6.2 Orthogonal Sets
Definition:

A set of vectors \{\vec{u}_1,\ldots,\vec{u}_p\} in \mathbb{R}^n is said to be orthogonal if each pair of distinct vectors from the set is orthogonal, which means \(\vec{u}_i \cdot \vec{u}_j = 0 \) whenever \(i \neq j \).

Theorem:

If \(S = \{\vec{u}_1,\ldots,\vec{u}_p\} \) is an orthogonal set of nonzero vectors in \(\mathbb{R}^n \), then \(S \) is linearly independent and thus is a basis for the subspace spanned by \(S \).
Definition:

An orthogonal basis for a subspace W is also an orthogonal set.

Theorem:

Let $\{\vec{u}_1, \ldots, \vec{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n. For each \vec{y} in W, the weights in the linear combination

$$\vec{y} = c_1\vec{u}_1 + \cdots + c_p\vec{u}_p$$

are given by

$$c_j = \frac{\vec{y} \cdot \vec{u}_j}{\vec{u}_j \cdot \vec{u}_j} \quad j = 1, \ldots, p$$
Orthogonal Projections:

Given a nonzero vector \(\vec{u} \) in \(\mathbb{R}^n \), we want to decompose a vector \(\vec{y} \) into the sum of two vectors, one a multiple of \(\vec{u} \) and the other orthogonal to \(\vec{u} \).

We want \(\vec{y} = \hat{\vec{y}} + \vec{z} \) where \(\hat{\vec{y}} = \alpha \vec{u} \) for some scalar \(\alpha \) and \(\vec{z} \) is some vector orthogonal to \(\vec{u} \).

Given any scalar \(\alpha \), let \(\vec{z} = \vec{y} - \alpha \vec{u} \). Then \(\vec{y} - \hat{\vec{y}} \) is orthogonal to \(\vec{u} \) if and only if

\[
0 = (\vec{y} - \alpha \vec{u}) \cdot \vec{u} = \vec{y} \cdot \vec{u} - (\alpha \vec{u}) \cdot \vec{u} = \vec{y} \cdot \vec{u} - \alpha (\vec{u} \cdot \vec{u})
\]
We have \(\tilde{y} = \hat{y} + \bar{z} \) satisfied with \(\bar{z} \) orthogonal to \(\bar{u} \) if and only if

\[
\alpha = \frac{\tilde{y} \cdot \bar{u}}{\bar{u} \cdot \bar{u}} \quad \text{and} \quad \hat{y} = \frac{\tilde{y} \cdot \bar{u}}{\bar{u} \cdot \bar{u}} \bar{u}
\]

The vector \(\hat{y} \) is called the *orthogonal projection of \(\tilde{y} \) onto \(\bar{u} \).*

The vector \(\bar{z} \) is called the *component of \(\tilde{y} \) orthogonal to \(\bar{u} \).*
If \(c \) is any scalar and if \(\vec{u} \) is replaced by \(c\vec{u} \) in the definition of \(\hat{\vec{y}} \), then the orthogonal projection of \(\vec{y} \) onto \(c\vec{u} \) is exactly the same as the orthogonal projection of \(\vec{y} \) onto \(\vec{u} \).

Thus this projection is determined by the subspace \(L \) spanned by \(\vec{u} \).

\[
\hat{\vec{y}} = \text{proj}_{L} \vec{y} = \frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}
\]
Orthonormal Sets:

A set \(\{\vec{u}_1, \ldots, \vec{u}_p\} \) is an orthonormal set if it is an orthogonal set of unit vectors.

If \(W \) is the subspace spanned by such a set, then \(\{\vec{u}_1, \ldots, \vec{u}_p\} \) is an orthonormal basis for \(W \), since the set is automatically linearly independent. (Theorem 4).

The standard basis \(\{\vec{e}_1, \ldots, \vec{e}_p\} \) for \(\mathbb{R}^n \) is an orthonormal set.
Theorem: An $m \times n$ matrix U has orthonormal columns if and only if

$$U^T U = I.$$

Theorem: Let U be an $m \times n$ matrix with orthonormal columns, and let \mathbf{x} and \mathbf{y} be in \mathbb{R}^n. Then

a. $\|U\mathbf{x}\| = \|\mathbf{x}\|$

b. $(U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$

c. $(U\mathbf{x}) \cdot (U\mathbf{y}) = 0 \iff \mathbf{x} \cdot \mathbf{y} = 0$.

End presentation