

Microbial Metabolism

- **1.** <u>Metabolism</u> is the sum of the chemical reactions in an organism.
- 2. <u>Catabolism</u> is the breaking-down complex molecules; energy-releasing processes.
- <u>Anabolism</u> is building up complex molecules from simpler subunits; energyusing processes.

- **<u>Activation energy</u> is needed to disrupt electronic configurations.**
- Reaction rate is the frequency of collisions with enough energy to bring about a reaction.
 - Reaction rate can be increased by *enzymes* or by increasing <u>temperature</u> or <u>pressure</u>.

5.2) Factors Influencing Enzymes Can be <u>denatured</u> by temperature and pH. (& high salt, nonpolar solvents...) With the solution of the solvents is the solvent of the solvent

5.3) Oxidation-Reduction

- **Oxidation** is the removal of electrons.
- <u>Reduction</u> is the gain of electrons.
- <u>Redox reaction</u> is an oxidation reaction paired with a reduction reaction (always!).

5.4) The Generation of ATP • ATP is generated by the phosphorylation of ADP. Adenosine $- p \sim p + Energy + p \rightarrow$ Adenosine $- p \sim p \sim p$

Carbohydrate Catabolism

- The breakdown of carbohydrates to release energy:
 - 1) Glycolysis
 - 2) Pyruvate Oxidation
 - 3) Krebs Cycle
 - 4) Electron Transport Chain

D. The Electron Transport Chain

- A series of carrier molecules that are, in turn, oxidized and reduced as electrons are passed down the chain.
- Energy released can be used to produce ATP by
 <u>ChemiOsmosis</u>.

5.6) Respiration • Aerobic respiration: The Figure 5.17 final electron acceptor in the electron transport chain is molecular oxygen (O_2). ***ETC + Chemiosmosis = • Oxidative Phosphorylation!!*** +2 H Anaerobic respiration: The final electron acceptor in the Kreb -6 H electron transport chain is not O₂. - Yields less energy than aerobic respiration only part of the Krebs cycle operates w/out O₂. http://vcell.ndsu.nodak.edu/animations/etc/movie.htm 6 O2 + 12 H* http://www.science.smith.edu/departments/Biology/Bio231/krebs.html 38 ATF 6 H-O http://www.science.smith.edu/departments/Biology/Bio231/etc.html

A. Aerobic Respiration

Pathway	Eukaryote	Prokaryote
Glycolysis	Cytoplasm	Cytoplasm
Intermediate step (Pyruvate Ox'n)	Mito. Inner Memb	Cytoplasm
Krebs cycle	Mitochondrial matrix	Cytoplasm
ETC	Mitochondrial inner membrane	Plasma membrane

 <u>Energy produced (types)</u> – from complete oxidation of 1 glucose using aerobic respiration 				
Pathway	ATP produced	NADH produced	FADH ₂ produced	
Glycolysis	2	2	0	
Pyruvate Oxidation	0	2	0	
Krebs cycle	2	6	2	
Total	4	10	2	

complete oxidation of <u>1 glucose</u> using aerobic respiration.					
Pathway	By Substrate- Level Phosphorylation	By Oxidative Phosphorylation			
		From NADH	From FADH ₂		
Glycolysis	2	6	0		
Pyruvate Oxidation	0	6	0		
Krebs cycle	2	18	4		
Total	4	30	4		

Types of Fermentation

- A. <u>Alcohol fermentation</u> Produces ethyl alcohol + CO₂
- **B.** <u>Lactic acid fermentation</u> Produces lactic acid.
 - *Homolactic fermentation* Produces lactic acid only.
 - *Heterolactic fermentation* Produces lactic acid and other compounds (eg: acetoin).

5.9) Photosynthesis

<u>Photo</u>: Conversion of light energy into chemical energy (ATP).

- Light-dependent (light) reactions

- <u>Synthesis</u>: Fixing carbon into organic molecules.
 - Light-independent (dark) reaction, Calvin-Benson cycle
 - > <u>Oxygenic:</u> 6 CO₂ + 12 H₂O + Light energy \rightarrow C₆H₁₂O₆ + 6 O₂ + 6 H₂O
 - Anoxygenic: CO₂ + 2 H₂S + Light energy → [CH₂O] + 2 S + H₂O

