3.4 Complex eigenvalues

In this case we have eigenvalues $\lambda=\alpha \pm \beta i$ with α, β real numbers and $i=\sqrt{-1}$. The λ 's form a complex conjugate pair. The behavior of trajectories in this case depends on the real part, α, of the complex eigenvalues. When the eigenvalues are complex, the eigenvectors will also have complex entries.

Even when the matrix A has complex eigenvalues, the general
solution of $\frac{d \vec{X}}{d t}=A \vec{X}$ has the form $\vec{X}(t)=c_{1} e^{\lambda_{1} t} \vec{X}_{1}+c_{2} e^{\lambda_{2} t} \vec{X}_{2}$.

We will need Euler's formula again:

$$
e^{\alpha+\beta i}=e^{\alpha} e^{\beta i}=e^{\alpha}[\cos \beta+i \sin \beta] .
$$

This formula is useful for simplifying complex-valued expressions and will help to obtain real-valued solutions. of $\vec{X}^{\prime}=A \vec{X}$.

Another important fact is that eigenvectors corresponding to complex conjugate eigenvalues are conjugate to each other.

If the eigenvalue $\lambda_{1}=\alpha+\beta i$ has a corresponding eigenvector

$$
\vec{V}_{1}=\left[\begin{array}{l}
a_{1}+b_{1} i \\
a_{2}+b_{2} i
\end{array}\right]=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]+i\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\vec{U}+i \vec{W}
$$

then $\lambda_{2}=\bar{\lambda}_{1}=\alpha-\beta i$ has a corresponding eigenvector

$$
\vec{V}_{2}=\vec{V}_{1}=\left[\begin{array}{l}
a_{1}-b_{1} i \\
a_{2}-b_{2} i
\end{array}\right]=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]-i\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\vec{U}-i \vec{W} .
$$

Suppose $\lambda=\alpha+\beta i$ is an eigenvalue for the matrix A and that $\vec{V}=\vec{U}+i \vec{W}$ is a corresponding eigenvector.

If we define $\vec{X}(t)=e^{\lambda t} \vec{V}$, then $A \vec{X}=A\left(e^{\lambda t} \vec{V}\right)=e^{\lambda t}(A \vec{V})$

$$
=e^{\lambda t}(\lambda \vec{V})=\lambda e^{\lambda t} \vec{V}=\vec{X}^{\prime},
$$

so $\vec{X}(t)$ is a solution of the system.
By Euler we have

$$
\begin{aligned}
\vec{X}(t) & =e^{\lambda t} \vec{V}=e^{(\alpha+\beta i) t} \vec{V}=e^{\alpha t}(\cos \beta t+i \sin \beta t)(\vec{U}+i \vec{W}) \\
& =e^{\alpha t}\{(\cos \beta t) \vec{U}-(\sin \beta t) \vec{W}\}+i e^{\alpha t}\{(\cos \beta t) \vec{W}+(\sin \beta t) \vec{U}\}
\end{aligned}
$$

Then the real part and the imaginary part of $\vec{X}(t)$ can be considered separately.

$$
\begin{aligned}
& \vec{X}_{1}(t)=\operatorname{Re}\{\vec{X}(t)\}=e^{\alpha t}\{(\cos \beta t) \vec{U}-(\sin \beta t) \vec{W}\} \\
& \vec{X}_{2}(t)=\operatorname{Im}\{\vec{X}(t)\}=e^{\alpha t}\{(\cos \beta t) \vec{W}+(\sin \beta t) \vec{U}\}
\end{aligned}
$$

It is important to note that $\vec{X}_{1}(t)$ and $\vec{X}_{2}(t)$ are real-valued linearly independent solutions of the system $\vec{X}^{\prime}=A \vec{X}$.

Also, by the superposition principle, we know that
$c_{1} \vec{X}_{1}(t)+c_{2} \vec{X}_{2}(t)$ is also a solution.

Example: A system with complex eigenvalues.

Consider the system $\quad \frac{d x}{d t}=y, \quad \frac{d y}{d t}=-k^{2} x$ or in matrix
form $\left[\begin{array}{l}\frac{d x}{d t} \\ \frac{d y}{d t}\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ -k^{2} & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$ with characteristic equation
$\lambda^{2}+k^{2}=0$ and complex conjugate eigenvalues
$\lambda_{1}=k i, \quad \lambda_{2}=-k i$.
The equation $A \vec{X}=\lambda_{1} \vec{X}$ has the form $\left[\begin{array}{cc}0 & 1 \\ -k^{2} & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}k i x \\ k i y\end{array}\right]$
and $\left[\begin{array}{cc}0 & 1 \\ -k^{2} & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}k i x \\ k i y\end{array}\right]$ is equivalent to the algebraic
system

$$
\begin{gathered}
y=k i x \\
-k^{2} x=k i y
\end{gathered}
$$

where the second equation is just ki times the first. We can take x as arbitrary and $y=$ ki x and we get the eigenvector $\vec{V}=\left[\begin{array}{c}x \\ k i x\end{array}\right]=x\left[\begin{array}{c}1 \\ k i\end{array}\right]$. Pick $x=1$ and we get the representative
eigenvector $\vec{V}_{1}=\left[\begin{array}{c}1 \\ k i\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]+i\left[\begin{array}{l}0 \\ k\end{array}\right]$.

We don't have to worry about the second (conjugate) eigenvalue and its associated eigenvector. The general solution of our original system can be obtained from the information we now have available. We start with the complex solution

$$
\begin{aligned}
\vec{X}(t) & =e^{k i t}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]+i\left[\begin{array}{l}
0 \\
k
\end{array}\right]\right)=(\cos k t+i \sin k t)\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]+i\left[\begin{array}{l}
0 \\
k
\end{array}\right]\right) \\
& =\left\{(\cos k t)\left[\begin{array}{l}
1 \\
0
\end{array}\right]-(\sin k t)\left[\begin{array}{l}
0 \\
k
\end{array}\right]\right\}+i\left\{(\cos k t)\left[\begin{array}{l}
0 \\
k
\end{array}\right]+(\sin k t)\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\}
\end{aligned}
$$

Because the real and imaginary parts of the last expression are linearly independent solutions of the system, the general solution is given by

$$
\begin{aligned}
\vec{X}(t) & =c_{1}\left\{(\cos k t)\left[\begin{array}{l}
1 \\
0
\end{array}\right]-(\sin k t)\left[\begin{array}{l}
0 \\
k
\end{array}\right]\right\}+c_{2}\left\{(\cos k t)\left[\begin{array}{l}
0 \\
k
\end{array}\right]+(\sin k t)\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\} \\
& =c_{1}\left[\begin{array}{c}
\cos k t \\
-k \sin k t
\end{array}\right]+c_{2}\left[\begin{array}{c}
\sin k t \\
-k \cos k t
\end{array}\right]=\left[\begin{array}{c}
c_{1} \cos k t+c_{2} \sin k t \\
-k c_{1} \sin k t+k c_{2} \cos k t
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right] .
\end{aligned}
$$

The equilibrium point at the origin is a center.

HPGSystemSolver | Blanchard, Devaney, Hall

7 HPGSystemSolver | Blanchard, Devaney, Hall
回

Runge Kutta 4

Draw Solutions
Draw Vectors
$\mathrm{dx} / \mathrm{dt}=\mathrm{y}$
$d y / d t=-x$

7 HPGSystemSolver | Blanchard, Devaney, Hall

Dunge Kutta $4 \quad$ Draw Solutions
Draw Vectors
$d x / d t=y$
$d y / d t=-4 * x$

In our example the eigenvalues were purely imaginary. In general, we will get eigenvalues with nonzero real and imaginary parts; $\lambda=\alpha \pm \beta$ i. Then our (complex) solutions take the form

$$
\vec{X}(t)=e^{\lambda t}=e^{(\alpha \pm \beta i) t}=e^{\alpha t} e^{\beta i t}=e^{\alpha t}(\cos \beta t+i \sin \beta t) .
$$

Then $\operatorname{Re}(\vec{X}(t))=e^{\alpha t} \cos \beta t$ and $\operatorname{Im}(\vec{X}(t))=e^{\alpha t} \sin \beta t$ are two linearly independent real solutions of the system and the general solution is then
$\vec{X}(t)=k_{1} e^{\alpha t} \cos \beta t+k_{2} e^{\alpha t} \sin \beta t, k_{1}, k_{2}$ arbitrary constants.

Or the general solution can be written

$$
\vec{X}(t)=e^{\alpha t}\left(k_{1} \cos \beta t+k_{2} \sin \beta t\right) .
$$

If $\operatorname{Re}(\lambda)=\alpha$ is such that
$\alpha>0 \Rightarrow$ the origin is a spiral source.
$\alpha<0 \Rightarrow$ the origin is a spiral sink.
$\alpha=0 \Rightarrow$ the origin is a center.

Draw Solutions
Draw Vectors
$d x / d t=-0.1^{*} x-y$
$d y / d t=x-0.1^{*} y$

x

-1.2
1.

Clear Overlay Time Graphs
Runge Kutta 4
Draw Solutions
Draw Vectors

$$
d x / d t=2^{*} x-4^{*} y
$$

$$
d y / d t=\longdiv { x + 2 ^ { * } y }
$$

Spiral source

HPGSystemSolver | Blanchard, Devaney, Hall

Runge Kutta 4

Draw Solutions
Draw Vectors
$d x / d t=y$
$d y / d t=-2^{*} x$

Center

Summary of Stability Criteria for 2-D Linear Systems

Eigenvalues

REAL
Unequal
Both > 0
Both <0
Different signs
One $=0$, the other $\neq 0 \quad$ Whole line of equilibrium points

Summary of Stability Criteria for 2-D Linear Systems

Eigenvalues

Stability

REAL
Equal

$$
\begin{aligned}
& \text { Both }>0 \\
& \text { Both }<0 \\
& \text { Both }=0
\end{aligned}
$$

Unstable Node (source, repeller)
Stable Node (sink, attractor)
Algebraically unstable

Summary of Stability Criteria for 2-D Linear Systems

Eigenvalues

COMPLEX

Real part > 0
Real part < 0
Real part $=0$

Stability

Spiral source (unstable spiral, repeller)
Spiral sink (stable spiral)
Center (stable center)

End Presentation

