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      3.4 Complex eigenvalues 
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pair.  The behavior of trajectories in this case depends on
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               cos sin

We will need Euler's formula again:

.

This formula is useful for simplifying complex-valued
expressions and will help to obtain real-valued solutions.
of 
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Another important fact is that 
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eigenvectors corresponding
to complex conjugate eigenvalues are conjugate to each other
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By Euler we have

       

o is a solution of the system.
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Then the  and the  of can be
considered separately.
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It is important to note that and are 
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Also, by the superposition principle, we know that
 is also a solution.
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y independent solutions of  the system X AX
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Example: A system with complex eigenvalues.

Consider the system    ,  or in matrix

form  with characteristic equation

0 and complex conju
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and is equivalent to the algebraic
0
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We don't have to worry about the second (conjugate)
eigenvalue and its associated eigenvector.  The general
solution of our original system can be obtained from the
information we now have available.  We
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Because the real and imaginary parts of the last expression are
linearly independent solutions of the system, the general
solution is given by

    X t
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The equilibrium point at the origin is a 
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In our example the eigenvalues were purely imaginary.
In general, we will get eigenvalues with nonzero real and
imaginary parts; .  Then our (complex) solutions
take the form
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Then Re and Im  are two
linearly independent real solutions of the system and the
general solution is then
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Or the general solution can be written
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Spiral sink 
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Spiral source 
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Center 
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Summary of Stability Criteria for 2-D Linear Systems

Eigenvalues                           Stability

REAL
   Unequal
       Both > 0                          Unstable Node (source, repeller)
       Both < 0                          Stable Node (sink, attractor)
       Different signs                Saddle Point
       One 0,  the other 0    Whole line of equilibrium points= ≠
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Summary of Stability Criteria for 2-D Linear Systems

Eigenvalues                           Stability

REAL
   Equal
       Both > 0                        Unstable Node (source, repeller)
       Both < 0                        Stable Node (sink, attractor)
       Both = 0                        Algebraically unstable
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Summary of Stability Criteria for 2-D Linear Systems

Eigenvalues                           Stability

COMPLEX
       Real part > 0                  Spiral source (unstable spiral, repeller)
       Real part < 0                  Spiral sink (stable spiral)
       Real part = 0                  Center (stable center)
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