3.4 Complex eigenvalues

In this case we have eigenvalues A = a £ S1 with «, f real

numbers and i =+/-1. The A's form a complex conjugate

pair. The behavior of trajectories in this case depends on
the real part, «, of the complex eigenvalues. When the
eigenvalues are complex, the eigenvectors will also have

complex entries.

Even when the matrix A has complex eigenvalues, the general

solution of (ll_)t( = AX has the form X (t)=ce”'X, +c,e’'X,.



We will need Euler's formula again:
e**P' =e”ef! =e“[cos B+isin B].

This formula is useful for simplifying complex-valued
expressions and will help to obtain real-valued solutions.

of X' = AX.

Another important fact is that eigenvectors corresponding
to complex conjugate eigenvalues are conjugate to each other.



If the eigenvalue A, = a + Si has a corresponding
eigenvector

BRRN TR

then A, = A, = o — Bi has a corresponding eigenvector

v



Suppose 4 =a + Bi IS an eigenvalue for the matrix A
and that V =U +iW iS a corresponding eigenvector.

If we define X (t)=¢"V, then AX = A(e"V)=e*( AV
— g™t (/1\7) — eV = X'

so X (t) is a solution of the system.

By Euler we have

—

X (t)=eMV =1 = e (cos gt +isin pt)(U +iW )
=X {(cos,Bt)U —(sin ﬂt)VV} +iet {(cos,Bt)VV +(sin ,Bt)U}



Then the real part and the imaginary part of X (t) can be
considered separately.

X, (t)= Re{)z (t)} = gt {(cos,Bt)U —(sin ,Bt)VV}
X, (t)= Im{)z (t)} = g™t {(cos,Bt)VV +(sin ,Bt)U}

It is important to note that X, (t) and X, (t) are real -valued

linearly independent solutions of the system X’ = AX.

Also, by the superposition principle, we know that
¢, X, (t)+C, X, (t) is also a solution.



Example: A system with complex eigenvalues.

Consider the system % =Y, % =—Kk*X or in matrix
S

form | Ut :{ 02 1}{)(} with characteristic equation
dy —k? 0]y
| dt_

A% +k? =0 and complex conjugate eigenvalues

A =ki, A =—ki.

. - - 0 1| x KI X
The equation AX = A X has the form = .
! & Lkz OM [k' y}



and 0 Lix = k.'X IS equivalent to the algebraic
—k% 0| y| [kiy

system
y =KiX
—k2x=kiy

where the second equation is just ki times the first. We can

take x as arbitrary and y =kix and we get the eigenvector

V = {k;(x} = ){kl| . Pick x=1and we get the representative

: - |1 11 .10
elgenvector V, = ki } = {O}L | {k}




We don't have to worry about the second (conjugate)
eigenvalue and its associated eigenvector. The general
solution of our original system can be obtained from the
Information we now have available. We start with the
complex solution

T R -
{onfg e o]



Because the real and imaginary parts of the last expression are
linearly independent solutions of the system, the general
solution is given by

X (t)=c, {(cos kt){ﬂ —(sin kt){ﬂ} +C, {(cos kt){ﬂ +(sin kt){(ﬂ}
_c cos kt e sinkt | | C,coskt+C,sinkt | | X
- | —ksinkt| | -kcoskt| |-kc,sinkt+kC,coskt| |y |

The equilibrium point at the origin Is a center.
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In our example the eigenvalues were purely imaginary.
In general, we will get eigenvalues with nonzero real and

Imaginary parts; A =a = 1. Then our (complex) solutions
take the form

—

X (t)=e" =e“/Mt —exe/ =g (cos At +isin ft).

Then Re(X (t))=€“ cos At and Im(X (t))=e* sin St are two
linearly independent real solutions of the system and the
general solution is then

X (t)=k,e cos St + k,&*'sin St, ki, k, arbitrary constants.



Or the general solution can be written
X (t) =€ (k,cos Bt +k, sin Bt).
If Re(21)=« Is such that

a>0 = theoriginis aspiral source.
a <0 = theoriginis aspiral sink.

a=0 = theoriginis a center.
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Summary of Stability Criteria for 2-D Linear Systems

Eigenvalues Stability
REAL
Unequal
Both >0 Unstable Node (source, repeller)
Both <0 Stable Node (sink, attractor)
Different signs Saddle Point

One =0, the other 0 Whole line of equilibrium points



Summary of Stability Criteria for 2-D Linear Systems

Eigenvalues

REAL
Equal
Bot
Bot
Bot

N> 0
N<0

N=0

Stability

Unstable Node (source, repeller)
Stable Node (sink, attractor)
Algebraically unstable



Summary of Stability Criteria for 2-D Linear Systems

Eigenvalues

COMPLEX
Real part > 0
Real part <0
Real part =0

Stability

Spiral source (unstable spiral, repeller)
Spiral sink (stable spiral)
Center (stable center)
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