, Level does not try to build a flat list of results, rather 
puts each individual result back into its position in the tree. Hence 
where Spread will fail because it tries to build a flat list, Level will 
succeed. 
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|. S: 1 T |. L: 1 T

error +-------+---+--------------+
|tac eht|tas|+--+---------+|
|       |   ||no|+---+---+||
|       |   ||  ||mat|the|||
|       |   ||  |+---+---+||
|       |   |+--+---------+|
+-------+---+--------------+

 

32.9 L. Revisited

Here we show that the LevelOf a tree can be computed from its 
Map that is, that L. T, say, can be found from {:: T 

   {:: T     NB. Map giving the paths to leaves
+---+---+-------------------------+
|+-+|+-+|+-----+-----------------+|
||0|||1|||+-+-+|+-------+-------+||
|+-+|+-+|||2|0|||+-+-+-+|+-+-+-+|||
|   |   ||+-+-+|||2|1|0|||2|1|1||||
|   |   ||     ||+-+-+-+|+-+-+-+|||
|   |   ||     |+-------+-------+||
|   |   |+-----+-----------------+|
+---+---+-------------------------+
   
   # S: 1 {:: T     NB. the length of each path
1 1 2 3 3
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   >. / # S: 1 {:: T  NB. maximum of the lengths
3
   
   L. T                 NB.  the LevelOf T 
3
   
   

This is the end of Chapter 32. 
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Appendix 1: Evaluating Expressions

A1.1 Introduction

Here we look at the process of evaluating a J expression. Evaluating a 
complete expression proceeds by a sequence of basic steps, such as 
obtaining the value assigned to a name, or applying a function to its 
argument(s). For example, given 

   x =: 3

then the expression 

   4+5*x
19

is (in outline) evaluated by the steps: 

1. obtain the value assigned to x giving 3 
2. compute 5 * 3 giving 15 
3. compute 4 + 15 giving 19 

The sequence in which the steps take place is governed by the 
grammatical (or "parsing") rules of the J language. The parsing rules 
have various consequences, or effects, which can be stated informally, for 
example: 

• verbs have long right scope. For example, in the expression 2 * 3 
+ 4 the right argument of * is 3 + 4 so that 2 * 3 + 4 means 2* 
(3 + 4). This we earlier called the "rightmost-first" rule. 

• verbs have short left scope. For example in 2 * 3 + 4 the left 
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argument of + is 3. 
• adverbs and conjunctions get applied before verbs. For example + 

& 1 % 2 means (+ & 1 )% 2 
• adverbs and conjunctions have long left scope and short right 

scope 

These effects describe how an expression is implicitly parenthesized. Of 
course, we can always produce desired effects by writing explicit 
parentheses, even though they may not be needed. Further effects are: 

• names denoting nouns are evaluated as soon as encountered 
• names denoting functions are not evaluated until the function is 

applied 
• names with no assigned values are assumed to denote verbs 
• long trains of verbs are resolved into trains of length 2 or 3 

and we will look at how the parsing rules give rise to these effects. To 
illustrate the process, we can use a function which models, or simulates, 
the evaluation process step by step, showing it at work in slow motion. 
This function, an adverb called EVM,is based on the description of the 
parsing algorithm given in the J Dictionary, section IIE. It is defined in a 
downloadable J script. 

A1.2 First Example

Evaluation of an expression such as 2+3 can be modelled by offering the 
argument '2+3' (a string, notice) to the modelling adverb EVM. 

2+3 '2+3' EVM

5 5

 

We see that '2+3' EVM computes the same value as 2+3, but EVM also 
produces a step-by-step record, or history, of the evaluation process. This 
history is displayed by entering the expression hist '' 

file:///C:/Users/homer/14/91a.ijs
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   hist ''
                                              
 Queue          Stack                  Rule   
                                              
 +----------+   +------+---+---+---+   +----+ 
 |mark 2 + 3|   |      |   |   |   |   |    | 
 +----------+   +------+---+---+---+   +----+ 
 |mark 2 +  |   | 3    |   |   |   |   |    | 
 +----------+   +------+---+---+---+   +----+ 
 |mark 2    |   | +    | 3 |   |   |   |    | 
 +----------+   +------+---+---+---+   +----+ 
 |mark      |   | 2    | + | 3 |   |   |    | 
 +----------+   +------+---+---+---+   +----+ 
 |          |   | mark | 2 | + | 3 |   |dyad| 
 +----------+   +------+---+---+---+   +----+ 
 |          |   | mark | 5 |   |   |   |    | 
 +----------+   +------+---+---+---+   +----+ 
                                              

We see successive stages of the process. In this example there are six 
stages. Each stage is defined by the values of two variables. Firstly there 
is a "queue", initially containing the expression being evaluated, divided 
into words and preceded by a symbol to mark the beginning. Secondly, 
there is a "stack", initially empty. The first stage shows queue and stack 
at the outset. 

At each stage the stack is inspected to see if anything can be done, that 
is, whether the first few words in the stack form a pattern to which a rule 
applies. There are 9 of these rules, and each one is tried in turn. If no 
rule applies, then a word is transferred from the tail of the queue to the 
head of the stack, and we go to the next stage and try again. This 
process takes us from the first stage to the fifth stage. 

At the fifth stage, we find that a rule is applicable. This rule is identified 
as dyad in the rightmost column. Informally, the dyad rule is: 
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if the first four items in the stack are something, noun, verb, noun, then 
apply verb to noun and noun to get new-noun, and replace the first four 
items in the stack by two, namely original-something followed by new-
noun. 

The sixth and last stage shows the results of applying the "dyad" rule 
recognized at the previous stage. The rules are tried again, with no 
result, and there are no more words in the queue, so we have finished. 
The final result is the second item of the stack. The history is maintained 
in 3 global variables, Qh Sh and Rh. The expression hist '' computes a 
formatted display from these variables. 

A1.3 Parsing Rules

In this section an example is shown of each of the 9 parsing rules. Each 
rule looks for a pattern of items at the front of the stack, such as 
something verb noun verb. 

Each item of the stack is classified as one of the following: verb, noun, 
adverb, conjunction, name, left-parenthesis, right-parenthesis, 
assignment-symbol (=. or =:) or beginning-mark. 

To aid in a compact statement of the rules, larger classes of items can be 
formed. For example, an item is classified as an "EDGE" if it is a 
beginning-mark, an assignment-symbol or a left-parenthesis. 

The rules are always tried in the same order, the order in which they are 
presented below, beginning with the 'monad rule' and ending with the 
'parenthesis rule'. 
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A1.3.1 Monad Rule

If the first 3 items of the stack are an "EDGE" followed by a verb followed 
by a noun, then the verb is applied (monadically) to the noun to give a 
result-value symbolized by Z say, and the value Z replaces the verb and 
noun in the stack. The scheme for transforming the items of the stack is: 

          monad rule: EDGE VERB NOUN etc  =>   EDGE Z etc

where Z is the result computed by applying VERB to NOUN. For example: 

*: 4 '*: 4' EVM

16 16

 

   hist ''
                                           
 Queue         Stack               Rule    
                                           
 +---------+   +------+----+---+   +-----+ 
 |mark *: 4|   |      |    |   |   |     | 
 +---------+   +------+----+---+   +-----+ 
 |mark *:  |   | 4    |    |   |   |     | 
 +---------+   +------+----+---+   +-----+ 
 |mark     |   | *:   | 4  |   |   |     | 
 +---------+   +------+----+---+   +-----+ 
 |         |   | mark | *: | 4 |   |monad| 
 +---------+   +------+----+---+   +-----+ 
 |         |   | mark | 16 |   |   |     | 
 +---------+   +------+----+---+   +-----+ 
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A1.3.2 Second Monad Rule

An item in the stack is classified as "EAVN" if it is an EDGE or an adverb 
or verb or noun. The scheme is: 

 monad2 rule: EAVN VERB1 VERB2 NOUN etc => EAVN VERB1 Z  etc

where Z is VERB2 monadically applied to NOUN. For example: 

- *: 4 '- *: 4' EVM

_16 _16

 

   hist ''
                                                    
 Queue           Stack                     Rule     
                                                    
 +-----------+   +------+-----+----+---+   +------+ 
 |mark - *: 4|   |      |     |    |   |   |      | 
 +-----------+   +------+-----+----+---+   +------+ 
 |mark - *:  |   | 4    |     |    |   |   |      | 
 +-----------+   +------+-----+----+---+   +------+ 
 |mark -     |   | *:   | 4   |    |   |   |      | 
 +-----------+   +------+-----+----+---+   +------+ 
 |mark       |   | -    | *:  | 4  |   |   |      | 
 +-----------+   +------+-----+----+---+   +------+ 
 |           |   | mark | -   | *: | 4 |   |monad2| 
 +-----------+   +------+-----+----+---+   +------+ 
 |           |   | mark | -   | 16 |   |   |monad | 
 +-----------+   +------+-----+----+---+   +------+ 
 |           |   | mark | _16 |    |   |   |      | 
 +-----------+   +------+-----+----+---+   +------+ 
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A1.3.3 Dyad Rule
The scheme is 

     dyad rule:  EAVN NOUN1 VERB NOUN2 etc => EAVN Z etc

where Z is VERB applied dyadically to NOUN1 and NOUN2. For example. 

3 * 4 '3 * 4' EVM

12 12

 

   hist ''
                                               
 Queue          Stack                   Rule   
                                               
 +----------+   +------+----+---+---+   +----+ 
 |mark 3 * 4|   |      |    |   |   |   |    | 
 +----------+   +------+----+---+---+   +----+ 
 |mark 3 *  |   | 4    |    |   |   |   |    | 
 +----------+   +------+----+---+---+   +----+ 
 |mark 3    |   | *    | 4  |   |   |   |    | 
 +----------+   +------+----+---+---+   +----+ 
 |mark      |   | 3    | *  | 4 |   |   |    | 
 +----------+   +------+----+---+---+   +----+ 
 |          |   | mark | 3  | * | 4 |   |dyad| 
 +----------+   +------+----+---+---+   +----+ 
 |          |   | mark | 12 |   |   |   |    | 
 +----------+   +------+----+---+---+   +----+ 
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A1.3.4 Adverb Rule

An item which is a verb or a noun is classified as a "VN" The scheme is: 

          adverb rule: EAVN VN ADVERB etc => EAVN Z etc

where Z is the result of applying ADVERB to VN. For example: 

+ / 1 2 3 '+ / 1 2 3' EVM

6 6

 

   hist ''
                                                    
 Queue              Stack                               Rule    
                                                                
 +--------------+   +-------+-------+-------+-------+   +-----+ 
 |mark + / 1 2 3|   |       |       |       |       |   |     | 
 +--------------+   +-------+-------+-------+-------+   +-----+ 
 |mark + /      |   | 1 2 3 |       |       |       |   |     | 
 +--------------+   +-------+-------+-------+-------+   +-----+ 
 |mark +        |   | /     | 1 2 3 |       |       |   |     | 
 +--------------+   +-------+-------+-------+-------+   +-----+ 
 |mark          |   | +     | /     | 1 2 3 |       |   |     | 
 +--------------+   +-------+-------+-------+-------+   +-----+ 
 |              |   | mark  | +     | /     | 1 2 3 |   |adv  | 
 +--------------+   +-------+-------+-------+-------+   +-----+ 
 |              |   | mark  | +/    | 1 2 3 |       |   |monad| 
 +--------------+   +-------+-------+-------+-------+   +-----+ 
 |              |   | mark  | 6     |       |       |   |     | 
 +--------------+   +-------+-------+-------+-------+   +-----+ 
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A1.3.5 Conjunction Rule
The scheme is: 

          conjunction  EAVN VN1 CONJ VN1 etc => EAVN Z etc

where Z is the result of applying conjunction CONJ to arguments VN1 and 
VN2. For example: 

1 & + 2 '1 & + 2' EVM

3 3
   hist ''
                                                   
Queue            Stack                        Rule    
                                                    
 +------------+   +------+-----+---+---+---+   +-----+ 
 |mark 1 & + 2|   |      |     |   |   |   |   |     | 
 +------------+   +------+-----+---+---+---+   +-----+ 
 |mark 1 & +  |   | 2    |     |   |   |   |   |     | 
 +------------+   +------+-----+---+---+---+   +-----+ 
 |mark 1 &    |   | +    | 2   |   |   |   |   |     | 
 +------------+   +------+-----+---+---+---+   +-----+ 
 |mark 1      |   | &    | +   | 2 |   |   |   |     | 
 +------------+   +------+-----+---+---+---+   +-----+ 
 |mark        |   | 1    | &   | + | 2 |   |   |     | 
 +------------+   +------+-----+---+---+---+   +-----+ 
 |            |   | mark | 1   | & | + | 2 |   |conj | 
 +------------+   +------+-----+---+---+---+   +-----+ 
 |            |   | mark | 1&+ | 2 |   |   |   |monad| 
 +------------+   +------+-----+---+---+---+   +-----+ 
 |            |   | mark | 3   |   |   |   |   |     | 
 +------------+   +------+-----+---+---+---+   +-----+ 
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A1.3.6 Trident Rule
The scheme is: 

      trident rule: EAVN VN1 VERB2 VERB3 etc => EAVN Z etc

and there are two cases: VN1 may be a verb or a noun. If VN1 is the verb 
VERB1 then Z is the single verb defined as the fork VERB1 VERB2 VERB3. 
Forks and abbreviations for forks are described in Chapter 09. 

Here is an example: 1 + *: is an abbreviation for the fork 1: + *: 

(1: + *:) 2 3 (1 + *:)2 3 '(1 + *:) 2 3' EVM

5 10 5 10 5 10

 

   hist ''
                                                    
 Queue                   Stack                                   Rule      
                                                                           
 +-------------------+   +-------+-------+----+----+----+----+   +-------+ 
 |mark ( 1 + *: ) 2 3|   |       |       |    |    |    |    |   |       | 
 +-------------------+   +-------+-------+----+----+----+----+   +-------+ 
 |mark ( 1 + *: )    |   | 2 3   |       |    |    |    |    |   |       | 
 +-------------------+   +-------+-------+----+----+----+----+   +-------+ 
 |mark ( 1 + *:      |   | )     | 2 3   |    |    |    |    |   |       | 
 +-------------------+   +-------+-------+----+----+----+----+   +-------+ 
 |mark ( 1 +         |   | *:    | )     | 2 3|    |    |    |   |       | 
 +-------------------+   +-------+-------+----+----+----+----+   +-------+ 
 |mark ( 1           |   | +     | *:    | )  | 2 3|    |    |   |       | 
 +-------------------+   +-------+-------+----+----+----+----+   +-------+ 
 |mark (             |   | 1     | +     | *: | )  | 2 3|    |   |       | 
 +-------------------+   +-------+-------+----+----+----+----+   +-------+ 
 |mark               |   | (     | 1     | +  | *: | )  | 2 3|   |trident| 
 +-------------------+   +-------+-------+----+----+----+----+   +-------+ 
 |mark               |   | (     | 1 + *:| )  | 2 3|    |    |   |paren  | 
 +-------------------+   +-------+-------+----+----+----+----+   +-------+ 
 |mark               |   | 1 + *:| 2 3   |    |    |    |    |   |       | 
 +-------------------+   +-------+-------+----+----+----+----+   +-------+ 
 |                   |   | mark  | 1 + *:| 2 3|    |    |    |   |monad  | 
 +-------------------+   +-------+-------+----+----+----+----+   +-------+ 
 |                   |   | mark  | 5 10  |    |    |    |    |   |       | 
 +-------------------+   +-------+-------+----+----+----+----+   +-------+ 
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A1.3.7 Bident Rule

The scheme is: 

          bident rule: EDGE CAVN1 CAVN2 etc => EDGE Z etc

and there are altogether these 6 cases for the bident rule: 

CAVN1 CAVN2 Z 

verb verb verb (a hook) 

adverb adverb adverb 

conjunction verb adverb 

conjunction noun adverb 

noun conjunction adverb 

verb conjunction adverb 

 

The first case (the hook) is described in Chapter 03 and the remaining 
cases in the schemes for bidents in Chapter 15. 

In the following example the expression (1 &) is a bident of the form 
noun conjunction. Therefore it is an adverb. 

+ (1 &) 2 '+ (1 &) 2' EVM

3 3
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   hist ''
                                                    
 Queue                Stack                         Rule     
                                                    
 +----------------+   +------+-----+----+---+---+   +------+ 
 |mark + ( 1 & ) 2|   |      |     |    |   |   |   |      | 
 +----------------+   +------+-----+----+---+---+   +------+ 
 |mark + ( 1 & )  |   | 2    |     |    |   |   |   |      | 
 +----------------+   +------+-----+----+---+---+   +------+ 
 |mark + ( 1 &    |   | )    | 2   |    |   |   |   |      | 
 +----------------+   +------+-----+----+---+---+   +------+ 
 |mark + ( 1      |   | &    | )   | 2  |   |   |   |      | 
 +----------------+   +------+-----+----+---+---+   +------+ 
 |mark + (        |   | 1    | &   | )  | 2 |   |   |      | 
 +----------------+   +------+-----+----+---+---+   +------+ 
 |mark +          |   | (    | 1   | &  | ) | 2 |   |bident| 
 +----------------+   +------+-----+----+---+---+   +------+ 
 |mark +          |   | (    | 1&  | )  | 2 |   |   |paren | 
 +----------------+   +------+-----+----+---+---+   +------+ 
 |mark +          |   | 1&   | 2   |    |   |   |   |      | 
 +----------------+   +------+-----+----+---+---+   +------+ 
 |mark            |   | +    | 1&  | 2  |   |   |   |      | 
 +----------------+   +------+-----+----+---+---+   +------+ 
 |                |   | mark | +   | 1& | 2 |   |   |adv   | 
 +----------------+   +------+-----+----+---+---+   +------+ 
 |                |   | mark | 1&+ | 2  |   |   |   |monad | 
 +----------------+   +------+-----+----+---+---+   +------+ 
 |                |   | mark | 3   |    |   |   |   |      | 
 +----------------+   +------+-----+----+---+---+   +------+ 
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A1.3.8 Assignment Rule

We write NN to denote a noun or a name. and Asgn for the assignment 
symbol =: or =.. The scheme is: 

          assign rule: NN Asgn CAVN etc => Z etc

where Z is the value of CAVN. 

1 + x =: 6 '1 + x =: 6' EVM

7 7

 

   hist ''
                                                    
 Queue               Stack                   Rule     
                                                      
 +---------------+   +------+----+---+---+   +------+ 
 |mark 1 + x =: 6|   |      |    |   |   |   |      | 
 +---------------+   +------+----+---+---+   +------+ 
 |mark 1 + x =:  |   | 6    |    |   |   |   |      | 
 +---------------+   +------+----+---+---+   +------+ 
 |mark 1 + x     |   | =:   | 6  |   |   |   |      | 
 +---------------+   +------+----+---+---+   +------+ 
 |mark 1 +       |   | x    | =: | 6 |   |   |assign| 
 +---------------+   +------+----+---+---+   +------+ 
 |mark 1 +       |   | 6    |    |   |   |   |      | 
 +---------------+   +------+----+---+---+   +------+ 
 |mark 1         |   | +    | 6  |   |   |   |      | 
 +---------------+   +------+----+---+---+   +------+ 
 |mark           |   | 1    | +  | 6 |   |   |      | 
 +---------------+   +------+----+---+---+   +------+ 
 |               |   | mark | 1  | + | 6 |   |dyad  | 
 +---------------+   +------+----+---+---+   +------+ 
 |               |   | mark | 7  |   |   |   |      | 
 +---------------+   +------+----+---+---+   +------+ 
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A1.3.9 Parenthesis Rule

The scheme is: 

         paren rule: ( CAVN ) etc => Z etc

where Z is the value of CAVN. For example: 

(1+2)*3 '(1+2)*3' EVM 

9 9
 

   hist ''
                                                    
 Queue                  Stack                              Rule    
                                                                   
 +------------------+   +------+---+---+---+---+---+---+   +-----+ 
 |mark ( 1 + 2 ) * 3|   |      |   |   |   |   |   |   |   |     | 
 +------------------+   +------+---+---+---+---+---+---+   +-----+ 
 |mark ( 1 + 2 ) *  |   | 3    |   |   |   |   |   |   |   |     | 
 +------------------+   +------+---+---+---+---+---+---+   +-----+ 
 |mark ( 1 + 2 )    |   | *    | 3 |   |   |   |   |   |   |     | 
 +------------------+   +------+---+---+---+---+---+---+   +-----+ 
 |mark ( 1 + 2      |   | )    | * | 3 |   |   |   |   |   |     | 
 +------------------+   +------+---+---+---+---+---+---+   +-----+ 
 |mark ( 1 +        |   | 2    | ) | * | 3 |   |   |   |   |     | 
 +------------------+   +------+---+---+---+---+---+---+   +-----+ 
 |mark ( 1          |   | +    | 2 | ) | * | 3 |   |   |   |     | 
 +------------------+   +------+---+---+---+---+---+---+   +-----+ 
 |mark (            |   | 1    | + | 2 | ) | * | 3 |   |   |     | 
 +------------------+   +------+---+---+---+---+---+---+   +-----+ 
 |mark              |   | (    | 1 | + | 2 | ) | * | 3 |   |dyad | 
 +------------------+   +------+---+---+---+---+---+---+   +-----+ 
 |mark              |   | (    | 3 | ) | * | 3 |   |   |   |paren| 
 +------------------+   +------+---+---+---+---+---+---+   +-----+ 
 |mark              |   | 3    | * | 3 |   |   |   |   |   |     | 
 +------------------+   +------+---+---+---+---+---+---+   +-----+ 
 |                  |   | mark | 3 | * | 3 |   |   |   |   |dyad | 
 +------------------+   +------+---+---+---+---+---+---+   +-----+ 
 |                  |   | mark | 9 |   |   |   |   |   |   |     | 
 +------------------+   +------+---+---+---+---+---+---+   +-----+ 
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A1.3.10 Examples of Transfer

The following example shows that when a name is transferred from 
queue to stack, if the name denotes a value which is a noun, then the 
value, not the name, moves to the queue. 

a =: 6 (a=:7) , a

6 7 6

 

a=: 6 '(a =: 7) , a' EVM

6 7 6

 

   hist ''
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 Queue                   Stack                            Rule     
                                                                   
 +-------------------+   +------+-----+---+---+---+---+   +------+ 
 |mark ( a =: 7 ) , a|   |      |     |   |   |   |   |   |      | 
 +-------------------+   +------+-----+---+---+---+---+   +------+ 
 |mark ( a =: 7 ) ,  |   | 6    |     |   |   |   |   |   |      | 
 +-------------------+   +------+-----+---+---+---+---+   +------+ 
 |mark ( a =: 7 )    |   | ,    | 6   |   |   |   |   |   |      | 
 +-------------------+   +------+-----+---+---+---+---+   +------+ 
 |mark ( a =: 7      |   | )    | ,   | 6 |   |   |   |   |      | 
 +-------------------+   +------+-----+---+---+---+---+   +------+ 
 |mark ( a =:        |   | 7    | )   | , | 6 |   |   |   |      | 
 +-------------------+   +------+-----+---+---+---+---+   +------+ 
 |mark ( a           |   | =:   | 7   | ) | , | 6 |   |   |      | 
 +-------------------+   +------+-----+---+---+---+---+   +------+ 
 |mark (             |   | a    | =:  | 7 | ) | , | 6 |   |assign| 
 +-------------------+   +------+-----+---+---+---+---+   +------+ 
 |mark (             |   | 7    | )   | , | 6 |   |   |   |      | 
 +-------------------+   +------+-----+---+---+---+---+   +------+ 
 |mark               |   | (    | 7   | ) | , | 6 |   |   |paren | 
 +-------------------+   +------+-----+---+---+---+---+   +------+ 
 |mark               |   | 7    | ,   | 6 |   |   |   |   |      | 
 +-------------------+   +------+-----+---+---+---+---+   +------+ 
 |                   |   | mark | 7   | , | 6 |   |   |   |dyad  | 
 +-------------------+   +------+-----+---+---+---+---+   +------+ 
 |                   |   | mark | 7 6 |   |   |   |   |   |      | 
 +-------------------+   +------+-----+---+---+---+---+   +------+ 
                                                                   

By contrast, if the name is that of a verb, then the name is transferred 
into the stack without evaluating it. Hence a subsequent assignment 
changes the verb applied. 

f=: + ((f=:-) , f) 4

+ _4 _4

 

f =: + '((f =: -),f) 4' EVM

+ _4 _4
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  hist ''
                                                                             
 Queue                         Stack                               Rule      
                                                                             
 +-------------------------+   +------+------+--+--+--+--+--+--+   +-------+ 
 |mark ( ( f =: - ) , f ) 4|   |      |      |  |  |  |  |  |  |   |       | 
 +-------------------------+   +------+------+--+--+--+--+--+--+   +-------+ 
 |mark ( ( f =: - ) , f )  |   | 4    |      |  |  |  |  |  |  |   |       | 
 +-------------------------+   +------+------+--+--+--+--+--+--+   +-------+ 
 |mark ( ( f =: - ) , f    |   | )    | 4    |  |  |  |  |  |  |   |       | 
 +-------------------------+   +------+------+--+--+--+--+--+--+   +-------+ 
 |mark ( ( f =: - ) ,      |   | f    | )    | 4|  |  |  |  |  |   |       | 
 +-------------------------+   +------+------+--+--+--+--+--+--+   +-------+ 
 |mark ( ( f =: - )        |   | ,    | f    | )| 4|  |  |  |  |   |       | 
 +-------------------------+   +------+------+--+--+--+--+--+--+   +-------+ 
 |mark ( ( f =: -          |   | )    | ,    | f| )| 4|  |  |  |   |       | 
 +-------------------------+   +------+------+--+--+--+--+--+--+   +-------+ 
 |mark ( ( f =:            |   | -    | )    | ,| f| )| 4|  |  |   |       | 
 +-------------------------+   +------+------+--+--+--+--+--+--+   +-------+ 
 |mark ( ( f               |   | =:   | -    | )| ,| f| )| 4|  |   |       | 
 +-------------------------+   +------+------+--+--+--+--+--+--+   +-------+ 
 |mark ( (                 |   | f    | =:   | -| )| ,| f| )| 4|   |assign | 
 +-------------------------+   +------+------+--+--+--+--+--+--+   +-------+ 
 |mark ( (                 |   | -    | )    | ,| f| )| 4|  |  |   |       | 
 +-------------------------+   +------+------+--+--+--+--+--+--+   +-------+ 
 |mark (                   |   | (    | -    | )| ,| f| )| 4|  |   |paren  | 
 +-------------------------+   +------+------+--+--+--+--+--+--+   +-------+ 
 |mark (                   |   | -    | ,    | f| )| 4|  |  |  |   |       | 
 +-------------------------+   +------+------+--+--+--+--+--+--+   +-------+ 
 |mark                     |   | (    | -    | ,| f| )| 4|  |  |   |trident| 
 +-------------------------+   +------+------+--+--+--+--+--+--+   +-------+ 
 |mark                     |   | (    | - , f| )| 4|  |  |  |  |   |paren  | 
 +-------------------------+   +------+------+--+--+--+--+--+--+   +-------+ 
 |mark                     |   | - , f| 4    |  |  |  |  |  |  |   |       | 
 +-------------------------+   +------+------+--+--+--+--+--+--+   +-------+ 
 |                         |   | mark | - , f| 4|  |  |  |  |  |   |monad  | 
 +-------------------------+   +------+------+--+--+--+--+--+--+   +-------+ 
 |                         |   | mark | _4 _4|  |  |  |  |  |  |   |       | 
 +-------------------------+   +------+------+--+--+--+--+--+--+   +-------+ 
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A1.3.11 Review of Parsing Rules

rule stack before stack after where Z is ...

monad EDGE Verb Noun etc EDGE Z etc Verb applied to Noun

monad2 EAVN Verb1 Verb2 Noun EAVN 
Verb
1

Z Verb2 applied to Noun

dyad EAVN Noun1 Verb Noun2 EAVN Z etc 
Verb applied to Noun1 and 
Noun2

adverb EAVN VN Adv etc EAVN Z etc Adv applied to VN

conj EAVN VN1 Conj VN2 EAVN Z etc Conj applied to VN1 and VN2

trident EAVN VN1 Verb2 Verb3 EAVN Z etc 

fork (VN1 Verb2 Verb3)

bident EDGE CAVN1 CAVN2 etc EDGE Z etc bident (CAVN1 CAVN2)

assign NN Asgn CAVN etc Z etc etc CAVN

paren ( CAVN ) etc Z etc etc CAVN

 

A1.4 Effects of Parsing Rules

Now we look at some of the effects of the parsing rules. In what follows, 
notice how the parsing rules in effect give rise to implicit parentheses. 
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A1.4.1 Dyad Has Long Right Scope

Consider the expression 4+3-2, which means 4+(3-2). 

4 + 3 - 2 4 + (3-2) '4+3-2' EVM

5 5 5
 

   hist ''
                                                  
 Queue              Stack                  Rule   
                                                  
 +--------------+   +------+---+---+---+   +----+ 
 |mark 4 + 3 - 2|   |      |   |   |   |   |    | 
 +--------------+   +------+---+---+---+   +----+ 
 |mark 4 + 3 -  |   | 2    |   |   |   |   |    | 
 +--------------+   +------+---+---+---+   +----+ 
 |mark 4 + 3    |   | -    | 2 |   |   |   |    | 
 +--------------+   +------+---+---+---+   +----+ 
 |mark 4 +      |   | 3    | - | 2 |   |   |    | 
 +--------------+   +------+---+---+---+   +----+ 
 |mark 4        |   | +    | 3 | - | 2 |   |dyad| 
 +--------------+   +------+---+---+---+   +----+ 
 |mark 4        |   | +    | 1 |   |   |   |    | 
 +--------------+   +------+---+---+---+   +----+ 
 |mark          |   | 4    | + | 1 |   |   |    | 
 +--------------+   +------+---+---+---+   +----+ 
 |              |   | mark | 4 | + | 1 |   |dyad| 
 +--------------+   +------+---+---+---+   +----+ 
 |              |   | mark | 5 |   |   |   |    | 
 +--------------+   +------+---+---+---+   +----+ 
                                                  

Here we have an example of a general rule: a dyadic verb takes as its 
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right argument as much as possible, so in this example + is applied to 3-
2, not just 3. 

Further, a dyadic verb takes as left argument as little as possible. In this 
example the left argument of - is just 3, not 4+3. Hence a dyadic verb is 
said to have a "long right scope" and a "short left scope". 
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A1.4.2 Operators Before Verbs

Adverbs and conjunctions get applied first, and then the resulting verbs: 

* & 1 % 2 (*&1) % 2 '* & 1 % 2' EVM

0.5 0.5 0.5
 

   hist ''
                                                                
 Queue              Stack                              Rule     
                                                                
 +--------------+   +------+-----+-----+---+---+---+   +------+ 
 |mark * & 1 % 2|   |      |     |     |   |   |   |   |      | 
 +--------------+   +------+-----+-----+---+---+---+   +------+ 
 |mark * & 1 %  |   | 2    |     |     |   |   |   |   |      | 
 +--------------+   +------+-----+-----+---+---+---+   +------+ 
 |mark * & 1    |   | %    | 2   |     |   |   |   |   |      | 
 +--------------+   +------+-----+-----+---+---+---+   +------+ 
 |mark * &      |   | 1    | %   | 2   |   |   |   |   |      | 
 +--------------+   +------+-----+-----+---+---+---+   +------+ 
 |mark *        |   | &    | 1   | %   | 2 |   |   |   |      | 
 +--------------+   +------+-----+-----+---+---+---+   +------+ 
 |mark          |   | *    | &   | 1   | % | 2 |   |   |      | 
 +--------------+   +------+-----+-----+---+---+---+   +------+ 
 |              |   | mark | *   | &   | 1 | % | 2 |   |conj  | 
 +--------------+   +------+-----+-----+---+---+---+   +------+ 
 |              |   | mark | *&1 | %   | 2 |   |   |   |monad2| 
 +--------------+   +------+-----+-----+---+---+---+   +------+ 
 |              |   | mark | *&1 | 0.5 |   |   |   |   |monad | 
 +--------------+   +------+-----+-----+---+---+---+   +------+ 
 |              |   | mark | 0.5 |     |   |   |   |   |      | 
 +--------------+   +------+-----+-----+---+---+---+   +------+ 
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A1.4.3 Operators Have Long Left Scope

In the following examples, note that values of verbs are shown in the 
"parenthesized representation" (see Chapter 27) to show their structure. 
An adverb or a conjunction takes as its left argument as much as 
possible. Look at the structure of these verbs: evidently the / adverb and 
the @ conjunction take everything to their left: 

f @ g / f & g @ h 'f&g@h' EVM

(f@g)/ (f&g)@h (f&g)@h
 

   hist ''
                                                                
 Queue              Stack                                Rule   
                                                                
 +--------------+   +------+---------+---+---+---+---+   +----+ 
 |mark f & g @ h|   |      |         |   |   |   |   |   |    | 
 +--------------+   +------+---------+---+---+---+---+   +----+ 
 |mark f & g @  |   | h    |         |   |   |   |   |   |    | 
 +--------------+   +------+---------+---+---+---+---+   +----+ 
 |mark f & g    |   | @    | h       |   |   |   |   |   |    | 
 +--------------+   +------+---------+---+---+---+---+   +----+ 
 |mark f &      |   | g    | @       | h |   |   |   |   |    | 
 +--------------+   +------+---------+---+---+---+---+   +----+ 
 |mark f        |   | &    | g       | @ | h |   |   |   |    | 
 +--------------+   +------+---------+---+---+---+---+   +----+ 
 |mark          |   | f    | &       | g | @ | h |   |   |    | 
 +--------------+   +------+---------+---+---+---+---+   +----+ 
 |              |   | mark | f       | & | g | @ | h |   |conj| 
 +--------------+   +------+---------+---+---+---+---+   +----+ 
 |              |   | mark | f&g     | @ | h |   |   |   |conj| 
 +--------------+   +------+---------+---+---+---+---+   +----+ 
 |              |   | mark | (f&g)@h |   |   |   |   |   |    | 
 +--------------+   +------+---------+---+---+---+---+   +----+ 
                                                      

Thus operators are said to have a "long left scope". In the example of 
f&g@h we see that the right argument of & is just g, not g@h . Thus 
conjunctions have "short right scope". 
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A1.4.4 Train on the Left

The long left scope of an adverb does not extend through a train: 
parentheses may be needed to get the desired effect. Suppose f g h is 
intended as a train, then compare the following: 

(f g h) / f g h / 'f g h / ' EVM 

(f g h)/ f g (h/) f g (h/)

 

   hist ''
                                                            
 Queue            Stack                           Rule      
                                                            
 +------------+   +------+----------+----+----+   +-------+ 
 |mark f g h /|   |      |          |    |    |   |       | 
 +------------+   +------+----------+----+----+   +-------+ 
 |mark f g h  |   | /    |          |    |    |   |       | 
 +------------+   +------+----------+----+----+   +-------+ 
 |mark f g    |   | h    | /        |    |    |   |       | 
 +------------+   +------+----------+----+----+   +-------+ 
 |mark f      |   | g    | h        | /  |    |   |adv    | 
 +------------+   +------+----------+----+----+   +-------+ 
 |mark f      |   | g    | h/       |    |    |   |       | 
 +------------+   +------+----------+----+----+   +-------+ 
 |mark        |   | f    | g        | h/ |    |   |       | 
 +------------+   +------+----------+----+----+   +-------+ 
 |            |   | mark | f        | g  | h/ |   |trident| 
 +------------+   +------+----------+----+----+   +-------+ 
 |            |   | mark | f g (h/) |    |    |   |       | 
 +------------+   +------+----------+----+----+   +-------+ 
                                                            
   

Similarly for a conjunction (with a right argument) 
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f g h @ + 'f g h @ +' EVM

f g (h@+) f g (h@+)
 

   hist ''
                                                    
 Queue              Stack                              Rule      
                                                                 
 +--------------+   +------+-----------+-----+-----+   +-------+ 
 |mark f g h @ +|   |      |           |     |     |   |       | 
 +--------------+   +------+-----------+-----+-----+   +-------+ 
 |mark f g h @  |   | +    |           |     |     |   |       | 
 +--------------+   +------+-----------+-----+-----+   +-------+ 
 |mark f g h    |   | @    | +         |     |     |   |       | 
 +--------------+   +------+-----------+-----+-----+   +-------+ 
 |mark f g      |   | h    | @         | +   |     |   |       | 
 +--------------+   +------+-----------+-----+-----+   +-------+ 
 |mark f        |   | g    | h         | @   | +   |   |conj   | 
 +--------------+   +------+-----------+-----+-----+   +-------+ 
 |mark f        |   | g    | h@+       |     |     |   |       | 
 +--------------+   +------+-----------+-----+-----+   +-------+ 
 |mark          |   | f    | g         | h@+ |     |   |       | 
 +--------------+   +------+-----------+-----+-----+   +-------+ 
 |              |   | mark | f         | g   | h@+ |   |trident| 
 +--------------+   +------+-----------+-----+-----+   +-------+ 
 |              |   | mark | f g (h@+) |     |     |   |       | 
 +--------------+   +------+-----------+-----+-----+   +-------+ 
                                                    

However, for a conjunction with no right argument, the left scope does 
extend through a train: 

f g h @ 'f g h @' EVM

(f g h)@ (f g h)@
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   hist ''
                                                              
 Queue            Stack                             Rule      
                                                              
 +------------+   +------+----------+---+---+---+   +-------+ 
 |mark f g h @|   |      |          |   |   |   |   |       | 
 +------------+   +------+----------+---+---+---+   +-------+ 
 |mark f g h  |   | @    |          |   |   |   |   |       | 
 +------------+   +------+----------+---+---+---+   +-------+ 
 |mark f g    |   | h    | @        |   |   |   |   |       | 
 +------------+   +------+----------+---+---+---+   +-------+ 
 |mark f      |   | g    | h        | @ |   |   |   |       | 
 +------------+   +------+----------+---+---+---+   +-------+ 
 |mark        |   | f    | g        | h | @ |   |   |       | 
 +------------+   +------+----------+---+---+---+   +-------+ 
 |            |   | mark | f        | g | h | @ |   |trident| 
 +------------+   +------+----------+---+---+---+   +-------+ 
 |            |   | mark | f g h    | @ |   |   |   |bident | 
 +------------+   +------+----------+---+---+---+   +-------+ 
 |            |   | mark | (f g h)@ |   |   |   |   |       | 
 +------------+   +------+----------+---+---+---+   +-------+ 
                                                       

By contrast, in the case of of f @ g /, notice how the "conj" rule is 
applied before there is a chance to apply the "adverb" rule" 

f @ g / 'f @ g / ' EVM

(f@g)/ (f@g)/
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   hist ''
                                                    
 Queue            Stack                           Rule   
                                                    
 +------------+   +------+--------+---+---+---+   +----+ 
 |mark f @ g /|   |      |        |   |   |   |   |    | 
 +------------+   +------+--------+---+---+---+   +----+ 
 |mark f @ g  |   | /    |        |   |   |   |   |    | 
 +------------+   +------+--------+---+---+---+   +----+ 
 |mark f @    |   | g    | /      |   |   |   |   |    | 
 +------------+   +------+--------+---+---+---+   +----+ 
 |mark f      |   | @    | g      | / |   |   |   |    | 
 +------------+   +------+--------+---+---+---+   +----+ 
 |mark        |   | f    | @      | g | / |   |   |    | 
 +------------+   +------+--------+---+---+---+   +----+ 
 |            |   | mark | f      | @ | g | / |   |conj| 
 +------------+   +------+--------+---+---+---+   +----+ 
 |            |   | mark | f@g    | / |   |   |   |adv | 
 +------------+   +------+--------+---+---+---+   +----+ 
 |            |   | mark | (f@g)/ |   |   |   |   |    | 
 +------------+   +------+--------+---+---+---+   +----+ 
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A1.4.5 Presumption of Verb

A name with no value assigned is presumed to be a verb. For example, in 
the following the two names make a hook: 

Blue Skies 'Blue Skies' EVM

Blue Skies Blue Skies

 

   hist ''
                                                    
 Queue               Stack                            Rule     
                                                    
 +---------------+   +-------+------------+-------+   +------+ 
 |mark Blue Skies|   |       |            |       |   |      | 
 +---------------+   +-------+------------+-------+   +------+ 
 |mark Blue      |   | Skies |            |       |   |      | 
 +---------------+   +-------+------------+-------+   +------+ 
 |mark           |   | Blue  | Skies      |       |   |      | 
 +---------------+   +-------+------------+-------+   +------+ 
 |               |   | mark  | Blue       | Skies |   |bident| 
 +---------------+   +-------+------------+-------+   +------+ 
 |               |   | mark  | Blue Skies |       |   |      | 
 +---------------+   +-------+------------+-------+   +------+ 
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Appendix 2: Collected Terminology

In this book, the words "data", "function", "argument" and "expression" 
are used with the meanings usual in programming. 

Certain other words are used in this book with meanings given below, in 
a sequence such that the explanation of each word depends only on 
words previously explained. 

VALUE Anything which can be produced by evaluating an 
expression is said to be a value. Every value is a 
data value or a function. 

NOUN a data value 

VERB a function which computes nouns from nouns. 

MONAD a verb which takes a single argument. 

DYAD a verb which takes two arguments. Every verb is a 
monad or a dyad. 

AMBIVALENT An expression is said to be ambivalent when it 
denotes either a monad or a dyad (depending on 
whether one or two arguments are supplied). 

OPERATOR a function which takes, as its argument(s), nouns or 
verbs, and produces as its result, a noun or verb or 
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operator. Every J function is a verb or an operator. 

ADVERB an operator which takes a single argument. 

CONJUNCTIO
N

an operator which takes two arguments. Every 
operator is an adverb or a conjunction. 

BIDENT a sequence of two expressions for which the J 
grammar provides an interpretation as a single 
function. 

TRIDENT a sequence of three expressions for which the J 
grammar provides an interpretation as a single 
function. 

TRAIN a sequence of two or more expressions for which 
the J grammar provides an interpretation as a single 
function. 

HOOK a verb defined as a sequence of two verbs, that is, a 
bident. 

FORK a verb defined as a sequence of three verbs, that is, 
a trident. 

EXPLICIT a function is said to be explicitly defined, or just 
explicit, when defined by an expression containing 
argument variables for which values are to be 
substituted. 
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TACIT a function is said to be tacitly defined, or just tacit, 
when defined without using argument variables. 
Every J function is either built-in or explicit or 
tacit. 

ARRAY a noun, that is, a data value, consisting of a number 
of simpler values arranged on rectangular 
coordinates, or axes. Every noun is an array, with 
zero or more axes. 

DIMENSION (of an array) the length of an axis 

SHAPE (of an array) the list of its dimensions 

SCALAR a noun with no dimensions. The shape of a scalar is 
an empty list. 

RANK (of a noun) the number of its dimensions, that is, 
the length of its shape. 

BOX A scalar of a special type, such that its value can 
represent any array. 

CELL The list of dimensions of any array can be 
arbitrarily partitioned into leading dimensions 
followed by trailing dimensions. The original array 
is thus described as an array of cells, where each 
cell has only the trailing dimensions. The leading 
dimensions are called a frame for those cells. 
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FRAME See Cell. 

RANK (of a verb) The natural, or intrinsic, rank for its 
argument(s). With an argument of any rank higher 
than its intrinsic rank, the verb is applied separately 
to each intrinsic-rank cell of the argument. A 
monad has one rank, a dyad has two (one each for 
left and right arguments) and hence an ambivalent 
verb has three. 
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