

Ch. 16: Nonspecific Host Defenses

OBJECTIVES: Students should be able to:

- <u>Ch. 16:</u> Listing examples, explain how <u>mechanical</u>, <u>chemical</u>, and <u>microbiotal</u> barriers protect a host animal. ** Define the function of each <u>granulocyte</u>!
- Describe the sequence of events that lead to <u>inflammation</u> and/or <u>fever</u>, and how these processes protect a host from infection.
- Compare and contrast how <u>Complement</u> protects a host from bacteria, and how <u>Interferons</u> protect a host from viral infection. Describe 3 major effects of <u>complement</u> activation, and 3 effects of <u>interferon</u> production.
 - * Objectives are your HOMEWORK between classes!!! **Read, Review, Draw!!

Chapter 16 Nonspecific Defenses of the Host

Nonspecific Defenses of the Host

- 1. <u>Susceptibility</u> = Lack of resistance to a disease.
- 2. <u>Resistance</u> = Ability to ward off disease.
- 3. <u>Nonspecific resistance</u> = Defenses against any

pathogen.

Specific resistance = Immunity, resistance to a specific pathogen.

Host Defenses Figure 16.1		
Innate (Nonspecific) Immunity		Adaptive (Acquired) Immunity (Chapter 17)
First line of defense	Second line of defense	Third line of defense
 Intact skin Mucous membranes and their secretions Normal microbiota 	 Natural killer cells and phagocytic white blood cells Inflammation Fever Antimicrobial substances 	 Specialized lymphocytes: T cells and B cells Antibodies
BARRIERS NONSPECIFIC ATTACK SPECIFIC ATTACK		

16.2) Chemical Factors

- 1. Fungistatic fatty acid in sebum
- 2. Low pH (3-5) of skin, vaginal secretions
- **3.** <u>Lysozyme</u> in perspiration, tears, saliva, urine, and tissue fluids
- 4. Low pH (1.2-3.0) of gastric juice (HCI)
- 5. <u>Transferrins</u> in blood find & bind iron
- 6. NO (nitrous oxide) inhibits ATP production

<u>Microbial antagonism</u> / competitive exclusion:
 – Normal microbiota compete with pathogens.

Formed Elements In Blood 16,4) Formed Elements in Blood I. Erythrocytes (Red Blood Cells) 4.8–5.4 million per μ L or mm³ Function: Transport of O₂ and CO₂ **Differential White** LM Η 4 μm **Cell Count** II. Leukocytes (White Blood Cells) 5000-10,000 per µL or mm³ • Percentage of each type of white cell A. Granulocytes (stained) 1. Neutrophils (PMNs) (60-70% of leukocytes) in a sample of 100 white blood cells Function: Phagocytosis Neutrophils, PMNs 60-70% 2. Basophils (0.5–1%) Function: Production of 0.5-1% **Basophils** histamine **Eosinophils** 2-4% LM ⊢ ∃µm Monocytes 3-8% 3. Eosinophils (2-4%) Functions: Production of toxic Lymphocytes 20-25% proteins against certain parasites; some phagocytosis

16.5) Inflammation

- 1. Redness rubor [latin]
- 2. Pain dolor
- 3. Heat calor
- 4. Swelling (edema) tumor
- 5. Acute-phase proteins activated (complement, cytokine, kinins)
- 6. Vasodilation (histamine, kinins, prostaglandins, leukotrienes)
- 7. Margination and emigration of WBCs
 - **Diapedesis** leave BV and enter tissues
- 8. Tissue repair

13

Chemicals Released by Damaged Cells

Histamine	Vasodilation, increased permeability of blood vessels
• Kinins	Vasodilation, increased permeability of blood vessels
Prostaglandins	Intensify histamine and kinin effect
Leukotrienes	Increased permeability of blood vessels, phagocytic attachment

16.6) <u>Fever</u>: Abnormally High Body Temperature

- 1. Hypothalamus normally set at 37°C
 - Body's thermoregulatory center ("thermostat")
- 2. Gram-negative endotoxin cause phagocytes to release interleukin 1
- 3. Hypothalamus releases **prostaglandins** that reset the hypothalamus to a high temperature
- 4. Body increases rate of metabolism and shivering to raise temperature
- When IL-1 is eliminated, body temperature falls. (*Crisis* = turning point)

http://faculty.riohondo.edu/rbethel/videos/micro inflammation.swf

Some Bacteria Evade Complement

- 1. Capsules prevent C activation.
- 2. Surface lipid-carbohydrates prevent MAC formation.
 - Too long to reach PM surface!
- 3. Enzymatic digestion of C5a (C5a protease).

http://highered.mheducation.com/sites/0072507470/student_view0/ch apter22/animation_activation_of_complement.html

• <u>Alpha IFN</u> & <u>Beta IFN</u>: Cause cells to produce antiviral proteins that inhibit viral replication.

 <u>Gamma IFN</u>: Causes neutrophils and macrophages to *phagocytize bacteria*.

http://highered.mcgraw-hill.com/sites/0072556781/student_view0/chapter31/animation_guiz_2.html

