Problems

You may use a calculator to verify solutions, but not to provide them.

1. 900 cc/sec
 Hint: \(\frac{dx}{dt} = 3 \text{ cm/sec.} \), want \(\frac{dV}{dt} \), and we know \(V = x^3 \) so \(\frac{dV}{dx} = 3x^2 \)

2. \(\frac{1}{36} \) m/min or \(\frac{10}{3} \) cm/min.
 Hint: Want \(\frac{dh}{dt} \) and we know \(\frac{dV}{dt} = 15 \text{ m}^3/\text{min.} \).
 The volume of the pool for \(h \leq 2 \) is \(V = \frac{1}{2} \pi \cdot h \cdot x \).
 From the triangle, we have \(\frac{x}{h} = \frac{\frac{30}{2}}{\frac{15}{2}} \rightarrow x = 15h \).
 So \(V = \frac{225}{2} h^2 \) and \(\frac{dV}{dh} = 225h \rightarrow = 450 \) at \(h = 2 \).

3. Draining at \(\frac{49\pi}{35} \) ft/min.
 Hint: Want \(\frac{dV}{dt} \) and we know \(\frac{dh}{dt} = -0.25 \) ft/min.
 To relate \(V \) and \(h \) we know \(V = \frac{1}{3} \pi r^2 h \) but we need to eliminate the \(r \) so use similar triangles: \(\frac{r}{h} = \frac{\frac{7}{12}}{\frac{7}{12}} \rightarrow r = \frac{7}{15}h \).
 Then \(V = \frac{1}{3} \pi \left(\frac{7}{12}h \right)^2 h = 49\pi \frac{h^3}{432} \) and \(\frac{dV}{dh} = 49\pi \frac{h^2}{144} \).

4. (a) \(\frac{dP}{dt} = \frac{24}{\pi} \) in/sec.
 Hint: Want \(\frac{dP}{dt} \) and we know \(\frac{dC}{dt} = 6 \) in/sec. To relate \(P \) and \(C \) note that the side of the square is equal to \(2r \) so \(P = 8r \). Then since \(C = 2\pi r \rightarrow r = \frac{C}{2\pi} \) So \(P = 8 \left(\frac{C}{2\pi} \right) = \frac{4C}{\pi} \) . It follows \(\frac{dP}{dC} = \frac{4}{\pi} \).
 (b) \(\frac{dA}{dt} = 120 \left(\frac{1}{\pi} - \frac{1}{4} \right) \) in\(^2\)/sec
 Hint: Want \(\frac{dA}{dt} \) and we know \(\frac{dC}{dt} = 6 \) in/sec. To relate \(A \) and \(C \) note that the side of the square is equal to \(2r \) so \(A_{\square} = (2r)^2 \). Then since \(C = 2\pi r \rightarrow r = \frac{C}{2\pi} \) So \(A_{\square} = \left(2 \cdot \frac{C}{2\pi} \right)^2 = \frac{C^2}{\pi^2} \). Then \(A = \frac{C^2}{\pi^2} - \frac{C^2}{4} \).
 It follows \(\frac{dA}{dC} = 2C \left(\frac{1}{\pi^2} - \frac{1}{4\pi} \right) \). When \(A = 25\pi \rightarrow r = 5 \) so \(C = 10\pi \).

5. \(\frac{10}{3} \) cm\(^2\)/sec.
 Hint: Want \(\frac{dA}{dt} \) and we know \(\frac{dV}{dt} = 10 \text{ cc/sec.} \). To relate \(A \) and \(V \) note that both are given in terms of \(r \):
 \(A = 4\pi r^2 \) and \(V = \frac{4}{3} \pi r^3 \) so \(V = \frac{4}{3} \pi \left(\frac{A}{4\pi} \right)^{3/2} \). It follows \(\frac{dV}{dA} = \frac{1}{2} \left(\frac{A}{4\pi} \right)^{1/2} \).

6. 800m of the $1/m$ fence and 200m of the $2/m$ fence. The cost will be $1200.
 Hint: If \(x \) is the front and \(y \) represents the sides, we have (1) \(x \cdot y = 60000 \) and (2) \(C = 2x + 1y + 1x + 1y \). Simplifying and substituting (1) we have \(C = 3x + 2 \left(\frac{60000}{x} \right) \).

7. \(r \approx 3.56 \text{ cm} \) and \(h \approx 8.91 \text{ cm} \).
 Hint: Want to minimize cost through surface area: \(C = (0.03)\pi r^2 + (0.02)2\pi rh + (0.02)\pi r^2 = (0.05)\pi r^2 + 0.04\pi rh. \)
 The additional constraint is \(V = \pi r^2 h = 355 \). Substituting the constraint for \(h \) gives \(C = (0.05)\pi r^2 + 0.04\pi r \left(\frac{355}{\pi r^2} \right) \).
 It follows we need to maximize \(C = (0.05)\pi r^2 + \frac{14.2}{r} \).
8. (a) When \(x = 1 \), \(A = \frac{1}{2} \).

Hint: Area of rectangle is given by base \((x)\) and height \((y = \frac{1}{x^2+1})\) so \(A = \frac{x}{x^2 + 1} \). Find max. of this function.

(b) No. IP at \(x = \sqrt{\frac{1}{3}} \)

Hint: Want \(y'' \) (NOT \(A'' \)). Note \(y'' = \frac{2(3x^2 - 1)}{(x^2 + 1)^3} \).

9. \(r = \frac{20\sqrt{3}}{3} \text{ cm}, \ h = \frac{40}{5} \text{ cm} \).

Hint: If \(r \) is the radius of the base of the cone, then using the radius of the sphere = 10cm and Pythagoras, we have the height of the cone, \(h = 10 + \sqrt{10^2 - r^2} \), assuming the cone extends below the equator.

Note: If \(h < 10 \), (so the base of the cone is above the equator) then we have \(h = 10 - \sqrt{10^2 - r^2} \). Can you see why there is a cone with the same base area but \(h > 10 \) so we can ignore all cones where \(h < 10 \)?

From this it follows \(V = \frac{1}{3} \pi r^2 (10 + \sqrt{10^2 - r^2}) \) BUT this produces a really unpleasant derivative.

Consider instead writing \(V \) as a function of \(h \). From above you should see that \(r^2 = 20h - h^2 \). Use this to help.

10. We want to maximize \(A = xy \) with the constraint that \(2x + 2y = k \). \(2x + 2y = k \rightarrow y = \frac{k - 2x}{2} \).

Then \(A = x \left(\frac{k - 2x}{2} \right) = \frac{1}{2} kx - x^2 \). So \(\frac{dA}{dx} = \frac{k}{2} - 2x = 0 \rightarrow x = \frac{k}{4} \). Since \(\frac{d^2A}{dx^2} = -2 \), this is a maximum.

It follows that since \(y = \frac{k - 2(\frac{k}{4})}{2} = \frac{k}{4} \), the rectangle is a square.

11. (a) 3573.3’ from the box along the road.

Hint: Want to minimize cost: \(C = 35\sqrt{900^2 + x^2} + 20(4200 - x) \). Notice the domain bounds: \([0, 4200] \) and what they mean in this context. \(x = 4200 \) would be the shortest overall distance, while \(x = 0 \) would be the shortest path through the forest.

(b) \$109,850.53 (Note that \(C(0) = \$115,500 \))

(c) \$150,337.12 (when \(x = 4200 \))

12. \(36\pi\)

13. \(\frac{\pi}{4}\)

14. (a) 20’ for circle and 0’ for square.

(b) \(\frac{20\pi}{\pi+4}\)’ for circle and \(\frac{80}{\pi+4}\)’ for square.

15. \$37