

Crown

OBJECTIVES: Students should be able to:

- <u>Ch. 9:</u> Diagram three methods of <u>horizontal gene transfer</u> in bacteria. In each case, what must happen for the exchanged DNA to be stably inherited?
- 2. Describe how <u>Restriction Enzymes</u>, <u>Plasmids</u>, and <u>PCR</u> can be used for molecular cloning and genetic engineering.
- 3. Distinguish between the general & technical uses of the term "biotechnology". What is Recombinant DNA Technology/Genetic Engineering?
- Briefly (but including important details and methods), outline HOW to clone and identify a new gene! (NOT necessarily in that order!!) ©
 - Objectives are your HOMEWORK between classes!!!
 DUE (w/ Study Guide questions) Wed./Thurs. at the start of Lab!!

Biotechnology and Recombinant DNA

✤ Biotechnology:

- The use of microorganisms, cells, or cell components to make a product
- Foods, antibiotics, vitamins, enzymes

Recombinant DNA Technology:

 Insertion or modification of genes to produce desired proteins from "foreign" sources

Medical Products of Recombinant DNA Tech

TABLE 9.1	3LE 9.1 Some Pharmaceutical Products of Genetic Engineering				
Product		Comments			
Alpha-interferon		Therapy for leukemia, melanoma, and hepatitis; produced by <i>E. coli</i> and <i>Saccharomyces cerevisiae</i> (yeast).			
Antitrypsin		Assists emphysema patients; produced by genetically modified sheep.			
Beta-interferon		Treatment for multiple sclerosis; produced by mammalian cell culture.			
Bone morphogenic proteins		Induces new bone formation; useful in healing fractures and reconstructive surgery; produced by mammalian cell culture.			
Colony-stimulating factor (CSF)		Counteracts effects of chemotherapy; improves resistance to infectious disease such as AIDS; treatment of leukemia; produced by <i>E. coli</i> and <i>S. cerevisiae</i> .			
Epidermal growth factor (EGF)		Heals wounds, burns, ulcers; produced by E. coli.			
Erythropoietin (EPO)		Treatment of anemia; produced by mammalian cell culture.			
Factor VIII		Treatment of hemophilia; improves clotting; produced by mammalian cell culture.			
Gamma-interferon		Treatment of chronic granulomatous disease; produced by E. coli.			
Hepatitis B vaccine		Produced by S. cerevisiae that carries hepatitis-virus gene on a plasmid.			
Influenza vaccine		Trial vaccine made from E. coli or S. cerevisiae carrying virus genes.			
Interleukins		Regulate the immune system; possible treatment for cancer; produced by E. coli.			
Monoclonal antibodies		Possible therapy for cancer and transplant rejection; used in diagnostic tests; produced by mammalian cell culture (from fusion of cancer cell and antibody-producing cell).			
		Table 9.1.1			

5

Selection & Mutation: (methods for producing your desired/engineered gene product:)

- 1. <u>Selection</u>: Culture a naturally-occurring microbe that produces desired product
- 2. <u>Mutation</u>: Mutagens cause mutations that might result in a microbe with a desirable trait
- 3. <u>Site-directed mutagenesis</u>: purposefully change a specific DNA code to change a protein
- 4. Select and culture microbe with the desired mutation

9.1) Restriction Enzymes

- 1. Cut specific sequences of DNA.
- 2. Destroy bacteriophage DNA in bacterial cells (natural function).
- 3. Recognize specific, palindromic DNA sequences (4-8 bp).
- 4. Cannot digest (host) DNA with methylated cytosines (methyl-C).

9.4) Genetic Engineering: A. Molecular Cloning

B. Identifying a Specific Gene

	Making	a Gene Produ	ict			
	Radioactively labeled probes	Colony Hybridization Add radioactively labeled probes.	Figure 9.12.2			
	Bound DNA probe Gene of interest Single- stranded DNA	S Probe with the sired gene from bacterial cells.				
	Developed film	(3) Wash filter to remove unbound probe and expose filter to X-ray film.				
	Colonies containing genes of interest Replica plate	Compare developed film with replica of master plate to identify colonies containing gene of interest.				
•	 Probe = labeled single strand of DNA or RNA; – "seeks out" its complementary sequence among target nucleic acids – binds by complementary base-pairing and "tags" where related sequences are found. 					
•	 <u>HYBRIDIZATION</u> = complementary base-pairing between very similar DNA strands from two different sources. – (eg: a synthetic probe, and target bacterial chromosomal DNA) 					
17						

19

Safety Issues and Ethics

- 1. Avoid accidental release
- Genetically modified crops must be safe for consumption and for the environment
- 3. Who will have access to an individual's genetic information?

http://www.pbs.org/wgbh/nova/genome/program.html = PBS special!