LeChatelier’s Principle – Disturbing Chemical Equilibria

Assignment & Report Guidelines

READING
Experiment – Lab Handout Download
Chemistry, 5th & 6th ed. by Silberberg: Section 17.6

PRE-LAB
For each system, prepare a table like the one below in your lab notebook with your predictions about the effect of each addition in each test tube. Leave one full page in your notebook for each of the four systems. The table should take up about ¾ of the page.

DATA & ANALYSIS TABLE
System #__ Data & Analysis Table

<table>
<thead>
<tr>
<th>Test Tube #</th>
<th>Condition Change</th>
<th>Predicted Outcome</th>
<th>Experimental Observation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Include one row for each condition change in the procedure for a system.

* Leave a lot of room to write in the explanation. This will be where you will discuss:
 - Whether what the condition change has resulted in the addition or removal of a reactant or product. This may differ from your prediction. If so, briefly discuss.
 - How competing equilibria interact (if applicable).
 - Other factors affecting the equilibrium.

MINI-REPORT
For each system, your mini-report will be composed of the complete Data & Analysis Table and answers to any discussion questions included on the procedure page for the system.
System 1: Acid / Base Equilibria and the pH indicator Methyl Violet

Background – Phenolphthalein as a reference system

Acid-Base indicators are chemical compounds that have one form under more acidic conditions, and a different form under more basic conditions. The two forms of the indicator have different colors. Consider the familiar acid-base indicator, phenolphthalein. In its “protonated” form – which is dominant in acidic or neutral solution, it is clear. However, in basic solution, its pink “deprotonated” form dominates.

The reaction between the protonated and deprotonated forms is an equilibrium. In solution, the phenolphthalein is never fully protonated or deprotonated. Let’s consider the reaction as follows:

\[
\text{clear (in more acidic solutions)} \quad \leftrightarrow \quad \text{pink (in more basic solutions)}
\]

This equilibrium shifts to the right or the left, based on the concentration of H^+ in the solution it is in. If the system is at equilibrium under basic conditions and significant H^+ is added, the reaction will shift to the left to use up the extra H^+ that was added to the solution and establish a new equilibrium condition. If enough H^+ is added, then most of the phenolphthalein will be converted to its protonated form, and the pink color of the anion form will no longer be noticeable because it will be at such a low concentration.

This shift is not permanent. If base (OH⁻) ions are added to the solution, the free H^+ on the product side of the reaction will be used up by an acid-base neutralization reaction – the above reaction will shift to the right to replace the H^+ ions, and the pink form will dominate again. By adding acid or base, we can push this equilibrium back and forth indefinitely.
Methyl Violet

We have observed phenolphthalein in the laboratory many times. In this experiment, you will investigate the reaction equilibrium of the indicator methyl violet. Its equilibrium is described by the equation:

\[
\text{H(MV)}_{\text{green}} \rightleftharpoons \text{H}^+_{\text{aq}} + \text{MV}^-_{\text{violet}}
\]

Procedure:

Prepare the test solution by adding 1-2 drops of indicator solution to about 15 mL of deionized water. Divide the solution evenly into two test tubes. Save one as a reference. Note the color.

Test Tube #1 (control): Add nothing

Test Tube #2:

Addition #1: Add the 6.0 M HCl solution dropwise until further addition results in no significant change. Describe the change.

Addition #2: Add the 6.0 M NaOH solution dropwise until further addition results in no color change. Describe the change.

Addition #3: Again add the 6.0 M HCl solution dropwise until further addition results in no significant change. Describe the change.

System #1 Data & Analysis Table

<table>
<thead>
<tr>
<th>Test Tube</th>
<th>Condition Change</th>
<th>Predicted Outcome</th>
<th>Observation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None (control)</td>
<td>No changes.</td>
<td>Note color</td>
<td></td>
</tr>
</tbody>
</table>
| 2 | 6.0 M HCl | Solution expected to turn green. | **Note color** | **Sample Explanation (Do NOT copy):**
Addition of the HCl pushes the reaction toward reactant side by creating an excess of H\(^+\) ions, a product. The equilibrium shifts to reduce the new stress on the system. |
| 2 | 6.0 M NaOH | | | |
| 2 | 6.0 M HCl | | | |

Note that some boxes are filled in as an example.
System #2: Equilibria involving a precipitate

Calcium chloride is a very soluble salt. When we put it into water, we can dissolve a reasonably large quantity per liter. Until we reach saturation, the dissolution and dissociation of CaCl₂ is essentially 100%. Sodium oxalate is also quite soluble and ionizes completely in water: Because we will not have saturated solutions, we assume the following reactions go to completion:

\[
\text{CaCl}_2(\text{s}) \xrightarrow{100\%} \text{Ca}^{2+}(\text{aq}) + 2 \text{Cl}^-(\text{aq}) \quad \text{Na}_2\text{C}_2\text{O}_4(\text{s}) \xrightarrow{100\%} 2 \text{Na}^+(\text{aq}) + \text{C}_2\text{O}_4^{2-}(\text{aq})
\]

Dissolving acids and some other ionic compounds in water is a more complex process characterized by a step-wise dissociation that is in equilibrium at each step. Consider the diprotic acid, oxalic acid:

\[
\text{H}_2\text{C}_2\text{O}_4(\text{aq}) \rightleftharpoons \text{H}^+(\text{aq}) + \text{HC}_2\text{O}_4^- (\text{aq})
\]

\[
\text{HC}_2\text{O}_4^- (\text{aq}) \rightleftharpoons \text{H}^+(\text{aq}) + \text{C}_2\text{O}_4^{2-} (\text{aq})
\]

These equilibria are both reactant-favored and so only produce a small amount of product relative to reactants.

The compound calcium oxalate (CaC₂O₄) is not very soluble in water. When calcium and oxalate ions are in the same solution, even at low concentration, we expect a precipitate that forms by the following reaction:

\[
\text{Ca}^{2+}(\text{aq}) + \text{C}_2\text{O}_4^{2-}(\text{aq}) \rightleftharpoons \text{CaC}_2\text{O}_4(\text{s})
\]

The above reaction is highly product-favored. All three of the equilibria described interact with the other two equilibrium reactions. A change that affects any one of the equilibria will affect all three. We will mix different combinations of compounds containing calcium ions, oxalate ions, and H⁺ ions to study and manipulate these equilibria.

Procedure:

Put approximately 5.0 mL of 0.05 M CaCl₂ into each of two test tubes labeled #1 and #2.

Test Tube #1: Add 1.0 mL of 0.1 M Na₂C₂O₄. Describe the change.

Test Tube #2:

Addition #1: Add 1.0 mL of 0.10 M H₂C₂O₄ solution. Describe the change, comparing to test tube #1.

Addition #2: Add 10 drops of 6.0 M HCl. Describe the change.
Note: HCl is fully dissociated into H⁺ ions and Cl⁻ ions.

Addition #3: Add 10 drops of 6.0 M NH₄OH. Describe the change.
System #3: Heat and equilibria

Most reactions either release heat or consume heat. Many reaction processes in solution release or consume heat, but because of the large heat capacity of water, we do not notice the energy transfer in many reactions we study. Complex ion formation is an example of such a process. In this experiment, we will determine whether a specific complex ion formation is endothermic (heat acts as a reactant) or exothermic (heat acts as a product).

In aqueous solution, cobalt ions are solvated by six water molecules to make a light pink complex ion: \([\text{Co(H}_2\text{O)}_6]^{2+}\). If an excess of chloride is added to the solution, the blue cobalt–chloride complex forms: \([\text{CoCl}_4]^{2-}\).

\[
[\text{Co(H}_2\text{O)\text{6}}}^{2+}(\text{aq}) + 4 \text{Cl}^-(\text{aq}) \rightleftharpoons [\text{CoCl}_4]^{2-}(\text{aq}) + 6 \text{H}_2\text{O(l)}
\]

Based on the directions that the addition of heat (hot water bath) and removal of heat (cold water bath) push the reaction, you can determine whether the reaction is endothermic or exothermic.

Procedure:

In a small container, put 2-3 mL (1 pipette) of 0.1 M \(\text{CoCl}_2\). Though chloride ions are present in this solution, water is in significant excess; therefore, nearly all of the cobalt (II) ions are in the \([\text{Co(H}_2\text{O)}_6]^{2+}\) form.

Under the fume hood: add concentrated HCl dropwise until the solution turns a purple-violet color. If it turns a deep blue, too much chloride is present – you should properly discard the solution and start again.

When the solution is purple there is a significant quantity of both complex ions. Divide the solution equally into three test tubes and label #1-3.

Test Tube #1 (control): Maintain at room temperature.

Test Tube #2: Place in a hot water bath (~ 50 °C). Describe the change.

Test Tube #3: Place in an ice-water bath (~ 3°C). Describe the change.

Switch test tubes 2 & 3. Describe the change. Allow them both to come to room temperature. Compare to the control.

Additional System #3 Question:

- Is the reaction exothermic or endothermic? Explain.
LeChatlier’s Principle – Disturbing Chemical Equilibria

POST-LAB QUESTIONS

1. For System #2, write the equilibrium constant (K) equation for the precipitation reaction being studied.

2. In System #3, if the solution is diluted, the concentration of the product, and both reactants all decrease.
 A) Write the equilibrium (K) equation.
 B) At the point the solution is diluted, will Q be <, =, or > K? Justify your answer.
 C) Based on LeChatlier’s principle, will the reaction shift to the right or to the left?
 D) For system #3, is the K value larger or smaller at higher temperature? Explain this in terms of the equilibrium shift that results due to the reaction being endothermic or exothermic.